//===- Expressions.cpp - Expression Analysis Utilities ----------------------=// // // This file defines a package of expression analysis utilties: // // ClassifyExpression: Analyze an expression to determine the complexity of the // expression, and which other variables it depends on. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/Expressions.h" #include "llvm/ConstantHandling.h" #include "llvm/Function.h" ExprType::ExprType(Value *Val) { if (Val) if (ConstantInt *CPI = dyn_cast(Val)) { Offset = CPI; Var = 0; ExprTy = Constant; Scale = 0; return; } Var = Val; Offset = 0; ExprTy = Var ? Linear : Constant; Scale = 0; } ExprType::ExprType(const ConstantInt *scale, Value *var, const ConstantInt *offset) { Scale = var ? scale : 0; Var = var; Offset = offset; ExprTy = Scale ? ScaledLinear : (Var ? Linear : Constant); if (Scale && Scale->isNullValue()) { // Simplify 0*Var + const Scale = 0; Var = 0; ExprTy = Constant; } } const Type *ExprType::getExprType(const Type *Default) const { if (Offset) return Offset->getType(); if (Scale) return Scale->getType(); return Var ? Var->getType() : Default; } class DefVal { const ConstantInt * const Val; const Type * const Ty; protected: inline DefVal(const ConstantInt *val, const Type *ty) : Val(val), Ty(ty) {} public: inline const Type *getType() const { return Ty; } inline const ConstantInt *getVal() const { return Val; } inline operator const ConstantInt * () const { return Val; } inline const ConstantInt *operator->() const { return Val; } }; struct DefZero : public DefVal { inline DefZero(const ConstantInt *val, const Type *ty) : DefVal(val, ty) {} inline DefZero(const ConstantInt *val) : DefVal(val, val->getType()) {} }; struct DefOne : public DefVal { inline DefOne(const ConstantInt *val, const Type *ty) : DefVal(val, ty) {} }; // getUnsignedConstant - Return a constant value of the specified type. If the // constant value is not valid for the specified type, return null. This cannot // happen for values in the range of 0 to 127. // static ConstantInt *getUnsignedConstant(uint64_t V, const Type *Ty) { if (isa(Ty)) Ty = Type::ULongTy; if (Ty->isSigned()) { // If this value is not a valid unsigned value for this type, return null! if (V > 127 && ((int64_t)V < 0 || !ConstantSInt::isValueValidForType(Ty, (int64_t)V))) return 0; return ConstantSInt::get(Ty, V); } else { // If this value is not a valid unsigned value for this type, return null! if (V > 255 && !ConstantUInt::isValueValidForType(Ty, V)) return 0; return ConstantUInt::get(Ty, V); } } // Add - Helper function to make later code simpler. Basically it just adds // the two constants together, inserts the result into the constant pool, and // returns it. Of course life is not simple, and this is no exception. Factors // that complicate matters: // 1. Either argument may be null. If this is the case, the null argument is // treated as either 0 (if DefOne = false) or 1 (if DefOne = true) // 2. Types get in the way. We want to do arithmetic operations without // regard for the underlying types. It is assumed that the constants are // integral constants. The new value takes the type of the left argument. // 3. If DefOne is true, a null return value indicates a value of 1, if DefOne // is false, a null return value indicates a value of 0. // static const ConstantInt *Add(const ConstantInt *Arg1, const ConstantInt *Arg2, bool DefOne) { assert(Arg1 && Arg2 && "No null arguments should exist now!"); assert(Arg1->getType() == Arg2->getType() && "Types must be compatible!"); // Actually perform the computation now! Constant *Result = *Arg1 + *Arg2; assert(Result && Result->getType() == Arg1->getType() && "Couldn't perform addition!"); ConstantInt *ResultI = cast(Result); // Check to see if the result is one of the special cases that we want to // recognize... if (ResultI->equalsInt(DefOne ? 1 : 0)) return 0; // Yes it is, simply return null. return ResultI; } inline const ConstantInt *operator+(const DefZero &L, const DefZero &R) { if (L == 0) return R; if (R == 0) return L; return Add(L, R, false); } inline const ConstantInt *operator+(const DefOne &L, const DefOne &R) { if (L == 0) { if (R == 0) return getUnsignedConstant(2, L.getType()); else return Add(getUnsignedConstant(1, L.getType()), R, true); } else if (R == 0) { return Add(L, getUnsignedConstant(1, L.getType()), true); } return Add(L, R, true); } // Mul - Helper function to make later code simpler. Basically it just // multiplies the two constants together, inserts the result into the constant // pool, and returns it. Of course life is not simple, and this is no // exception. Factors that complicate matters: // 1. Either argument may be null. If this is the case, the null argument is // treated as either 0 (if DefOne = false) or 1 (if DefOne = true) // 2. Types get in the way. We want to do arithmetic operations without // regard for the underlying types. It is assumed that the constants are // integral constants. // 3. If DefOne is true, a null return value indicates a value of 1, if DefOne // is false, a null return value indicates a value of 0. // inline const ConstantInt *Mul(const ConstantInt *Arg1, const ConstantInt *Arg2, bool DefOne) { assert(Arg1 && Arg2 && "No null arguments should exist now!"); assert(Arg1->getType() == Arg2->getType() && "Types must be compatible!"); // Actually perform the computation now! Constant *Result = *Arg1 * *Arg2; assert(Result && Result->getType() == Arg1->getType() && "Couldn't perform multiplication!"); ConstantInt *ResultI = cast(Result); // Check to see if the result is one of the special cases that we want to // recognize... if (ResultI->equalsInt(DefOne ? 1 : 0)) return 0; // Yes it is, simply return null. return ResultI; } inline const ConstantInt *operator*(const DefZero &L, const DefZero &R) { if (L == 0 || R == 0) return 0; return Mul(L, R, false); } inline const ConstantInt *operator*(const DefOne &L, const DefZero &R) { if (R == 0) return getUnsignedConstant(0, L.getType()); if (L == 0) return R->equalsInt(1) ? 0 : R.getVal(); return Mul(L, R, true); } inline const ConstantInt *operator*(const DefZero &L, const DefOne &R) { if (L == 0 || R == 0) return L.getVal(); return Mul(R, L, false); } // handleAddition - Add two expressions together, creating a new expression that // represents the composite of the two... // static ExprType handleAddition(ExprType Left, ExprType Right, Value *V) { const Type *Ty = V->getType(); if (Left.ExprTy > Right.ExprTy) std::swap(Left, Right); // Make left be simpler than right switch (Left.ExprTy) { case ExprType::Constant: return ExprType(Right.Scale, Right.Var, DefZero(Right.Offset, Ty) + DefZero(Left.Offset, Ty)); case ExprType::Linear: // RHS side must be linear or scaled case ExprType::ScaledLinear: // RHS must be scaled if (Left.Var != Right.Var) // Are they the same variables? return V; // if not, we don't know anything! return ExprType(DefOne(Left.Scale , Ty) + DefOne(Right.Scale , Ty), Right.Var, DefZero(Left.Offset, Ty) + DefZero(Right.Offset, Ty)); default: assert(0 && "Dont' know how to handle this case!"); return ExprType(); } } // negate - Negate the value of the specified expression... // static inline ExprType negate(const ExprType &E, Value *V) { const Type *Ty = V->getType(); ConstantInt *Zero = getUnsignedConstant(0, Ty); ConstantInt *One = getUnsignedConstant(1, Ty); ConstantInt *NegOne = cast(*Zero - *One); if (NegOne == 0) return V; // Couldn't subtract values... return ExprType(DefOne (E.Scale , Ty) * NegOne, E.Var, DefZero(E.Offset, Ty) * NegOne); } // ClassifyExpression: Analyze an expression to determine the complexity of the // expression, and which other values it depends on. // // Note that this analysis cannot get into infinite loops because it treats PHI // nodes as being an unknown linear expression. // ExprType ClassifyExpression(Value *Expr) { assert(Expr != 0 && "Can't classify a null expression!"); if (Expr->getType() == Type::FloatTy || Expr->getType() == Type::DoubleTy) return Expr; // FIXME: Can't handle FP expressions switch (Expr->getValueType()) { case Value::InstructionVal: break; // Instruction... hmmm... investigate. case Value::TypeVal: case Value::BasicBlockVal: case Value::FunctionVal: default: //assert(0 && "Unexpected expression type to classify!"); std::cerr << "Bizarre thing to expr classify: " << Expr << "\n"; return Expr; case Value::GlobalVariableVal: // Global Variable & Function argument: case Value::ArgumentVal: // nothing known, return variable itself return Expr; case Value::ConstantVal: // Constant value, just return constant if (ConstantInt *CPI = dyn_cast(cast(Expr))) // It's an integral constant! return ExprType(CPI->isNullValue() ? 0 : CPI); return Expr; } Instruction *I = cast(Expr); const Type *Ty = I->getType(); switch (I->getOpcode()) { // Handle each instruction type seperately case Instruction::Add: { ExprType Left (ClassifyExpression(I->getOperand(0))); ExprType Right(ClassifyExpression(I->getOperand(1))); return handleAddition(Left, Right, I); } // end case Instruction::Add case Instruction::Sub: { ExprType Left (ClassifyExpression(I->getOperand(0))); ExprType Right(ClassifyExpression(I->getOperand(1))); ExprType RightNeg = negate(Right, I); if (RightNeg.Var == I && !RightNeg.Offset && !RightNeg.Scale) return I; // Could not negate value... return handleAddition(Left, RightNeg, I); } // end case Instruction::Sub case Instruction::Shl: { ExprType Right(ClassifyExpression(I->getOperand(1))); if (Right.ExprTy != ExprType::Constant) break; ExprType Left(ClassifyExpression(I->getOperand(0))); if (Right.Offset == 0) return Left; // shl x, 0 = x assert(Right.Offset->getType() == Type::UByteTy && "Shift amount must always be a unsigned byte!"); uint64_t ShiftAmount = ((ConstantUInt*)Right.Offset)->getValue(); ConstantInt *Multiplier = getUnsignedConstant(1ULL << ShiftAmount, Ty); // We don't know how to classify it if they are shifting by more than what // is reasonable. In most cases, the result will be zero, but there is one // class of cases where it is not, so we cannot optimize without checking // for it. The case is when you are shifting a signed value by 1 less than // the number of bits in the value. For example: // %X = shl sbyte %Y, ubyte 7 // will try to form an sbyte multiplier of 128, which will give a null // multiplier, even though the result is not 0. Until we can check for this // case, be conservative. TODO. // if (Multiplier == 0) return Expr; return ExprType(DefOne(Left.Scale, Ty) * Multiplier, Left.Var, DefZero(Left.Offset, Ty) * Multiplier); } // end case Instruction::Shl case Instruction::Mul: { ExprType Left (ClassifyExpression(I->getOperand(0))); ExprType Right(ClassifyExpression(I->getOperand(1))); if (Left.ExprTy > Right.ExprTy) std::swap(Left, Right); // Make left be simpler than right if (Left.ExprTy != ExprType::Constant) // RHS must be > constant return I; // Quadratic eqn! :( const ConstantInt *Offs = Left.Offset; if (Offs == 0) return ExprType(); return ExprType( DefOne(Right.Scale , Ty) * Offs, Right.Var, DefZero(Right.Offset, Ty) * Offs); } // end case Instruction::Mul case Instruction::Cast: { ExprType Src(ClassifyExpression(I->getOperand(0))); const Type *DestTy = I->getType(); if (isa(DestTy)) DestTy = Type::ULongTy; // Pointer types are represented as ulong if (!Src.getExprType(0)->isLosslesslyConvertibleTo(DestTy)) { if (Src.ExprTy != ExprType::Constant) return I; // Converting cast, and not a constant value... } const ConstantInt *Offset = Src.Offset; const ConstantInt *Scale = Src.Scale; if (Offset) { const Constant *CPV = ConstantFoldCastInstruction(Offset, DestTy); if (!CPV) return I; Offset = cast(CPV); } if (Scale) { const Constant *CPV = ConstantFoldCastInstruction(Scale, DestTy); if (!CPV) return I; Scale = cast(CPV); } return ExprType(Scale, Src.Var, Offset); } // end case Instruction::Cast // TODO: Handle SUB, SHR? } // end switch // Otherwise, I don't know anything about this value! return I; }