//===- CallGraphSCCPass.cpp - Pass that operates BU on call graph ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the CallGraphSCCPass class, which is used for passes // which are implemented as bottom-up traversals on the call graph. Because // there may be cycles in the call graph, passes of this type operate on the // call-graph in SCC order: that is, they process function bottom-up, except for // recursive functions, which they process all at once. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "cgscc-passmgr" #include "llvm/CallGraphSCCPass.h" #include "llvm/Analysis/CallGraph.h" #include "llvm/ADT/SCCIterator.h" #include "llvm/PassManagers.h" #include "llvm/Function.h" #include "llvm/Support/Debug.h" #include "llvm/IntrinsicInst.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; //===----------------------------------------------------------------------===// // CGPassManager // /// CGPassManager manages FPPassManagers and CallGraphSCCPasses. namespace { class CGPassManager : public ModulePass, public PMDataManager { public: static char ID; explicit CGPassManager(int Depth) : ModulePass(&ID), PMDataManager(Depth) { } /// run - Execute all of the passes scheduled for execution. Keep track of /// whether any of the passes modifies the module, and if so, return true. bool runOnModule(Module &M); bool doInitialization(CallGraph &CG); bool doFinalization(CallGraph &CG); /// Pass Manager itself does not invalidate any analysis info. void getAnalysisUsage(AnalysisUsage &Info) const { // CGPassManager walks SCC and it needs CallGraph. Info.addRequired(); Info.setPreservesAll(); } virtual const char *getPassName() const { return "CallGraph Pass Manager"; } // Print passes managed by this manager void dumpPassStructure(unsigned Offset) { errs().indent(Offset*2) << "Call Graph SCC Pass Manager\n"; for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { Pass *P = getContainedPass(Index); P->dumpPassStructure(Offset + 1); dumpLastUses(P, Offset+1); } } Pass *getContainedPass(unsigned N) { assert(N < PassVector.size() && "Pass number out of range!"); return static_cast(PassVector[N]); } virtual PassManagerType getPassManagerType() const { return PMT_CallGraphPassManager; } private: bool RunPassOnSCC(Pass *P, std::vector &CurSCC, CallGraph &CG, bool &CallGraphUpToDate); void RefreshCallGraph(std::vector &CurSCC, CallGraph &CG, bool IsCheckingMode); }; } // end anonymous namespace. char CGPassManager::ID = 0; bool CGPassManager::RunPassOnSCC(Pass *P, std::vector &CurSCC, CallGraph &CG, bool &CallGraphUpToDate) { bool Changed = false; if (CallGraphSCCPass *CGSP = dynamic_cast(P)) { if (!CallGraphUpToDate) { RefreshCallGraph(CurSCC, CG, false); CallGraphUpToDate = true; } Timer *T = StartPassTimer(CGSP); Changed = CGSP->runOnSCC(CurSCC); StopPassTimer(CGSP, T); // After the CGSCCPass is done, when assertions are enabled, use // RefreshCallGraph to verify that the callgraph was correctly updated. #ifndef NDEBUG if (Changed) RefreshCallGraph(CurSCC, CG, true); #endif return Changed; } FPPassManager *FPP = dynamic_cast(P); assert(FPP && "Invalid CGPassManager member"); // Run pass P on all functions in the current SCC. for (unsigned i = 0, e = CurSCC.size(); i != e; ++i) { if (Function *F = CurSCC[i]->getFunction()) { dumpPassInfo(P, EXECUTION_MSG, ON_FUNCTION_MSG, F->getName()); Timer *T = StartPassTimer(FPP); Changed |= FPP->runOnFunction(*F); StopPassTimer(FPP, T); } } // The function pass(es) modified the IR, they may have clobbered the // callgraph. if (Changed && CallGraphUpToDate) { DEBUG(errs() << "CGSCCPASSMGR: Pass Dirtied SCC: " << P->getPassName() << '\n'); CallGraphUpToDate = false; } return Changed; } /// RefreshCallGraph - Scan the functions in the specified CFG and resync the /// callgraph with the call sites found in it. This is used after /// FunctionPasses have potentially munged the callgraph, and can be used after /// CallGraphSCC passes to verify that they correctly updated the callgraph. /// void CGPassManager::RefreshCallGraph(std::vector &CurSCC, CallGraph &CG, bool CheckingMode) { DenseMap CallSites; DEBUG(errs() << "CGSCCPASSMGR: Refreshing SCC with " << CurSCC.size() << " nodes:\n"; for (unsigned i = 0, e = CurSCC.size(); i != e; ++i) CurSCC[i]->dump(); ); bool MadeChange = false; // Scan all functions in the SCC. for (unsigned sccidx = 0, e = CurSCC.size(); sccidx != e; ++sccidx) { CallGraphNode *CGN = CurSCC[sccidx]; Function *F = CGN->getFunction(); if (F == 0 || F->isDeclaration()) continue; // Walk the function body looking for call sites. Sync up the call sites in // CGN with those actually in the function. // Get the set of call sites currently in the function. for (CallGraphNode::iterator I = CGN->begin(), E = CGN->end(); I != E; ) { // If this call site is null, then the function pass deleted the call // entirely and the WeakVH nulled it out. if (I->first == 0 || // If we've already seen this call site, then the FunctionPass RAUW'd // one call with another, which resulted in two "uses" in the edge // list of the same call. CallSites.count(I->first) || // If the call edge is not from a call or invoke, then the function // pass RAUW'd a call with another value. This can happen when // constant folding happens of well known functions etc. CallSite::get(I->first).getInstruction() == 0) { assert(!CheckingMode && "CallGraphSCCPass did not update the CallGraph correctly!"); // Just remove the edge from the set of callees, keep track of whether // I points to the last element of the vector. bool WasLast = I + 1 == E; CGN->removeCallEdge(I); // If I pointed to the last element of the vector, we have to bail out: // iterator checking rejects comparisons of the resultant pointer with // end. if (WasLast) break; E = CGN->end(); continue; } assert(!CallSites.count(I->first) && "Call site occurs in node multiple times"); CallSites.insert(std::make_pair(I->first, I->second)); ++I; } // Loop over all of the instructions in the function, getting the callsites. for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { CallSite CS = CallSite::get(I); if (!CS.getInstruction() || isa(I)) continue; // If this call site already existed in the callgraph, just verify it // matches up to expectations and remove it from CallSites. DenseMap::iterator ExistingIt = CallSites.find(CS.getInstruction()); if (ExistingIt != CallSites.end()) { CallGraphNode *ExistingNode = ExistingIt->second; // Remove from CallSites since we have now seen it. CallSites.erase(ExistingIt); // Verify that the callee is right. if (ExistingNode->getFunction() == CS.getCalledFunction()) continue; // If we are in checking mode, we are not allowed to actually mutate // the callgraph. If this is a case where we can infer that the // callgraph is less precise than it could be (e.g. an indirect call // site could be turned direct), don't reject it in checking mode, and // don't tweak it to be more precise. if (CheckingMode && CS.getCalledFunction() && ExistingNode->getFunction() == 0) continue; assert(!CheckingMode && "CallGraphSCCPass did not update the CallGraph correctly!"); // If not, we either went from a direct call to indirect, indirect to // direct, or direct to different direct. CallGraphNode *CalleeNode; if (Function *Callee = CS.getCalledFunction()) CalleeNode = CG.getOrInsertFunction(Callee); else CalleeNode = CG.getCallsExternalNode(); // Update the edge target in CGN. for (CallGraphNode::iterator I = CGN->begin(); ; ++I) { assert(I != CGN->end() && "Didn't find call entry"); if (I->first == CS.getInstruction()) { I->second = CalleeNode; break; } } MadeChange = true; continue; } assert(!CheckingMode && "CallGraphSCCPass did not update the CallGraph correctly!"); // If the call site didn't exist in the CGN yet, add it. We assume that // newly introduced call sites won't be indirect. This could be fixed // in the future. CallGraphNode *CalleeNode; if (Function *Callee = CS.getCalledFunction()) CalleeNode = CG.getOrInsertFunction(Callee); else CalleeNode = CG.getCallsExternalNode(); CGN->addCalledFunction(CS, CalleeNode); MadeChange = true; } // After scanning this function, if we still have entries in callsites, then // they are dangling pointers. WeakVH should save us for this, so abort if // this happens. assert(CallSites.empty() && "Dangling pointers found in call sites map"); // Periodically do an explicit clear to remove tombstones when processing // large scc's. if ((sccidx & 15) == 0) CallSites.clear(); } DEBUG(if (MadeChange) { errs() << "CGSCCPASSMGR: Refreshed SCC is now:\n"; for (unsigned i = 0, e = CurSCC.size(); i != e; ++i) CurSCC[i]->dump(); } else { errs() << "CGSCCPASSMGR: SCC Refresh didn't change call graph.\n"; } ); } /// run - Execute all of the passes scheduled for execution. Keep track of /// whether any of the passes modifies the module, and if so, return true. bool CGPassManager::runOnModule(Module &M) { CallGraph &CG = getAnalysis(); bool Changed = doInitialization(CG); std::vector CurSCC; // Walk the callgraph in bottom-up SCC order. for (scc_iterator CGI = scc_begin(&CG), E = scc_end(&CG); CGI != E;) { // Copy the current SCC and increment past it so that the pass can hack // on the SCC if it wants to without invalidating our iterator. CurSCC = *CGI; ++CGI; // CallGraphUpToDate - Keep track of whether the callgraph is known to be // up-to-date or not. The CGSSC pass manager runs two types of passes: // CallGraphSCC Passes and other random function passes. Because other // random function passes are not CallGraph aware, they may clobber the // call graph by introducing new calls or deleting other ones. This flag // is set to false when we run a function pass so that we know to clean up // the callgraph when we need to run a CGSCCPass again. bool CallGraphUpToDate = true; // Run all passes on current SCC. for (unsigned PassNo = 0, e = getNumContainedPasses(); PassNo != e; ++PassNo) { Pass *P = getContainedPass(PassNo); // If we're in -debug-pass=Executions mode, construct the SCC node list, // otherwise avoid constructing this string as it is expensive. if (isPassDebuggingExecutionsOrMore()) { std::string Functions; #ifndef NDEBUG raw_string_ostream OS(Functions); for (unsigned i = 0, e = CurSCC.size(); i != e; ++i) { if (i) OS << ", "; CurSCC[i]->print(OS); } OS.flush(); #endif dumpPassInfo(P, EXECUTION_MSG, ON_CG_MSG, Functions); } dumpRequiredSet(P); initializeAnalysisImpl(P); // Actually run this pass on the current SCC. Changed |= RunPassOnSCC(P, CurSCC, CG, CallGraphUpToDate); if (Changed) dumpPassInfo(P, MODIFICATION_MSG, ON_CG_MSG, ""); dumpPreservedSet(P); verifyPreservedAnalysis(P); removeNotPreservedAnalysis(P); recordAvailableAnalysis(P); removeDeadPasses(P, "", ON_CG_MSG); } // If the callgraph was left out of date (because the last pass run was a // functionpass), refresh it before we move on to the next SCC. if (!CallGraphUpToDate) RefreshCallGraph(CurSCC, CG, false); } Changed |= doFinalization(CG); return Changed; } /// Initialize CG bool CGPassManager::doInitialization(CallGraph &CG) { bool Changed = false; for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { Pass *P = getContainedPass(Index); if (CallGraphSCCPass *CGSP = dynamic_cast(P)) { Changed |= CGSP->doInitialization(CG); } else { FPPassManager *FP = dynamic_cast(P); assert (FP && "Invalid CGPassManager member"); Changed |= FP->doInitialization(CG.getModule()); } } return Changed; } /// Finalize CG bool CGPassManager::doFinalization(CallGraph &CG) { bool Changed = false; for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { Pass *P = getContainedPass(Index); if (CallGraphSCCPass *CGSP = dynamic_cast(P)) { Changed |= CGSP->doFinalization(CG); } else { FPPassManager *FP = dynamic_cast(P); assert (FP && "Invalid CGPassManager member"); Changed |= FP->doFinalization(CG.getModule()); } } return Changed; } /// Assign pass manager to manage this pass. void CallGraphSCCPass::assignPassManager(PMStack &PMS, PassManagerType PreferredType) { // Find CGPassManager while (!PMS.empty() && PMS.top()->getPassManagerType() > PMT_CallGraphPassManager) PMS.pop(); assert (!PMS.empty() && "Unable to handle Call Graph Pass"); CGPassManager *CGP = dynamic_cast(PMS.top()); // Create new Call Graph SCC Pass Manager if it does not exist. if (!CGP) { assert (!PMS.empty() && "Unable to create Call Graph Pass Manager"); PMDataManager *PMD = PMS.top(); // [1] Create new Call Graph Pass Manager CGP = new CGPassManager(PMD->getDepth() + 1); // [2] Set up new manager's top level manager PMTopLevelManager *TPM = PMD->getTopLevelManager(); TPM->addIndirectPassManager(CGP); // [3] Assign manager to manage this new manager. This may create // and push new managers into PMS Pass *P = dynamic_cast(CGP); TPM->schedulePass(P); // [4] Push new manager into PMS PMS.push(CGP); } CGP->add(this); } /// getAnalysisUsage - For this class, we declare that we require and preserve /// the call graph. If the derived class implements this method, it should /// always explicitly call the implementation here. void CallGraphSCCPass::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addPreserved(); }