//===- InstructionSimplify.cpp - Fold instruction operands ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements routines for folding instructions into simpler forms // that do not require creating new instructions. This does constant folding // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either // returning a constant ("and i32 %x, 0" -> "0") or an already existing value // ("and i32 %x, %x" -> "%x"). // //===----------------------------------------------------------------------===// #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Support/PatternMatch.h" #include "llvm/Support/ValueHandle.h" #include "llvm/Target/TargetData.h" using namespace llvm; using namespace llvm::PatternMatch; #define RecursionLimit 3 static Value *SimplifyBinOp(unsigned, Value *, Value *, const TargetData *, const DominatorTree *, unsigned); static Value *SimplifyCmpInst(unsigned, Value *, Value *, const TargetData *, const DominatorTree *, unsigned); /// ValueDominatesPHI - Does the given value dominate the specified phi node? static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { Instruction *I = dyn_cast(V); if (!I) // Arguments and constants dominate all instructions. return true; // If we have a DominatorTree then do a precise test. if (DT) return DT->dominates(I, P); // Otherwise, if the instruction is in the entry block, and is not an invoke, // then it obviously dominates all phi nodes. if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() && !isa(I)) return true; return false; } /// ThreadBinOpOverSelect - In the case of a binary operation with a select /// instruction as an operand, try to simplify the binop by seeing whether /// evaluating it on both branches of the select results in the same value. /// Returns the common value if so, otherwise returns null. static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS, const TargetData *TD, const DominatorTree *DT, unsigned MaxRecurse) { SelectInst *SI; if (isa(LHS)) { SI = cast(LHS); } else { assert(isa(RHS) && "No select instruction operand!"); SI = cast(RHS); } // Evaluate the BinOp on the true and false branches of the select. Value *TV; Value *FV; if (SI == LHS) { TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, TD, DT, MaxRecurse); FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, TD, DT, MaxRecurse); } else { TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), TD, DT, MaxRecurse); FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), TD, DT, MaxRecurse); } // If they simplified to the same value, then return the common value. // If they both failed to simplify then return null. if (TV == FV) return TV; // If one branch simplified to undef, return the other one. if (TV && isa(TV)) return FV; if (FV && isa(FV)) return TV; // If applying the operation did not change the true and false select values, // then the result of the binop is the select itself. if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) return SI; // If one branch simplified and the other did not, and the simplified // value is equal to the unsimplified one, return the simplified value. // For example, select (cond, X, X & Z) & Z -> X & Z. if ((FV && !TV) || (TV && !FV)) { // Check that the simplified value has the form "X op Y" where "op" is the // same as the original operation. Instruction *Simplified = dyn_cast(FV ? FV : TV); if (Simplified && Simplified->getOpcode() == Opcode) { // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". // We already know that "op" is the same as for the simplified value. See // if the operands match too. If so, return the simplified value. Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; if (Simplified->getOperand(0) == UnsimplifiedLHS && Simplified->getOperand(1) == UnsimplifiedRHS) return Simplified; if (Simplified->isCommutative() && Simplified->getOperand(1) == UnsimplifiedLHS && Simplified->getOperand(0) == UnsimplifiedRHS) return Simplified; } } return 0; } /// ThreadCmpOverSelect - In the case of a comparison with a select instruction, /// try to simplify the comparison by seeing whether both branches of the select /// result in the same value. Returns the common value if so, otherwise returns /// null. static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const TargetData *TD, const DominatorTree *DT, unsigned MaxRecurse) { // Make sure the select is on the LHS. if (!isa(LHS)) { std::swap(LHS, RHS); Pred = CmpInst::getSwappedPredicate(Pred); } assert(isa(LHS) && "Not comparing with a select instruction!"); SelectInst *SI = cast(LHS); // Now that we have "cmp select(cond, TV, FV), RHS", analyse it. // Does "cmp TV, RHS" simplify? if (Value *TCmp = SimplifyCmpInst(Pred, SI->getTrueValue(), RHS, TD, DT, MaxRecurse)) // It does! Does "cmp FV, RHS" simplify? if (Value *FCmp = SimplifyCmpInst(Pred, SI->getFalseValue(), RHS, TD, DT, MaxRecurse)) // It does! If they simplified to the same value, then use it as the // result of the original comparison. if (TCmp == FCmp) return TCmp; return 0; } /// ThreadBinOpOverPHI - In the case of a binary operation with an operand that /// is a PHI instruction, try to simplify the binop by seeing whether evaluating /// it on the incoming phi values yields the same result for every value. If so /// returns the common value, otherwise returns null. static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS, const TargetData *TD, const DominatorTree *DT, unsigned MaxRecurse) { PHINode *PI; if (isa(LHS)) { PI = cast(LHS); // Bail out if RHS and the phi may be mutually interdependent due to a loop. if (!ValueDominatesPHI(RHS, PI, DT)) return 0; } else { assert(isa(RHS) && "No PHI instruction operand!"); PI = cast(RHS); // Bail out if LHS and the phi may be mutually interdependent due to a loop. if (!ValueDominatesPHI(LHS, PI, DT)) return 0; } // Evaluate the BinOp on the incoming phi values. Value *CommonValue = 0; for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) { Value *Incoming = PI->getIncomingValue(i); // If the incoming value is the phi node itself, it can safely be skipped. if (Incoming == PI) continue; Value *V = PI == LHS ? SimplifyBinOp(Opcode, Incoming, RHS, TD, DT, MaxRecurse) : SimplifyBinOp(Opcode, LHS, Incoming, TD, DT, MaxRecurse); // If the operation failed to simplify, or simplified to a different value // to previously, then give up. if (!V || (CommonValue && V != CommonValue)) return 0; CommonValue = V; } return CommonValue; } /// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try /// try to simplify the comparison by seeing whether comparing with all of the /// incoming phi values yields the same result every time. If so returns the /// common result, otherwise returns null. static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const TargetData *TD, const DominatorTree *DT, unsigned MaxRecurse) { // Make sure the phi is on the LHS. if (!isa(LHS)) { std::swap(LHS, RHS); Pred = CmpInst::getSwappedPredicate(Pred); } assert(isa(LHS) && "Not comparing with a phi instruction!"); PHINode *PI = cast(LHS); // Bail out if RHS and the phi may be mutually interdependent due to a loop. if (!ValueDominatesPHI(RHS, PI, DT)) return 0; // Evaluate the BinOp on the incoming phi values. Value *CommonValue = 0; for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) { Value *Incoming = PI->getIncomingValue(i); // If the incoming value is the phi node itself, it can safely be skipped. if (Incoming == PI) continue; Value *V = SimplifyCmpInst(Pred, Incoming, RHS, TD, DT, MaxRecurse); // If the operation failed to simplify, or simplified to a different value // to previously, then give up. if (!V || (CommonValue && V != CommonValue)) return 0; CommonValue = V; } return CommonValue; } /// SimplifyAddInst - Given operands for an Add, see if we can /// fold the result. If not, this returns null. Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, const TargetData *TD, const DominatorTree *) { if (Constant *CLHS = dyn_cast(Op0)) { if (Constant *CRHS = dyn_cast(Op1)) { Constant *Ops[] = { CLHS, CRHS }; return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(), Ops, 2, TD); } // Canonicalize the constant to the RHS. std::swap(Op0, Op1); } if (Constant *Op1C = dyn_cast(Op1)) { // X + undef -> undef if (isa(Op1C)) return Op1C; // X + 0 --> X if (Op1C->isNullValue()) return Op0; } // FIXME: Could pull several more out of instcombine. // Threading Add over selects and phi nodes is pointless, so don't bother. // Threading over the select in "A + select(cond, B, C)" means evaluating // "A+B" and "A+C" and seeing if they are equal; but they are equal if and // only if B and C are equal. If B and C are equal then (since we assume // that operands have already been simplified) "select(cond, B, C)" should // have been simplified to the common value of B and C already. Analysing // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly // for threading over phi nodes. return 0; } /// SimplifyAndInst - Given operands for an And, see if we can /// fold the result. If not, this returns null. static Value *SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD, const DominatorTree *DT, unsigned MaxRecurse) { if (Constant *CLHS = dyn_cast(Op0)) { if (Constant *CRHS = dyn_cast(Op1)) { Constant *Ops[] = { CLHS, CRHS }; return ConstantFoldInstOperands(Instruction::And, CLHS->getType(), Ops, 2, TD); } // Canonicalize the constant to the RHS. std::swap(Op0, Op1); } // X & undef -> 0 if (isa(Op1)) return Constant::getNullValue(Op0->getType()); // X & X = X if (Op0 == Op1) return Op0; // X & 0 = 0 if (match(Op1, m_Zero())) return Op1; // X & -1 = X if (match(Op1, m_AllOnes())) return Op0; // A & ~A = ~A & A = 0 Value *A, *B; if ((match(Op0, m_Not(m_Value(A))) && A == Op1) || (match(Op1, m_Not(m_Value(A))) && A == Op0)) return Constant::getNullValue(Op0->getType()); // (A | ?) & A = A if (match(Op0, m_Or(m_Value(A), m_Value(B))) && (A == Op1 || B == Op1)) return Op1; // A & (A | ?) = A if (match(Op1, m_Or(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) return Op0; // (A & B) & A -> A & B if (match(Op0, m_And(m_Value(A), m_Value(B))) && (A == Op1 || B == Op1)) return Op0; // A & (A & B) -> A & B if (match(Op1, m_And(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) return Op1; // If the operation is with the result of a select instruction, check whether // operating on either branch of the select always yields the same value. if (MaxRecurse && (isa(Op0) || isa(Op1))) if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, TD, DT, MaxRecurse-1)) return V; // If the operation is with the result of a phi instruction, check whether // operating on all incoming values of the phi always yields the same value. if (MaxRecurse && (isa(Op0) || isa(Op1))) if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, TD, DT, MaxRecurse-1)) return V; return 0; } Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD, const DominatorTree *DT) { return ::SimplifyAndInst(Op0, Op1, TD, DT, RecursionLimit); } /// SimplifyOrInst - Given operands for an Or, see if we can /// fold the result. If not, this returns null. static Value *SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD, const DominatorTree *DT, unsigned MaxRecurse) { if (Constant *CLHS = dyn_cast(Op0)) { if (Constant *CRHS = dyn_cast(Op1)) { Constant *Ops[] = { CLHS, CRHS }; return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(), Ops, 2, TD); } // Canonicalize the constant to the RHS. std::swap(Op0, Op1); } // X | undef -> -1 if (isa(Op1)) return Constant::getAllOnesValue(Op0->getType()); // X | X = X if (Op0 == Op1) return Op0; // X | 0 = X if (match(Op1, m_Zero())) return Op0; // X | -1 = -1 if (match(Op1, m_AllOnes())) return Op1; // A | ~A = ~A | A = -1 Value *A, *B; if ((match(Op0, m_Not(m_Value(A))) && A == Op1) || (match(Op1, m_Not(m_Value(A))) && A == Op0)) return Constant::getAllOnesValue(Op0->getType()); // (A & ?) | A = A if (match(Op0, m_And(m_Value(A), m_Value(B))) && (A == Op1 || B == Op1)) return Op1; // A | (A & ?) = A if (match(Op1, m_And(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) return Op0; // (A | B) | A -> A | B if (match(Op0, m_Or(m_Value(A), m_Value(B))) && (A == Op1 || B == Op1)) return Op0; // A | (A | B) -> A | B if (match(Op1, m_Or(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) return Op1; // If the operation is with the result of a select instruction, check whether // operating on either branch of the select always yields the same value. if (MaxRecurse && (isa(Op0) || isa(Op1))) if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, TD, DT, MaxRecurse-1)) return V; // If the operation is with the result of a phi instruction, check whether // operating on all incoming values of the phi always yields the same value. if (MaxRecurse && (isa(Op0) || isa(Op1))) if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, TD, DT, MaxRecurse-1)) return V; return 0; } Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD, const DominatorTree *DT) { return ::SimplifyOrInst(Op0, Op1, TD, DT, RecursionLimit); } /// SimplifyXorInst - Given operands for a Xor, see if we can /// fold the result. If not, this returns null. static Value *SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD, const DominatorTree *DT, unsigned MaxRecurse) { if (Constant *CLHS = dyn_cast(Op0)) { if (Constant *CRHS = dyn_cast(Op1)) { Constant *Ops[] = { CLHS, CRHS }; return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(), Ops, 2, TD); } // Canonicalize the constant to the RHS. std::swap(Op0, Op1); } // A ^ undef -> undef if (isa(Op1)) return UndefValue::get(Op0->getType()); // A ^ 0 = A if (match(Op1, m_Zero())) return Op0; // A ^ A = 0 if (Op0 == Op1) return Constant::getNullValue(Op0->getType()); // A ^ ~A = ~A ^ A = -1 Value *A, *B; if ((match(Op0, m_Not(m_Value(A))) && A == Op1) || (match(Op1, m_Not(m_Value(A))) && A == Op0)) return Constant::getAllOnesValue(Op0->getType()); // (A ^ B) ^ A = B if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && (A == Op1 || B == Op1)) return A == Op1 ? B : A; // A ^ (A ^ B) = B if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) return A == Op0 ? B : A; // Threading Xor over selects and phi nodes is pointless, so don't bother. // Threading over the select in "A ^ select(cond, B, C)" means evaluating // "A^B" and "A^C" and seeing if they are equal; but they are equal if and // only if B and C are equal. If B and C are equal then (since we assume // that operands have already been simplified) "select(cond, B, C)" should // have been simplified to the common value of B and C already. Analysing // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly // for threading over phi nodes. return 0; } Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD, const DominatorTree *DT) { return ::SimplifyXorInst(Op0, Op1, TD, DT, RecursionLimit); } static const Type *GetCompareTy(Value *Op) { return CmpInst::makeCmpResultType(Op->getType()); } /// SimplifyICmpInst - Given operands for an ICmpInst, see if we can /// fold the result. If not, this returns null. static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, const TargetData *TD, const DominatorTree *DT, unsigned MaxRecurse) { CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); if (Constant *CLHS = dyn_cast(LHS)) { if (Constant *CRHS = dyn_cast(RHS)) return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD); // If we have a constant, make sure it is on the RHS. std::swap(LHS, RHS); Pred = CmpInst::getSwappedPredicate(Pred); } // ITy - This is the return type of the compare we're considering. const Type *ITy = GetCompareTy(LHS); // icmp X, X -> true/false // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false // because X could be 0. if (LHS == RHS || isa(RHS)) return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); // icmp , - Global/Stack value // addresses never equal each other! We already know that Op0 != Op1. if ((isa(LHS) || isa(LHS) || isa(LHS)) && (isa(RHS) || isa(RHS) || isa(RHS))) return ConstantInt::get(ITy, CmpInst::isFalseWhenEqual(Pred)); // See if we are doing a comparison with a constant. if (ConstantInt *CI = dyn_cast(RHS)) { // If we have an icmp le or icmp ge instruction, turn it into the // appropriate icmp lt or icmp gt instruction. This allows us to rely on // them being folded in the code below. switch (Pred) { default: break; case ICmpInst::ICMP_ULE: if (CI->isMaxValue(false)) // A <=u MAX -> TRUE return ConstantInt::getTrue(CI->getContext()); break; case ICmpInst::ICMP_SLE: if (CI->isMaxValue(true)) // A <=s MAX -> TRUE return ConstantInt::getTrue(CI->getContext()); break; case ICmpInst::ICMP_UGE: if (CI->isMinValue(false)) // A >=u MIN -> TRUE return ConstantInt::getTrue(CI->getContext()); break; case ICmpInst::ICMP_SGE: if (CI->isMinValue(true)) // A >=s MIN -> TRUE return ConstantInt::getTrue(CI->getContext()); break; } } // If the comparison is with the result of a select instruction, check whether // comparing with either branch of the select always yields the same value. if (MaxRecurse && (isa(LHS) || isa(RHS))) if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse-1)) return V; // If the comparison is with the result of a phi instruction, check whether // doing the compare with each incoming phi value yields a common result. if (MaxRecurse && (isa(LHS) || isa(RHS))) if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse-1)) return V; return 0; } Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, const TargetData *TD, const DominatorTree *DT) { return ::SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit); } /// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can /// fold the result. If not, this returns null. static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, const TargetData *TD, const DominatorTree *DT, unsigned MaxRecurse) { CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); if (Constant *CLHS = dyn_cast(LHS)) { if (Constant *CRHS = dyn_cast(RHS)) return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD); // If we have a constant, make sure it is on the RHS. std::swap(LHS, RHS); Pred = CmpInst::getSwappedPredicate(Pred); } // Fold trivial predicates. if (Pred == FCmpInst::FCMP_FALSE) return ConstantInt::get(GetCompareTy(LHS), 0); if (Pred == FCmpInst::FCMP_TRUE) return ConstantInt::get(GetCompareTy(LHS), 1); if (isa(RHS)) // fcmp pred X, undef -> undef return UndefValue::get(GetCompareTy(LHS)); // fcmp x,x -> true/false. Not all compares are foldable. if (LHS == RHS) { if (CmpInst::isTrueWhenEqual(Pred)) return ConstantInt::get(GetCompareTy(LHS), 1); if (CmpInst::isFalseWhenEqual(Pred)) return ConstantInt::get(GetCompareTy(LHS), 0); } // Handle fcmp with constant RHS if (Constant *RHSC = dyn_cast(RHS)) { // If the constant is a nan, see if we can fold the comparison based on it. if (ConstantFP *CFP = dyn_cast(RHSC)) { if (CFP->getValueAPF().isNaN()) { if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo" return ConstantInt::getFalse(CFP->getContext()); assert(FCmpInst::isUnordered(Pred) && "Comparison must be either ordered or unordered!"); // True if unordered. return ConstantInt::getTrue(CFP->getContext()); } // Check whether the constant is an infinity. if (CFP->getValueAPF().isInfinity()) { if (CFP->getValueAPF().isNegative()) { switch (Pred) { case FCmpInst::FCMP_OLT: // No value is ordered and less than negative infinity. return ConstantInt::getFalse(CFP->getContext()); case FCmpInst::FCMP_UGE: // All values are unordered with or at least negative infinity. return ConstantInt::getTrue(CFP->getContext()); default: break; } } else { switch (Pred) { case FCmpInst::FCMP_OGT: // No value is ordered and greater than infinity. return ConstantInt::getFalse(CFP->getContext()); case FCmpInst::FCMP_ULE: // All values are unordered with and at most infinity. return ConstantInt::getTrue(CFP->getContext()); default: break; } } } } } // If the comparison is with the result of a select instruction, check whether // comparing with either branch of the select always yields the same value. if (MaxRecurse && (isa(LHS) || isa(RHS))) if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse-1)) return V; // If the comparison is with the result of a phi instruction, check whether // doing the compare with each incoming phi value yields a common result. if (MaxRecurse && (isa(LHS) || isa(RHS))) if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse-1)) return V; return 0; } Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, const TargetData *TD, const DominatorTree *DT) { return ::SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit); } /// SimplifySelectInst - Given operands for a SelectInst, see if we can fold /// the result. If not, this returns null. Value *llvm::SimplifySelectInst(Value *CondVal, Value *TrueVal, Value *FalseVal, const TargetData *TD, const DominatorTree *) { // select true, X, Y -> X // select false, X, Y -> Y if (ConstantInt *CB = dyn_cast(CondVal)) return CB->getZExtValue() ? TrueVal : FalseVal; // select C, X, X -> X if (TrueVal == FalseVal) return TrueVal; if (isa(TrueVal)) // select C, undef, X -> X return FalseVal; if (isa(FalseVal)) // select C, X, undef -> X return TrueVal; if (isa(CondVal)) { // select undef, X, Y -> X or Y if (isa(TrueVal)) return TrueVal; return FalseVal; } return 0; } /// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can /// fold the result. If not, this returns null. Value *llvm::SimplifyGEPInst(Value *const *Ops, unsigned NumOps, const TargetData *TD, const DominatorTree *) { // The type of the GEP pointer operand. const PointerType *PtrTy = cast(Ops[0]->getType()); // getelementptr P -> P. if (NumOps == 1) return Ops[0]; if (isa(Ops[0])) { // Compute the (pointer) type returned by the GEP instruction. const Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, &Ops[1], NumOps-1); const Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace()); return UndefValue::get(GEPTy); } if (NumOps == 2) { // getelementptr P, 0 -> P. if (ConstantInt *C = dyn_cast(Ops[1])) if (C->isZero()) return Ops[0]; // getelementptr P, N -> P if P points to a type of zero size. if (TD) { const Type *Ty = PtrTy->getElementType(); if (Ty->isSized() && TD->getTypeAllocSize(Ty) == 0) return Ops[0]; } } // Check to see if this is constant foldable. for (unsigned i = 0; i != NumOps; ++i) if (!isa(Ops[i])) return 0; return ConstantExpr::getGetElementPtr(cast(Ops[0]), (Constant *const*)Ops+1, NumOps-1); } /// SimplifyPHINode - See if we can fold the given phi. If not, returns null. static Value *SimplifyPHINode(PHINode *PN, const DominatorTree *DT) { // If all of the PHI's incoming values are the same then replace the PHI node // with the common value. Value *CommonValue = 0; bool HasUndefInput = false; for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { Value *Incoming = PN->getIncomingValue(i); // If the incoming value is the phi node itself, it can safely be skipped. if (Incoming == PN) continue; if (isa(Incoming)) { // Remember that we saw an undef value, but otherwise ignore them. HasUndefInput = true; continue; } if (CommonValue && Incoming != CommonValue) return 0; // Not the same, bail out. CommonValue = Incoming; } // If CommonValue is null then all of the incoming values were either undef or // equal to the phi node itself. if (!CommonValue) return UndefValue::get(PN->getType()); // If we have a PHI node like phi(X, undef, X), where X is defined by some // instruction, we cannot return X as the result of the PHI node unless it // dominates the PHI block. if (HasUndefInput) return ValueDominatesPHI(CommonValue, PN, DT) ? CommonValue : 0; return CommonValue; } //=== Helper functions for higher up the class hierarchy. /// SimplifyBinOp - Given operands for a BinaryOperator, see if we can /// fold the result. If not, this returns null. static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, const TargetData *TD, const DominatorTree *DT, unsigned MaxRecurse) { switch (Opcode) { case Instruction::And: return SimplifyAndInst(LHS, RHS, TD, DT, MaxRecurse); case Instruction::Or: return SimplifyOrInst(LHS, RHS, TD, DT, MaxRecurse); default: if (Constant *CLHS = dyn_cast(LHS)) if (Constant *CRHS = dyn_cast(RHS)) { Constant *COps[] = {CLHS, CRHS}; return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, 2, TD); } // If the operation is with the result of a select instruction, check whether // operating on either branch of the select always yields the same value. if (MaxRecurse && (isa(LHS) || isa(RHS))) if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, TD, DT, MaxRecurse-1)) return V; // If the operation is with the result of a phi instruction, check whether // operating on all incoming values of the phi always yields the same value. if (MaxRecurse && (isa(LHS) || isa(RHS))) if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, TD, DT, MaxRecurse-1)) return V; return 0; } } Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, const TargetData *TD, const DominatorTree *DT) { return ::SimplifyBinOp(Opcode, LHS, RHS, TD, DT, RecursionLimit); } /// SimplifyCmpInst - Given operands for a CmpInst, see if we can /// fold the result. static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, const TargetData *TD, const DominatorTree *DT, unsigned MaxRecurse) { if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) return SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse); return SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse); } Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, const TargetData *TD, const DominatorTree *DT) { return ::SimplifyCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit); } /// SimplifyInstruction - See if we can compute a simplified version of this /// instruction. If not, this returns null. Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD, const DominatorTree *DT) { Value *Result; switch (I->getOpcode()) { default: Result = ConstantFoldInstruction(I, TD); break; case Instruction::Add: Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1), cast(I)->hasNoSignedWrap(), cast(I)->hasNoUnsignedWrap(), TD, DT); break; case Instruction::And: Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, DT); break; case Instruction::Or: Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, DT); break; case Instruction::Xor: Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, DT); break; case Instruction::ICmp: Result = SimplifyICmpInst(cast(I)->getPredicate(), I->getOperand(0), I->getOperand(1), TD, DT); break; case Instruction::FCmp: Result = SimplifyFCmpInst(cast(I)->getPredicate(), I->getOperand(0), I->getOperand(1), TD, DT); break; case Instruction::Select: Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), I->getOperand(2), TD, DT); break; case Instruction::GetElementPtr: { SmallVector Ops(I->op_begin(), I->op_end()); Result = SimplifyGEPInst(&Ops[0], Ops.size(), TD, DT); break; } case Instruction::PHI: Result = SimplifyPHINode(cast(I), DT); break; } /// If called on unreachable code, the above logic may report that the /// instruction simplified to itself. Make life easier for users by /// detecting that case here, returning null if it occurs. return Result == I ? 0 : Result; } /// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then /// delete the From instruction. In addition to a basic RAUW, this does a /// recursive simplification of the newly formed instructions. This catches /// things where one simplification exposes other opportunities. This only /// simplifies and deletes scalar operations, it does not change the CFG. /// void llvm::ReplaceAndSimplifyAllUses(Instruction *From, Value *To, const TargetData *TD, const DominatorTree *DT) { assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!"); // FromHandle/ToHandle - This keeps a WeakVH on the from/to values so that // we can know if it gets deleted out from under us or replaced in a // recursive simplification. WeakVH FromHandle(From); WeakVH ToHandle(To); while (!From->use_empty()) { // Update the instruction to use the new value. Use &TheUse = From->use_begin().getUse(); Instruction *User = cast(TheUse.getUser()); TheUse = To; // Check to see if the instruction can be folded due to the operand // replacement. For example changing (or X, Y) into (or X, -1) can replace // the 'or' with -1. Value *SimplifiedVal; { // Sanity check to make sure 'User' doesn't dangle across // SimplifyInstruction. AssertingVH<> UserHandle(User); SimplifiedVal = SimplifyInstruction(User, TD, DT); if (SimplifiedVal == 0) continue; } // Recursively simplify this user to the new value. ReplaceAndSimplifyAllUses(User, SimplifiedVal, TD, DT); From = dyn_cast_or_null((Value*)FromHandle); To = ToHandle; assert(ToHandle && "To value deleted by recursive simplification?"); // If the recursive simplification ended up revisiting and deleting // 'From' then we're done. if (From == 0) return; } // If 'From' has value handles referring to it, do a real RAUW to update them. From->replaceAllUsesWith(To); From->eraseFromParent(); }