//===- LazyValueInfo.cpp - Value constraint analysis ----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the interface for lazy computation of value constraint // information. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "lazy-value-info" #include "llvm/Analysis/LazyValueInfo.h" #include "llvm/Constants.h" #include "llvm/Instructions.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Target/TargetData.h" #include "llvm/Support/CFG.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/ValueHandle.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/ADT/STLExtras.h" using namespace llvm; char LazyValueInfo::ID = 0; INITIALIZE_PASS(LazyValueInfo, "lazy-value-info", "Lazy Value Information Analysis", false, true); namespace llvm { FunctionPass *createLazyValueInfoPass() { return new LazyValueInfo(); } } //===----------------------------------------------------------------------===// // LVILatticeVal //===----------------------------------------------------------------------===// /// LVILatticeVal - This is the information tracked by LazyValueInfo for each /// value. /// /// FIXME: This is basically just for bringup, this can be made a lot more rich /// in the future. /// namespace { class LVILatticeVal { enum LatticeValueTy { /// undefined - This LLVM Value has no known value yet. undefined, /// constant - This LLVM Value has a specific constant value. constant, /// notconstant - This LLVM value is known to not have the specified value. notconstant, /// overdefined - This instruction is not known to be constant, and we know /// it has a value. overdefined }; /// Val: This stores the current lattice value along with the Constant* for /// the constant if this is a 'constant' or 'notconstant' value. PointerIntPair Val; public: LVILatticeVal() : Val(0, undefined) {} static LVILatticeVal get(Constant *C) { LVILatticeVal Res; Res.markConstant(C); return Res; } static LVILatticeVal getNot(Constant *C) { LVILatticeVal Res; Res.markNotConstant(C); return Res; } bool isUndefined() const { return Val.getInt() == undefined; } bool isConstant() const { return Val.getInt() == constant; } bool isNotConstant() const { return Val.getInt() == notconstant; } bool isOverdefined() const { return Val.getInt() == overdefined; } Constant *getConstant() const { assert(isConstant() && "Cannot get the constant of a non-constant!"); return Val.getPointer(); } Constant *getNotConstant() const { assert(isNotConstant() && "Cannot get the constant of a non-notconstant!"); return Val.getPointer(); } /// markOverdefined - Return true if this is a change in status. bool markOverdefined() { if (isOverdefined()) return false; Val.setInt(overdefined); return true; } /// markConstant - Return true if this is a change in status. bool markConstant(Constant *V) { if (isConstant()) { assert(getConstant() == V && "Marking constant with different value"); return false; } assert(isUndefined()); Val.setInt(constant); assert(V && "Marking constant with NULL"); Val.setPointer(V); return true; } /// markNotConstant - Return true if this is a change in status. bool markNotConstant(Constant *V) { if (isNotConstant()) { assert(getNotConstant() == V && "Marking !constant with different value"); return false; } if (isConstant()) assert(getConstant() != V && "Marking not constant with different value"); else assert(isUndefined()); Val.setInt(notconstant); assert(V && "Marking constant with NULL"); Val.setPointer(V); return true; } /// mergeIn - Merge the specified lattice value into this one, updating this /// one and returning true if anything changed. bool mergeIn(const LVILatticeVal &RHS) { if (RHS.isUndefined() || isOverdefined()) return false; if (RHS.isOverdefined()) return markOverdefined(); if (RHS.isNotConstant()) { if (isNotConstant()) { if (getNotConstant() != RHS.getNotConstant() || isa(getNotConstant()) || isa(RHS.getNotConstant())) return markOverdefined(); return false; } if (isConstant()) { if (getConstant() == RHS.getNotConstant() || isa(RHS.getNotConstant()) || isa(getConstant())) return markOverdefined(); return markNotConstant(RHS.getNotConstant()); } assert(isUndefined() && "Unexpected lattice"); return markNotConstant(RHS.getNotConstant()); } // RHS must be a constant, we must be undef, constant, or notconstant. if (isUndefined()) return markConstant(RHS.getConstant()); if (isConstant()) { if (getConstant() != RHS.getConstant()) return markOverdefined(); return false; } // If we are known "!=4" and RHS is "==5", stay at "!=4". if (getNotConstant() == RHS.getConstant() || isa(getNotConstant()) || isa(RHS.getConstant())) return markOverdefined(); return false; } }; } // end anonymous namespace. namespace llvm { raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) { if (Val.isUndefined()) return OS << "undefined"; if (Val.isOverdefined()) return OS << "overdefined"; if (Val.isNotConstant()) return OS << "notconstant<" << *Val.getNotConstant() << '>'; return OS << "constant<" << *Val.getConstant() << '>'; } } //===----------------------------------------------------------------------===// // LazyValueInfoCache Decl //===----------------------------------------------------------------------===// namespace { /// LazyValueInfoCache - This is the cache kept by LazyValueInfo which /// maintains information about queries across the clients' queries. class LazyValueInfoCache { public: /// BlockCacheEntryTy - This is a computed lattice value at the end of the /// specified basic block for a Value* that depends on context. typedef std::pair BlockCacheEntryTy; /// ValueCacheEntryTy - This is all of the cached block information for /// exactly one Value*. The entries are sorted by the BasicBlock* of the /// entries, allowing us to do a lookup with a binary search. typedef std::map ValueCacheEntryTy; private: /// LVIValueHandle - A callback value handle update the cache when /// values are erased. struct LVIValueHandle : public CallbackVH { LazyValueInfoCache *Parent; LVIValueHandle(Value *V, LazyValueInfoCache *P) : CallbackVH(V), Parent(P) { } void deleted(); void allUsesReplacedWith(Value* V) { deleted(); } LVIValueHandle &operator=(Value *V) { return *this = LVIValueHandle(V, Parent); } }; /// ValueCache - This is all of the cached information for all values, /// mapped from Value* to key information. std::map ValueCache; /// OverDefinedCache - This tracks, on a per-block basis, the set of /// values that are over-defined at the end of that block. This is required /// for cache updating. std::set > OverDefinedCache; public: /// getValueInBlock - This is the query interface to determine the lattice /// value for the specified Value* at the end of the specified block. LVILatticeVal getValueInBlock(Value *V, BasicBlock *BB); /// getValueOnEdge - This is the query interface to determine the lattice /// value for the specified Value* that is true on the specified edge. LVILatticeVal getValueOnEdge(Value *V, BasicBlock *FromBB,BasicBlock *ToBB); /// threadEdge - This is the update interface to inform the cache that an /// edge from PredBB to OldSucc has been threaded to be from PredBB to /// NewSucc. void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc); }; } // end anonymous namespace //===----------------------------------------------------------------------===// // LVIQuery Impl //===----------------------------------------------------------------------===// namespace { /// LVIQuery - This is a transient object that exists while a query is /// being performed. /// /// TODO: Reuse LVIQuery instead of recreating it for every query, this avoids /// reallocation of the densemap on every query. class LVIQuery { typedef LazyValueInfoCache::BlockCacheEntryTy BlockCacheEntryTy; typedef LazyValueInfoCache::ValueCacheEntryTy ValueCacheEntryTy; /// This is the current value being queried for. Value *Val; /// This is a pointer to the owning cache, for recursive queries. LazyValueInfoCache &Parent; /// This is all of the cached information about this value. ValueCacheEntryTy &Cache; /// This tracks, for each block, what values are overdefined. std::set > &OverDefinedCache; /// NewBlocks - This is a mapping of the new BasicBlocks which have been /// added to cache but that are not in sorted order. DenseSet NewBlockInfo; public: LVIQuery(Value *V, LazyValueInfoCache &P, ValueCacheEntryTy &VC, std::set > &ODC) : Val(V), Parent(P), Cache(VC), OverDefinedCache(ODC) { } ~LVIQuery() { // When the query is done, insert the newly discovered facts into the // cache in sorted order. if (NewBlockInfo.empty()) return; for (DenseSet::iterator I = NewBlockInfo.begin(), E = NewBlockInfo.end(); I != E; ++I) { if (Cache[*I].isOverdefined()) OverDefinedCache.insert(std::make_pair(*I, Val)); } } LVILatticeVal getBlockValue(BasicBlock *BB); LVILatticeVal getEdgeValue(BasicBlock *FromBB, BasicBlock *ToBB); private: LVILatticeVal &getCachedEntryForBlock(BasicBlock *BB); }; } // end anonymous namespace void LazyValueInfoCache::LVIValueHandle::deleted() { Parent->ValueCache.erase(*this); for (std::set >::iterator I = Parent->OverDefinedCache.begin(), E = Parent->OverDefinedCache.end(); I != E; ) { std::set >::iterator tmp = I; ++I; if (tmp->second == getValPtr()) Parent->OverDefinedCache.erase(tmp); } } /// getCachedEntryForBlock - See if we already have a value for this block. If /// so, return it, otherwise create a new entry in the Cache map to use. LVILatticeVal &LVIQuery::getCachedEntryForBlock(BasicBlock *BB) { NewBlockInfo.insert(BB); return Cache[BB]; } LVILatticeVal LVIQuery::getBlockValue(BasicBlock *BB) { // See if we already have a value for this block. LVILatticeVal &BBLV = getCachedEntryForBlock(BB); // If we've already computed this block's value, return it. if (!BBLV.isUndefined()) { DEBUG(dbgs() << " reuse BB '" << BB->getName() << "' val=" << BBLV <<'\n'); return BBLV; } // Otherwise, this is the first time we're seeing this block. Reset the // lattice value to overdefined, so that cycles will terminate and be // conservatively correct. BBLV.markOverdefined(); // If V is live into BB, see if our predecessors know anything about it. Instruction *BBI = dyn_cast(Val); if (BBI == 0 || BBI->getParent() != BB) { LVILatticeVal Result; // Start Undefined. unsigned NumPreds = 0; // Loop over all of our predecessors, merging what we know from them into // result. for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { Result.mergeIn(getEdgeValue(*PI, BB)); // If we hit overdefined, exit early. The BlockVals entry is already set // to overdefined. if (Result.isOverdefined()) { DEBUG(dbgs() << " compute BB '" << BB->getName() << "' - overdefined because of pred.\n"); return Result; } ++NumPreds; } // If this is the entry block, we must be asking about an argument. The // value is overdefined. if (NumPreds == 0 && BB == &BB->getParent()->front()) { assert(isa(Val) && "Unknown live-in to the entry block"); Result.markOverdefined(); return Result; } // Return the merged value, which is more precise than 'overdefined'. assert(!Result.isOverdefined()); return getCachedEntryForBlock(BB) = Result; } // If this value is defined by an instruction in this block, we have to // process it here somehow or return overdefined. if (PHINode *PN = dyn_cast(BBI)) { LVILatticeVal Result; // Start Undefined. // Loop over all of our predecessors, merging what we know from them into // result. for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { Value* PhiVal = PN->getIncomingValueForBlock(*PI); Result.mergeIn(Parent.getValueOnEdge(PhiVal, *PI, BB)); // If we hit overdefined, exit early. The BlockVals entry is already set // to overdefined. if (Result.isOverdefined()) { DEBUG(dbgs() << " compute BB '" << BB->getName() << "' - overdefined because of pred.\n"); return Result; } } // Return the merged value, which is more precise than 'overdefined'. assert(!Result.isOverdefined()); return getCachedEntryForBlock(BB) = Result; } else { } DEBUG(dbgs() << " compute BB '" << BB->getName() << "' - overdefined because inst def found.\n"); LVILatticeVal Result; Result.markOverdefined(); return getCachedEntryForBlock(BB) = Result; } /// getEdgeValue - This method attempts to infer more complex LVILatticeVal LVIQuery::getEdgeValue(BasicBlock *BBFrom, BasicBlock *BBTo) { // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we // know that v != 0. if (BranchInst *BI = dyn_cast(BBFrom->getTerminator())) { // If this is a conditional branch and only one successor goes to BBTo, then // we maybe able to infer something from the condition. if (BI->isConditional() && BI->getSuccessor(0) != BI->getSuccessor(1)) { bool isTrueDest = BI->getSuccessor(0) == BBTo; assert(BI->getSuccessor(!isTrueDest) == BBTo && "BBTo isn't a successor of BBFrom"); // If V is the condition of the branch itself, then we know exactly what // it is. if (BI->getCondition() == Val) return LVILatticeVal::get(ConstantInt::get( Type::getInt1Ty(Val->getContext()), isTrueDest)); // If the condition of the branch is an equality comparison, we may be // able to infer the value. if (ICmpInst *ICI = dyn_cast(BI->getCondition())) if (ICI->isEquality() && ICI->getOperand(0) == Val && isa(ICI->getOperand(1))) { // We know that V has the RHS constant if this is a true SETEQ or // false SETNE. if (isTrueDest == (ICI->getPredicate() == ICmpInst::ICMP_EQ)) return LVILatticeVal::get(cast(ICI->getOperand(1))); return LVILatticeVal::getNot(cast(ICI->getOperand(1))); } } } // If the edge was formed by a switch on the value, then we may know exactly // what it is. if (SwitchInst *SI = dyn_cast(BBFrom->getTerminator())) { // If BBTo is the default destination of the switch, we don't know anything. // Given a more powerful range analysis we could know stuff. if (SI->getCondition() == Val && SI->getDefaultDest() != BBTo) { // We only know something if there is exactly one value that goes from // BBFrom to BBTo. unsigned NumEdges = 0; ConstantInt *EdgeVal = 0; for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) { if (SI->getSuccessor(i) != BBTo) continue; if (NumEdges++) break; EdgeVal = SI->getCaseValue(i); } assert(EdgeVal && "Missing successor?"); if (NumEdges == 1) return LVILatticeVal::get(EdgeVal); } } // Otherwise see if the value is known in the block. return getBlockValue(BBFrom); } //===----------------------------------------------------------------------===// // LazyValueInfoCache Impl //===----------------------------------------------------------------------===// LVILatticeVal LazyValueInfoCache::getValueInBlock(Value *V, BasicBlock *BB) { // If already a constant, there is nothing to compute. if (Constant *VC = dyn_cast(V)) return LVILatticeVal::get(VC); DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '" << BB->getName() << "'\n"); LVILatticeVal Result = LVIQuery(V, *this, ValueCache[LVIValueHandle(V, this)], OverDefinedCache).getBlockValue(BB); DEBUG(dbgs() << " Result = " << Result << "\n"); return Result; } LVILatticeVal LazyValueInfoCache:: getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB) { // If already a constant, there is nothing to compute. if (Constant *VC = dyn_cast(V)) return LVILatticeVal::get(VC); DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '" << FromBB->getName() << "' to '" << ToBB->getName() << "'\n"); LVILatticeVal Result = LVIQuery(V, *this, ValueCache[LVIValueHandle(V, this)], OverDefinedCache).getEdgeValue(FromBB, ToBB); DEBUG(dbgs() << " Result = " << Result << "\n"); return Result; } void LazyValueInfoCache::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, BasicBlock *NewSucc) { // When an edge in the graph has been threaded, values that we could not // determine a value for before (i.e. were marked overdefined) may be possible // to solve now. We do NOT try to proactively update these values. Instead, // we clear their entries from the cache, and allow lazy updating to recompute // them when needed. // The updating process is fairly simple: we need to dropped cached info // for all values that were marked overdefined in OldSucc, and for those same // values in any successor of OldSucc (except NewSucc) in which they were // also marked overdefined. std::vector worklist; worklist.push_back(OldSucc); DenseSet ClearSet; for (std::set >::iterator I = OverDefinedCache.begin(), E = OverDefinedCache.end(); I != E; ++I) { if (I->first == OldSucc) ClearSet.insert(I->second); } // Use a worklist to perform a depth-first search of OldSucc's successors. // NOTE: We do not need a visited list since any blocks we have already // visited will have had their overdefined markers cleared already, and we // thus won't loop to their successors. while (!worklist.empty()) { BasicBlock *ToUpdate = worklist.back(); worklist.pop_back(); // Skip blocks only accessible through NewSucc. if (ToUpdate == NewSucc) continue; bool changed = false; for (DenseSet::iterator I = ClearSet.begin(),E = ClearSet.end(); I != E; ++I) { // If a value was marked overdefined in OldSucc, and is here too... std::set >::iterator OI = OverDefinedCache.find(std::make_pair(ToUpdate, *I)); if (OI == OverDefinedCache.end()) continue; // Remove it from the caches. ValueCacheEntryTy &Entry = ValueCache[LVIValueHandle(*I, this)]; ValueCacheEntryTy::iterator CI = Entry.find(ToUpdate); assert(CI != Entry.end() && "Couldn't find entry to update?"); Entry.erase(CI); OverDefinedCache.erase(OI); // If we removed anything, then we potentially need to update // blocks successors too. changed = true; } if (!changed) continue; worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate)); } } //===----------------------------------------------------------------------===// // LazyValueInfo Impl //===----------------------------------------------------------------------===// bool LazyValueInfo::runOnFunction(Function &F) { TD = getAnalysisIfAvailable(); // Fully lazy. return false; } /// getCache - This lazily constructs the LazyValueInfoCache. static LazyValueInfoCache &getCache(void *&PImpl) { if (!PImpl) PImpl = new LazyValueInfoCache(); return *static_cast(PImpl); } void LazyValueInfo::releaseMemory() { // If the cache was allocated, free it. if (PImpl) { delete &getCache(PImpl); PImpl = 0; } } Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB) { LVILatticeVal Result = getCache(PImpl).getValueInBlock(V, BB); if (Result.isConstant()) return Result.getConstant(); return 0; } /// getConstantOnEdge - Determine whether the specified value is known to be a /// constant on the specified edge. Return null if not. Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB) { LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB); if (Result.isConstant()) return Result.getConstant(); return 0; } /// getPredicateOnEdge - Determine whether the specified value comparison /// with a constant is known to be true or false on the specified CFG edge. /// Pred is a CmpInst predicate. LazyValueInfo::Tristate LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C, BasicBlock *FromBB, BasicBlock *ToBB) { LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB); // If we know the value is a constant, evaluate the conditional. Constant *Res = 0; if (Result.isConstant()) { Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, TD); if (ConstantInt *ResCI = dyn_cast_or_null(Res)) return ResCI->isZero() ? False : True; return Unknown; } if (Result.isNotConstant()) { // If this is an equality comparison, we can try to fold it knowing that // "V != C1". if (Pred == ICmpInst::ICMP_EQ) { // !C1 == C -> false iff C1 == C. Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, Result.getNotConstant(), C, TD); if (Res->isNullValue()) return False; } else if (Pred == ICmpInst::ICMP_NE) { // !C1 != C -> true iff C1 == C. Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, Result.getNotConstant(), C, TD); if (Res->isNullValue()) return True; } return Unknown; } return Unknown; } void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, BasicBlock* NewSucc) { getCache(PImpl).threadEdge(PredBB, OldSucc, NewSucc); }