//===- LoadValueNumbering.cpp - Load Value #'ing Implementation -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a value numbering pass that value numbers load and call // instructions. To do this, it finds lexically identical load instructions, // and uses alias analysis to determine which loads are guaranteed to produce // the same value. To value number call instructions, it looks for calls to // functions that do not write to memory which do not have intervening // instructions that clobber the memory that is read from. // // This pass builds off of another value numbering pass to implement value // numbering for non-load and non-call instructions. It uses Alias Analysis so // that it can disambiguate the load instructions. The more powerful these base // analyses are, the more powerful the resultant value numbering will be. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/LoadValueNumbering.h" #include "llvm/Constant.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/Pass.h" #include "llvm/Type.h" #include "llvm/Analysis/ValueNumbering.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Support/CFG.h" #include "llvm/Target/TargetData.h" #include using namespace llvm; namespace { // FIXME: This should not be a FunctionPass. struct LoadVN : public FunctionPass, public ValueNumbering { /// Pass Implementation stuff. This doesn't do any analysis. /// bool runOnFunction(Function &) { return false; } /// getAnalysisUsage - Does not modify anything. It uses Value Numbering /// and Alias Analysis. /// virtual void getAnalysisUsage(AnalysisUsage &AU) const; /// getEqualNumberNodes - Return nodes with the same value number as the /// specified Value. This fills in the argument vector with any equal /// values. /// virtual void getEqualNumberNodes(Value *V1, std::vector &RetVals) const; /// deleteValue - This method should be called whenever an LLVM Value is /// deleted from the program, for example when an instruction is found to be /// redundant and is eliminated. /// virtual void deleteValue(Value *V) { getAnalysis().deleteValue(V); } /// copyValue - This method should be used whenever a preexisting value in /// the program is copied or cloned, introducing a new value. Note that /// analysis implementations should tolerate clients that use this method to /// introduce the same value multiple times: if the analysis already knows /// about a value, it should ignore the request. /// virtual void copyValue(Value *From, Value *To) { getAnalysis().copyValue(From, To); } /// getCallEqualNumberNodes - Given a call instruction, find other calls /// that have the same value number. void getCallEqualNumberNodes(CallInst *CI, std::vector &RetVals) const; }; // Register this pass... RegisterOpt X("load-vn", "Load Value Numbering"); // Declare that we implement the ValueNumbering interface RegisterAnalysisGroup Y; } FunctionPass *llvm::createLoadValueNumberingPass() { return new LoadVN(); } /// getAnalysisUsage - Does not modify anything. It uses Value Numbering and /// Alias Analysis. /// void LoadVN::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); } static bool isPathTransparentTo(BasicBlock *CurBlock, BasicBlock *Dom, Value *Ptr, unsigned Size, AliasAnalysis &AA, std::set &Visited, std::map &TransparentBlocks){ // If we have already checked out this path, or if we reached our destination, // stop searching, returning success. if (CurBlock == Dom || !Visited.insert(CurBlock).second) return true; // Check whether this block is known transparent or not. std::map::iterator TBI = TransparentBlocks.lower_bound(CurBlock); if (TBI == TransparentBlocks.end() || TBI->first != CurBlock) { // If this basic block can modify the memory location, then the path is not // transparent! if (AA.canBasicBlockModify(*CurBlock, Ptr, Size)) { TransparentBlocks.insert(TBI, std::make_pair(CurBlock, false)); return false; } TransparentBlocks.insert(TBI, std::make_pair(CurBlock, true)); } else if (!TBI->second) // This block is known non-transparent, so that path can't be either. return false; // The current block is known to be transparent. The entire path is // transparent if all of the predecessors paths to the parent is also // transparent to the memory location. for (pred_iterator PI = pred_begin(CurBlock), E = pred_end(CurBlock); PI != E; ++PI) if (!isPathTransparentTo(*PI, Dom, Ptr, Size, AA, Visited, TransparentBlocks)) return false; return true; } /// getCallEqualNumberNodes - Given a call instruction, find other calls that /// have the same value number. void LoadVN::getCallEqualNumberNodes(CallInst *CI, std::vector &RetVals) const { Function *CF = CI->getCalledFunction(); if (CF == 0) return; // Indirect call. AliasAnalysis &AA = getAnalysis(); if (!AA.onlyReadsMemory(CF)) return; // Nothing we can do. // Scan all of the arguments of the function, looking for one that is not // global. In particular, we would prefer to have an argument or instruction // operand to chase the def-use chains of. Value *Op = CF; for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i) if (isa(CI->getOperand(i)) || isa(CI->getOperand(i))) { Op = CI->getOperand(i); break; } // Identify all lexically identical calls in this function. std::vector IdenticalCalls; Function *CIFunc = CI->getParent()->getParent(); for (Value::use_iterator UI = Op->use_begin(), E = Op->use_end(); UI != E; ++UI) if (CallInst *C = dyn_cast(*UI)) if (C->getNumOperands() == CI->getNumOperands() && C->getOperand(0) == CI->getOperand(0) && C->getParent()->getParent() == CIFunc && C != CI) { bool AllOperandsEqual = true; for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i) if (C->getOperand(i) != CI->getOperand(i)) { AllOperandsEqual = false; break; } if (AllOperandsEqual) IdenticalCalls.push_back(C); } if (IdenticalCalls.empty()) return; // Eliminate duplicates, which could occur if we chose a value that is passed // into a call site multiple times. std::sort(IdenticalCalls.begin(), IdenticalCalls.end()); IdenticalCalls.erase(std::unique(IdenticalCalls.begin(),IdenticalCalls.end()), IdenticalCalls.end()); // If the call reads memory, we must make sure that there are no stores // between the calls in question. // // FIXME: This should use mod/ref information. What we really care about it // whether an intervening instruction could modify memory that is read, not // ANY memory. // if (!AA.doesNotAccessMemory(CF)) { DominatorSet &DomSetInfo = getAnalysis(); BasicBlock *CIBB = CI->getParent(); for (unsigned i = 0; i != IdenticalCalls.size(); ++i) { CallInst *C = IdenticalCalls[i]; bool CantEqual = false; if (DomSetInfo.dominates(CIBB, C->getParent())) { // FIXME: we currently only handle the case where both calls are in the // same basic block. if (CIBB != C->getParent()) { CantEqual = true; } else { Instruction *First = CI, *Second = C; if (!DomSetInfo.dominates(CI, C)) std::swap(First, Second); // Scan the instructions between the calls, checking for stores or // calls to dangerous functions. BasicBlock::iterator I = First; for (++First; I != BasicBlock::iterator(Second); ++I) { if (isa(I)) { // FIXME: We could use mod/ref information to make this much // better! CantEqual = true; break; } else if (CallInst *CI = dyn_cast(I)) { if (CI->getCalledFunction() == 0 || !AA.onlyReadsMemory(CI->getCalledFunction())) { CantEqual = true; break; } } else if (I->mayWriteToMemory()) { CantEqual = true; break; } } } } else if (DomSetInfo.dominates(C->getParent(), CIBB)) { // FIXME: We could implement this, but we don't for now. CantEqual = true; } else { // FIXME: if one doesn't dominate the other, we can't tell yet. CantEqual = true; } if (CantEqual) { // This call does not produce the same value as the one in the query. std::swap(IdenticalCalls[i--], IdenticalCalls.back()); IdenticalCalls.pop_back(); } } } // Any calls that are identical and not destroyed will produce equal values! for (unsigned i = 0, e = IdenticalCalls.size(); i != e; ++i) RetVals.push_back(IdenticalCalls[i]); } // getEqualNumberNodes - Return nodes with the same value number as the // specified Value. This fills in the argument vector with any equal values. // void LoadVN::getEqualNumberNodes(Value *V, std::vector &RetVals) const { // If the alias analysis has any must alias information to share with us, we // can definitely use it. if (isa(V->getType())) getAnalysis().getMustAliases(V, RetVals); if (!isa(V)) { if (CallInst *CI = dyn_cast(V)) getCallEqualNumberNodes(CI, RetVals); // Not a load instruction? Just chain to the base value numbering // implementation to satisfy the request... assert(&getAnalysis() != (ValueNumbering*)this && "getAnalysis() returned this!"); return getAnalysis().getEqualNumberNodes(V, RetVals); } // Volatile loads cannot be replaced with the value of other loads. LoadInst *LI = cast(V); if (LI->isVolatile()) return getAnalysis().getEqualNumberNodes(V, RetVals); // If we have a load instruction, find all of the load and store instructions // that use the same source operand. We implement this recursively, because // there could be a load of a load of a load that are all identical. We are // guaranteed that this cannot be an infinite recursion because load // instructions would have to pass through a PHI node in order for there to be // a cycle. The PHI node would be handled by the else case here, breaking the // infinite recursion. // std::vector PointerSources; getEqualNumberNodes(LI->getOperand(0), PointerSources); PointerSources.push_back(LI->getOperand(0)); BasicBlock *LoadBB = LI->getParent(); Function *F = LoadBB->getParent(); // Now that we know the set of equivalent source pointers for the load // instruction, look to see if there are any load or store candidates that are // identical. // std::map > CandidateLoads; std::map > CandidateStores; std::set Allocations; while (!PointerSources.empty()) { Value *Source = PointerSources.back(); PointerSources.pop_back(); // Get a source pointer... if (AllocationInst *AI = dyn_cast(Source)) Allocations.insert(AI); for (Value::use_iterator UI = Source->use_begin(), UE = Source->use_end(); UI != UE; ++UI) if (LoadInst *Cand = dyn_cast(*UI)) {// Is a load of source? if (Cand->getParent()->getParent() == F && // In the same function? Cand != LI && !Cand->isVolatile()) // Not LI itself? CandidateLoads[Cand->getParent()].push_back(Cand); // Got one... } else if (StoreInst *Cand = dyn_cast(*UI)) { if (Cand->getParent()->getParent() == F && !Cand->isVolatile() && Cand->getOperand(1) == Source) // It's a store THROUGH the ptr... CandidateStores[Cand->getParent()].push_back(Cand); } } // Get alias analysis & dominators. AliasAnalysis &AA = getAnalysis(); DominatorSet &DomSetInfo = getAnalysis(); Value *LoadPtr = LI->getOperand(0); // Find out how many bytes of memory are loaded by the load instruction... unsigned LoadSize = getAnalysis().getTypeSize(LI->getType()); // Find all of the candidate loads and stores that are in the same block as // the defining instruction. std::set Instrs; Instrs.insert(CandidateLoads[LoadBB].begin(), CandidateLoads[LoadBB].end()); CandidateLoads.erase(LoadBB); Instrs.insert(CandidateStores[LoadBB].begin(), CandidateStores[LoadBB].end()); CandidateStores.erase(LoadBB); // Figure out if the load is invalidated from the entry of the block it is in // until the actual instruction. This scans the block backwards from LI. If // we see any candidate load or store instructions, then we know that the // candidates have the same value # as LI. bool LoadInvalidatedInBBBefore = false; for (BasicBlock::iterator I = LI; I != LoadBB->begin(); ) { --I; // If this instruction is a candidate load before LI, we know there are no // invalidating instructions between it and LI, so they have the same value // number. if (isa(I) && Instrs.count(I)) { RetVals.push_back(I); Instrs.erase(I); } else if (AllocationInst *AI = dyn_cast(I)) { // If we run into an allocation of the value being loaded, then the // contenxt are not initialized. We can return any value, so we will // return a zero. if (Allocations.count(AI)) { LoadInvalidatedInBBBefore = true; RetVals.push_back(Constant::getNullValue(LI->getType())); break; } } if (AA.getModRefInfo(I, LoadPtr, LoadSize) & AliasAnalysis::Mod) { // If the invalidating instruction is a store, and its in our candidate // set, then we can do store-load forwarding: the load has the same value // # as the stored value. if (isa(I) && Instrs.count(I)) { Instrs.erase(I); RetVals.push_back(I->getOperand(0)); } LoadInvalidatedInBBBefore = true; break; } } // Figure out if the load is invalidated between the load and the exit of the // block it is defined in. While we are scanning the current basic block, if // we see any candidate loads, then we know they have the same value # as LI. // bool LoadInvalidatedInBBAfter = false; for (BasicBlock::iterator I = LI->getNext(); I != LoadBB->end(); ++I) { // If this instruction is a load, then this instruction returns the same // value as LI. if (isa(I) && Instrs.count(I)) { RetVals.push_back(I); Instrs.erase(I); } if (AA.getModRefInfo(I, LoadPtr, LoadSize) & AliasAnalysis::Mod) { LoadInvalidatedInBBAfter = true; break; } } // If there is anything left in the Instrs set, it could not possibly equal // LI. Instrs.clear(); // TransparentBlocks - For each basic block the load/store is alive across, // figure out if the pointer is invalidated or not. If it is invalidated, the // boolean is set to false, if it's not it is set to true. If we don't know // yet, the entry is not in the map. std::map TransparentBlocks; // Loop over all of the basic blocks that also load the value. If the value // is live across the CFG from the source to destination blocks, and if the // value is not invalidated in either the source or destination blocks, add it // to the equivalence sets. for (std::map >::iterator I = CandidateLoads.begin(), E = CandidateLoads.end(); I != E; ++I) { bool CantEqual = false; // Right now we only can handle cases where one load dominates the other. // FIXME: generalize this! BasicBlock *BB1 = I->first, *BB2 = LoadBB; if (DomSetInfo.dominates(BB1, BB2)) { // The other load dominates LI. If the loaded value is killed entering // the LoadBB block, we know the load is not live. if (LoadInvalidatedInBBBefore) CantEqual = true; } else if (DomSetInfo.dominates(BB2, BB1)) { std::swap(BB1, BB2); // Canonicalize // LI dominates the other load. If the loaded value is killed exiting // the LoadBB block, we know the load is not live. if (LoadInvalidatedInBBAfter) CantEqual = true; } else { // None of these loads can VN the same. CantEqual = true; } if (!CantEqual) { // Ok, at this point, we know that BB1 dominates BB2, and that there is // nothing in the LI block that kills the loaded value. Check to see if // the value is live across the CFG. std::set Visited; for (pred_iterator PI = pred_begin(BB2), E = pred_end(BB2); PI!=E; ++PI) if (!isPathTransparentTo(*PI, BB1, LoadPtr, LoadSize, AA, Visited, TransparentBlocks)) { // None of these loads can VN the same. CantEqual = true; break; } } // If the loads can equal so far, scan the basic block that contains the // loads under consideration to see if they are invalidated in the block. // For any loads that are not invalidated, add them to the equivalence // set! if (!CantEqual) { Instrs.insert(I->second.begin(), I->second.end()); if (BB1 == LoadBB) { // If LI dominates the block in question, check to see if any of the // loads in this block are invalidated before they are reached. for (BasicBlock::iterator BBI = I->first->begin(); ; ++BBI) { if (isa(BBI) && Instrs.count(BBI)) { // The load is in the set! RetVals.push_back(BBI); Instrs.erase(BBI); if (Instrs.empty()) break; } else if (AA.getModRefInfo(BBI, LoadPtr, LoadSize) & AliasAnalysis::Mod) { // If there is a modifying instruction, nothing below it will value // # the same. break; } } } else { // If the block dominates LI, make sure that the loads in the block are // not invalidated before the block ends. BasicBlock::iterator BBI = I->first->end(); while (1) { --BBI; if (isa(BBI) && Instrs.count(BBI)) { // The load is in the set! RetVals.push_back(BBI); Instrs.erase(BBI); if (Instrs.empty()) break; } else if (AA.getModRefInfo(BBI, LoadPtr, LoadSize) & AliasAnalysis::Mod) { // If there is a modifying instruction, nothing above it will value // # the same. break; } } } Instrs.clear(); } } // Handle candidate stores. If the loaded location is clobbered on entrance // to the LoadBB, no store outside of the LoadBB can value number equal, so // quick exit. if (LoadInvalidatedInBBBefore) return; for (std::map >::iterator I = CandidateStores.begin(), E = CandidateStores.end(); I != E; ++I) if (DomSetInfo.dominates(I->first, LoadBB)) { // Check to see if the path from the store to the load is transparent // w.r.t. the memory location. bool CantEqual = false; std::set Visited; for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E; ++PI) if (!isPathTransparentTo(*PI, I->first, LoadPtr, LoadSize, AA, Visited, TransparentBlocks)) { // None of these stores can VN the same. CantEqual = true; break; } Visited.clear(); if (!CantEqual) { // Okay, the path from the store block to the load block is clear, and // we know that there are no invalidating instructions from the start // of the load block to the load itself. Now we just scan the store // block. BasicBlock::iterator BBI = I->first->end(); while (1) { assert(BBI != I->first->begin() && "There is a store in this block of the pointer, but the store" " doesn't mod the address being stored to?? Must be a bug in" " the alias analysis implementation!"); --BBI; if (AA.getModRefInfo(BBI, LoadPtr, LoadSize) & AliasAnalysis::Mod) { // If the invalidating instruction is one of the candidates, // then it provides the value the load loads. if (StoreInst *SI = dyn_cast(BBI)) if (std::find(I->second.begin(), I->second.end(), SI) != I->second.end()) RetVals.push_back(SI->getOperand(0)); break; } } } } }