//===- Loads.cpp - Local load analysis ------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines simple local analyses for load instructions. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/Loads.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" using namespace llvm; /// \brief Test if A and B will obviously have the same value. /// /// This includes recognizing that %t0 and %t1 will have the same /// value in code like this: /// \code /// %t0 = getelementptr \@a, 0, 3 /// store i32 0, i32* %t0 /// %t1 = getelementptr \@a, 0, 3 /// %t2 = load i32* %t1 /// \endcode /// static bool AreEquivalentAddressValues(const Value *A, const Value *B) { // Test if the values are trivially equivalent. if (A == B) return true; // Test if the values come from identical arithmetic instructions. // Use isIdenticalToWhenDefined instead of isIdenticalTo because // this function is only used when one address use dominates the // other, which means that they'll always either have the same // value or one of them will have an undefined value. if (isa(A) || isa(A) || isa(A) || isa(A)) if (const Instruction *BI = dyn_cast(B)) if (cast(A)->isIdenticalToWhenDefined(BI)) return true; // Otherwise they may not be equivalent. return false; } /// \brief Check if executing a load of this pointer value cannot trap. /// /// If it is not obviously safe to load from the specified pointer, we do /// a quick local scan of the basic block containing \c ScanFrom, to determine /// if the address is already accessed. /// /// This uses the pointee type to determine how many bytes need to be safe to /// load from the pointer. bool llvm::isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom, unsigned Align) { const DataLayout &DL = ScanFrom->getModule()->getDataLayout(); int64_t ByteOffset = 0; Value *Base = V; Base = GetPointerBaseWithConstantOffset(V, ByteOffset, DL); if (ByteOffset < 0) // out of bounds return false; Type *BaseType = nullptr; unsigned BaseAlign = 0; if (const AllocaInst *AI = dyn_cast(Base)) { // An alloca is safe to load from as load as it is suitably aligned. BaseType = AI->getAllocatedType(); BaseAlign = AI->getAlignment(); } else if (const GlobalVariable *GV = dyn_cast(Base)) { // Global variables are not necessarily safe to load from if they are // overridden. Their size may change or they may be weak and require a test // to determine if they were in fact provided. if (!GV->mayBeOverridden()) { BaseType = GV->getType()->getElementType(); BaseAlign = GV->getAlignment(); } } PointerType *AddrTy = cast(V->getType()); uint64_t LoadSize = DL.getTypeStoreSize(AddrTy->getElementType()); // If we found a base allocated type from either an alloca or global variable, // try to see if we are definitively within the allocated region. We need to // know the size of the base type and the loaded type to do anything in this // case. if (BaseType && BaseType->isSized()) { if (BaseAlign == 0) BaseAlign = DL.getPrefTypeAlignment(BaseType); if (Align <= BaseAlign) { // Check if the load is within the bounds of the underlying object. if (ByteOffset + LoadSize <= DL.getTypeAllocSize(BaseType) && (Align == 0 || (ByteOffset % Align) == 0)) return true; } } // Otherwise, be a little bit aggressive by scanning the local block where we // want to check to see if the pointer is already being loaded or stored // from/to. If so, the previous load or store would have already trapped, // so there is no harm doing an extra load (also, CSE will later eliminate // the load entirely). BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin(); // We can at least always strip pointer casts even though we can't use the // base here. V = V->stripPointerCasts(); while (BBI != E) { --BBI; // If we see a free or a call which may write to memory (i.e. which might do // a free) the pointer could be marked invalid. if (isa(BBI) && BBI->mayWriteToMemory() && !isa(BBI)) return false; Value *AccessedPtr; if (LoadInst *LI = dyn_cast(BBI)) AccessedPtr = LI->getPointerOperand(); else if (StoreInst *SI = dyn_cast(BBI)) AccessedPtr = SI->getPointerOperand(); else continue; // Handle trivial cases. if (AccessedPtr == V) return true; auto *AccessedTy = cast(AccessedPtr->getType()); if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) && LoadSize <= DL.getTypeStoreSize(AccessedTy->getElementType())) return true; } return false; } /// \brief Scan the ScanBB block backwards to see if we have the value at the /// memory address *Ptr locally available within a small number of instructions. /// /// The scan starts from \c ScanFrom. \c MaxInstsToScan specifies the maximum /// instructions to scan in the block. If it is set to \c 0, it will scan the whole /// block. /// /// If the value is available, this function returns it. If not, it returns the /// iterator for the last validated instruction that the value would be live /// through. If we scanned the entire block and didn't find something that /// invalidates \c *Ptr or provides it, \c ScanFrom is left at the last /// instruction processed and this returns null. /// /// You can also optionally specify an alias analysis implementation, which /// makes this more precise. /// /// If \c AATags is non-null and a load or store is found, the AA tags from the /// load or store are recorded there. If there are no AA tags or if no access is /// found, it is left unmodified. Value *llvm::FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB, BasicBlock::iterator &ScanFrom, unsigned MaxInstsToScan, AliasAnalysis *AA, AAMDNodes *AATags) { if (MaxInstsToScan == 0) MaxInstsToScan = ~0U; Type *AccessTy = cast(Ptr->getType())->getElementType(); const DataLayout &DL = ScanBB->getModule()->getDataLayout(); // Try to get the store size for the type. uint64_t AccessSize = DL.getTypeStoreSize(AccessTy); Value *StrippedPtr = Ptr->stripPointerCasts(); while (ScanFrom != ScanBB->begin()) { // We must ignore debug info directives when counting (otherwise they // would affect codegen). Instruction *Inst = --ScanFrom; if (isa(Inst)) continue; // Restore ScanFrom to expected value in case next test succeeds ScanFrom++; // Don't scan huge blocks. if (MaxInstsToScan-- == 0) return nullptr; --ScanFrom; // If this is a load of Ptr, the loaded value is available. // (This is true even if the load is volatile or atomic, although // those cases are unlikely.) if (LoadInst *LI = dyn_cast(Inst)) if (AreEquivalentAddressValues( LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) && CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) { if (AATags) LI->getAAMetadata(*AATags); return LI; } if (StoreInst *SI = dyn_cast(Inst)) { Value *StorePtr = SI->getPointerOperand()->stripPointerCasts(); // If this is a store through Ptr, the value is available! // (This is true even if the store is volatile or atomic, although // those cases are unlikely.) if (AreEquivalentAddressValues(StorePtr, StrippedPtr) && CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(), AccessTy, DL)) { if (AATags) SI->getAAMetadata(*AATags); return SI->getOperand(0); } // If both StrippedPtr and StorePtr reach all the way to an alloca or // global and they are different, ignore the store. This is a trivial form // of alias analysis that is important for reg2mem'd code. if ((isa(StrippedPtr) || isa(StrippedPtr)) && (isa(StorePtr) || isa(StorePtr)) && StrippedPtr != StorePtr) continue; // If we have alias analysis and it says the store won't modify the loaded // value, ignore the store. if (AA && (AA->getModRefInfo(SI, StrippedPtr, AccessSize) & AliasAnalysis::Mod) == 0) continue; // Otherwise the store that may or may not alias the pointer, bail out. ++ScanFrom; return nullptr; } // If this is some other instruction that may clobber Ptr, bail out. if (Inst->mayWriteToMemory()) { // If alias analysis claims that it really won't modify the load, // ignore it. if (AA && (AA->getModRefInfo(Inst, StrippedPtr, AccessSize) & AliasAnalysis::Mod) == 0) continue; // May modify the pointer, bail out. ++ScanFrom; return nullptr; } } // Got to the start of the block, we didn't find it, but are done for this // block. return nullptr; }