//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This header defines the BitcodeReader class. // //===----------------------------------------------------------------------===// #include "llvm/Bitcode/ReaderWriter.h" #include "BitcodeReader.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/InlineAsm.h" #include "llvm/IntrinsicInst.h" #include "llvm/LLVMContext.h" #include "llvm/Metadata.h" #include "llvm/Module.h" #include "llvm/Operator.h" #include "llvm/AutoUpgrade.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/OperandTraits.h" using namespace llvm; void BitcodeReader::FreeState() { delete Buffer; Buffer = 0; std::vector().swap(TypeList); ValueList.clear(); MDValueList.clear(); std::vector().swap(MAttributes); std::vector().swap(FunctionBBs); std::vector().swap(FunctionsWithBodies); DeferredFunctionInfo.clear(); } //===----------------------------------------------------------------------===// // Helper functions to implement forward reference resolution, etc. //===----------------------------------------------------------------------===// /// ConvertToString - Convert a string from a record into an std::string, return /// true on failure. template static bool ConvertToString(SmallVector &Record, unsigned Idx, StrTy &Result) { if (Idx > Record.size()) return true; for (unsigned i = Idx, e = Record.size(); i != e; ++i) Result += (char)Record[i]; return false; } static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { switch (Val) { default: // Map unknown/new linkages to external case 0: return GlobalValue::ExternalLinkage; case 1: return GlobalValue::WeakAnyLinkage; case 2: return GlobalValue::AppendingLinkage; case 3: return GlobalValue::InternalLinkage; case 4: return GlobalValue::LinkOnceAnyLinkage; case 5: return GlobalValue::DLLImportLinkage; case 6: return GlobalValue::DLLExportLinkage; case 7: return GlobalValue::ExternalWeakLinkage; case 8: return GlobalValue::CommonLinkage; case 9: return GlobalValue::PrivateLinkage; case 10: return GlobalValue::WeakODRLinkage; case 11: return GlobalValue::LinkOnceODRLinkage; case 12: return GlobalValue::AvailableExternallyLinkage; case 13: return GlobalValue::LinkerPrivateLinkage; } } static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { switch (Val) { default: // Map unknown visibilities to default. case 0: return GlobalValue::DefaultVisibility; case 1: return GlobalValue::HiddenVisibility; case 2: return GlobalValue::ProtectedVisibility; } } static int GetDecodedCastOpcode(unsigned Val) { switch (Val) { default: return -1; case bitc::CAST_TRUNC : return Instruction::Trunc; case bitc::CAST_ZEXT : return Instruction::ZExt; case bitc::CAST_SEXT : return Instruction::SExt; case bitc::CAST_FPTOUI : return Instruction::FPToUI; case bitc::CAST_FPTOSI : return Instruction::FPToSI; case bitc::CAST_UITOFP : return Instruction::UIToFP; case bitc::CAST_SITOFP : return Instruction::SIToFP; case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; case bitc::CAST_FPEXT : return Instruction::FPExt; case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; case bitc::CAST_BITCAST : return Instruction::BitCast; } } static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) { switch (Val) { default: return -1; case bitc::BINOP_ADD: return Ty->isFPOrFPVector() ? Instruction::FAdd : Instruction::Add; case bitc::BINOP_SUB: return Ty->isFPOrFPVector() ? Instruction::FSub : Instruction::Sub; case bitc::BINOP_MUL: return Ty->isFPOrFPVector() ? Instruction::FMul : Instruction::Mul; case bitc::BINOP_UDIV: return Instruction::UDiv; case bitc::BINOP_SDIV: return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv; case bitc::BINOP_UREM: return Instruction::URem; case bitc::BINOP_SREM: return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem; case bitc::BINOP_SHL: return Instruction::Shl; case bitc::BINOP_LSHR: return Instruction::LShr; case bitc::BINOP_ASHR: return Instruction::AShr; case bitc::BINOP_AND: return Instruction::And; case bitc::BINOP_OR: return Instruction::Or; case bitc::BINOP_XOR: return Instruction::Xor; } } namespace llvm { namespace { /// @brief A class for maintaining the slot number definition /// as a placeholder for the actual definition for forward constants defs. class ConstantPlaceHolder : public ConstantExpr { ConstantPlaceHolder(); // DO NOT IMPLEMENT void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT public: // allocate space for exactly one operand void *operator new(size_t s) { return User::operator new(s, 1); } explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context) : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); } /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const ConstantPlaceHolder *) { return true; } static bool classof(const Value *V) { return isa(V) && cast(V)->getOpcode() == Instruction::UserOp1; } /// Provide fast operand accessors //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); }; } // FIXME: can we inherit this from ConstantExpr? template <> struct OperandTraits : public FixedNumOperandTraits<1> { }; } void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { if (Idx == size()) { push_back(V); return; } if (Idx >= size()) resize(Idx+1); WeakVH &OldV = ValuePtrs[Idx]; if (OldV == 0) { OldV = V; return; } // Handle constants and non-constants (e.g. instrs) differently for // efficiency. if (Constant *PHC = dyn_cast(&*OldV)) { ResolveConstants.push_back(std::make_pair(PHC, Idx)); OldV = V; } else { // If there was a forward reference to this value, replace it. Value *PrevVal = OldV; OldV->replaceAllUsesWith(V); delete PrevVal; } } Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, const Type *Ty) { if (Idx >= size()) resize(Idx + 1); if (Value *V = ValuePtrs[Idx]) { assert(Ty == V->getType() && "Type mismatch in constant table!"); return cast(V); } // Create and return a placeholder, which will later be RAUW'd. Constant *C = new ConstantPlaceHolder(Ty, Context); ValuePtrs[Idx] = C; return C; } Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) { if (Idx >= size()) resize(Idx + 1); if (Value *V = ValuePtrs[Idx]) { assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!"); return V; } // No type specified, must be invalid reference. if (Ty == 0) return 0; // Create and return a placeholder, which will later be RAUW'd. Value *V = new Argument(Ty); ValuePtrs[Idx] = V; return V; } /// ResolveConstantForwardRefs - Once all constants are read, this method bulk /// resolves any forward references. The idea behind this is that we sometimes /// get constants (such as large arrays) which reference *many* forward ref /// constants. Replacing each of these causes a lot of thrashing when /// building/reuniquing the constant. Instead of doing this, we look at all the /// uses and rewrite all the place holders at once for any constant that uses /// a placeholder. void BitcodeReaderValueList::ResolveConstantForwardRefs() { // Sort the values by-pointer so that they are efficient to look up with a // binary search. std::sort(ResolveConstants.begin(), ResolveConstants.end()); SmallVector NewOps; while (!ResolveConstants.empty()) { Value *RealVal = operator[](ResolveConstants.back().second); Constant *Placeholder = ResolveConstants.back().first; ResolveConstants.pop_back(); // Loop over all users of the placeholder, updating them to reference the // new value. If they reference more than one placeholder, update them all // at once. while (!Placeholder->use_empty()) { Value::use_iterator UI = Placeholder->use_begin(); // If the using object isn't uniqued, just update the operands. This // handles instructions and initializers for global variables. if (!isa(*UI) || isa(*UI)) { UI.getUse().set(RealVal); continue; } // Otherwise, we have a constant that uses the placeholder. Replace that // constant with a new constant that has *all* placeholder uses updated. Constant *UserC = cast(*UI); for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); I != E; ++I) { Value *NewOp; if (!isa(*I)) { // Not a placeholder reference. NewOp = *I; } else if (*I == Placeholder) { // Common case is that it just references this one placeholder. NewOp = RealVal; } else { // Otherwise, look up the placeholder in ResolveConstants. ResolveConstantsTy::iterator It = std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), std::pair(cast(*I), 0)); assert(It != ResolveConstants.end() && It->first == *I); NewOp = operator[](It->second); } NewOps.push_back(cast(NewOp)); } // Make the new constant. Constant *NewC; if (ConstantArray *UserCA = dyn_cast(UserC)) { NewC = ConstantArray::get(UserCA->getType(), &NewOps[0], NewOps.size()); } else if (ConstantStruct *UserCS = dyn_cast(UserC)) { NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(), UserCS->getType()->isPacked()); } else if (isa(UserC)) { NewC = ConstantVector::get(&NewOps[0], NewOps.size()); } else { assert(isa(UserC) && "Must be a ConstantExpr."); NewC = cast(UserC)->getWithOperands(&NewOps[0], NewOps.size()); } UserC->replaceAllUsesWith(NewC); UserC->destroyConstant(); NewOps.clear(); } // Update all ValueHandles, they should be the only users at this point. Placeholder->replaceAllUsesWith(RealVal); delete Placeholder; } } void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) { if (Idx == size()) { push_back(V); return; } if (Idx >= size()) resize(Idx+1); WeakVH &OldV = MDValuePtrs[Idx]; if (OldV == 0) { OldV = V; return; } // If there was a forward reference to this value, replace it. Value *PrevVal = OldV; OldV->replaceAllUsesWith(V); delete PrevVal; // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new // value for Idx. MDValuePtrs[Idx] = V; } Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { if (Idx >= size()) resize(Idx + 1); if (Value *V = MDValuePtrs[Idx]) { assert(V->getType() == Type::getMetadataTy(Context) && "Type mismatch in value table!"); return V; } // Create and return a placeholder, which will later be RAUW'd. Value *V = new Argument(Type::getMetadataTy(Context)); MDValuePtrs[Idx] = V; return V; } const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) { // If the TypeID is in range, return it. if (ID < TypeList.size()) return TypeList[ID].get(); if (!isTypeTable) return 0; // The type table allows forward references. Push as many Opaque types as // needed to get up to ID. while (TypeList.size() <= ID) TypeList.push_back(OpaqueType::get(Context)); return TypeList.back().get(); } //===----------------------------------------------------------------------===// // Functions for parsing blocks from the bitcode file //===----------------------------------------------------------------------===// bool BitcodeReader::ParseAttributeBlock() { if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) return Error("Malformed block record"); if (!MAttributes.empty()) return Error("Multiple PARAMATTR blocks found!"); SmallVector Record; SmallVector Attrs; // Read all the records. while (1) { unsigned Code = Stream.ReadCode(); if (Code == bitc::END_BLOCK) { if (Stream.ReadBlockEnd()) return Error("Error at end of PARAMATTR block"); return false; } if (Code == bitc::ENTER_SUBBLOCK) { // No known subblocks, always skip them. Stream.ReadSubBlockID(); if (Stream.SkipBlock()) return Error("Malformed block record"); continue; } if (Code == bitc::DEFINE_ABBREV) { Stream.ReadAbbrevRecord(); continue; } // Read a record. Record.clear(); switch (Stream.ReadRecord(Code, Record)) { default: // Default behavior: ignore. break; case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...] if (Record.size() & 1) return Error("Invalid ENTRY record"); // FIXME : Remove this autoupgrade code in LLVM 3.0. // If Function attributes are using index 0 then transfer them // to index ~0. Index 0 is used for return value attributes but used to be // used for function attributes. Attributes RetAttribute = Attribute::None; Attributes FnAttribute = Attribute::None; for (unsigned i = 0, e = Record.size(); i != e; i += 2) { // FIXME: remove in LLVM 3.0 // The alignment is stored as a 16-bit raw value from bits 31--16. // We shift the bits above 31 down by 11 bits. unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16; if (Alignment && !isPowerOf2_32(Alignment)) return Error("Alignment is not a power of two."); Attributes ReconstitutedAttr = Record[i+1] & 0xffff; if (Alignment) ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment); ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11; Record[i+1] = ReconstitutedAttr; if (Record[i] == 0) RetAttribute = Record[i+1]; else if (Record[i] == ~0U) FnAttribute = Record[i+1]; } unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn| Attribute::ReadOnly|Attribute::ReadNone); if (FnAttribute == Attribute::None && RetAttribute != Attribute::None && (RetAttribute & OldRetAttrs) != 0) { if (FnAttribute == Attribute::None) { // add a slot so they get added. Record.push_back(~0U); Record.push_back(0); } FnAttribute |= RetAttribute & OldRetAttrs; RetAttribute &= ~OldRetAttrs; } for (unsigned i = 0, e = Record.size(); i != e; i += 2) { if (Record[i] == 0) { if (RetAttribute != Attribute::None) Attrs.push_back(AttributeWithIndex::get(0, RetAttribute)); } else if (Record[i] == ~0U) { if (FnAttribute != Attribute::None) Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute)); } else if (Record[i+1] != Attribute::None) Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1])); } MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end())); Attrs.clear(); break; } } } } bool BitcodeReader::ParseTypeTable() { if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID)) return Error("Malformed block record"); if (!TypeList.empty()) return Error("Multiple TYPE_BLOCKs found!"); SmallVector Record; unsigned NumRecords = 0; // Read all the records for this type table. while (1) { unsigned Code = Stream.ReadCode(); if (Code == bitc::END_BLOCK) { if (NumRecords != TypeList.size()) return Error("Invalid type forward reference in TYPE_BLOCK"); if (Stream.ReadBlockEnd()) return Error("Error at end of type table block"); return false; } if (Code == bitc::ENTER_SUBBLOCK) { // No known subblocks, always skip them. Stream.ReadSubBlockID(); if (Stream.SkipBlock()) return Error("Malformed block record"); continue; } if (Code == bitc::DEFINE_ABBREV) { Stream.ReadAbbrevRecord(); continue; } // Read a record. Record.clear(); const Type *ResultTy = 0; switch (Stream.ReadRecord(Code, Record)) { default: // Default behavior: unknown type. ResultTy = 0; break; case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] // TYPE_CODE_NUMENTRY contains a count of the number of types in the // type list. This allows us to reserve space. if (Record.size() < 1) return Error("Invalid TYPE_CODE_NUMENTRY record"); TypeList.reserve(Record[0]); continue; case bitc::TYPE_CODE_VOID: // VOID ResultTy = Type::getVoidTy(Context); break; case bitc::TYPE_CODE_FLOAT: // FLOAT ResultTy = Type::getFloatTy(Context); break; case bitc::TYPE_CODE_DOUBLE: // DOUBLE ResultTy = Type::getDoubleTy(Context); break; case bitc::TYPE_CODE_X86_FP80: // X86_FP80 ResultTy = Type::getX86_FP80Ty(Context); break; case bitc::TYPE_CODE_FP128: // FP128 ResultTy = Type::getFP128Ty(Context); break; case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 ResultTy = Type::getPPC_FP128Ty(Context); break; case bitc::TYPE_CODE_LABEL: // LABEL ResultTy = Type::getLabelTy(Context); break; case bitc::TYPE_CODE_OPAQUE: // OPAQUE ResultTy = 0; break; case bitc::TYPE_CODE_METADATA: // METADATA ResultTy = Type::getMetadataTy(Context); break; case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] if (Record.size() < 1) return Error("Invalid Integer type record"); ResultTy = IntegerType::get(Context, Record[0]); break; case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or // [pointee type, address space] if (Record.size() < 1) return Error("Invalid POINTER type record"); unsigned AddressSpace = 0; if (Record.size() == 2) AddressSpace = Record[1]; ResultTy = PointerType::get(getTypeByID(Record[0], true), AddressSpace); break; } case bitc::TYPE_CODE_FUNCTION: { // FIXME: attrid is dead, remove it in LLVM 3.0 // FUNCTION: [vararg, attrid, retty, paramty x N] if (Record.size() < 3) return Error("Invalid FUNCTION type record"); std::vector ArgTys; for (unsigned i = 3, e = Record.size(); i != e; ++i) ArgTys.push_back(getTypeByID(Record[i], true)); ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys, Record[0]); break; } case bitc::TYPE_CODE_STRUCT: { // STRUCT: [ispacked, eltty x N] if (Record.size() < 1) return Error("Invalid STRUCT type record"); std::vector EltTys; for (unsigned i = 1, e = Record.size(); i != e; ++i) EltTys.push_back(getTypeByID(Record[i], true)); ResultTy = StructType::get(Context, EltTys, Record[0]); break; } case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] if (Record.size() < 2) return Error("Invalid ARRAY type record"); ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]); break; case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] if (Record.size() < 2) return Error("Invalid VECTOR type record"); ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]); break; } if (NumRecords == TypeList.size()) { // If this is a new type slot, just append it. TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context)); ++NumRecords; } else if (ResultTy == 0) { // Otherwise, this was forward referenced, so an opaque type was created, // but the result type is actually just an opaque. Leave the one we // created previously. ++NumRecords; } else { // Otherwise, this was forward referenced, so an opaque type was created. // Resolve the opaque type to the real type now. assert(NumRecords < TypeList.size() && "Typelist imbalance"); const OpaqueType *OldTy = cast(TypeList[NumRecords++].get()); // Don't directly push the new type on the Tab. Instead we want to replace // the opaque type we previously inserted with the new concrete value. The // refinement from the abstract (opaque) type to the new type causes all // uses of the abstract type to use the concrete type (NewTy). This will // also cause the opaque type to be deleted. const_cast(OldTy)->refineAbstractTypeTo(ResultTy); // This should have replaced the old opaque type with the new type in the // value table... or with a preexisting type that was already in the // system. Let's just make sure it did. assert(TypeList[NumRecords-1].get() != OldTy && "refineAbstractType didn't work!"); } } } bool BitcodeReader::ParseTypeSymbolTable() { if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID)) return Error("Malformed block record"); SmallVector Record; // Read all the records for this type table. std::string TypeName; while (1) { unsigned Code = Stream.ReadCode(); if (Code == bitc::END_BLOCK) { if (Stream.ReadBlockEnd()) return Error("Error at end of type symbol table block"); return false; } if (Code == bitc::ENTER_SUBBLOCK) { // No known subblocks, always skip them. Stream.ReadSubBlockID(); if (Stream.SkipBlock()) return Error("Malformed block record"); continue; } if (Code == bitc::DEFINE_ABBREV) { Stream.ReadAbbrevRecord(); continue; } // Read a record. Record.clear(); switch (Stream.ReadRecord(Code, Record)) { default: // Default behavior: unknown type. break; case bitc::TST_CODE_ENTRY: // TST_ENTRY: [typeid, namechar x N] if (ConvertToString(Record, 1, TypeName)) return Error("Invalid TST_ENTRY record"); unsigned TypeID = Record[0]; if (TypeID >= TypeList.size()) return Error("Invalid Type ID in TST_ENTRY record"); TheModule->addTypeName(TypeName, TypeList[TypeID].get()); TypeName.clear(); break; } } } bool BitcodeReader::ParseValueSymbolTable() { if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) return Error("Malformed block record"); SmallVector Record; // Read all the records for this value table. SmallString<128> ValueName; while (1) { unsigned Code = Stream.ReadCode(); if (Code == bitc::END_BLOCK) { if (Stream.ReadBlockEnd()) return Error("Error at end of value symbol table block"); return false; } if (Code == bitc::ENTER_SUBBLOCK) { // No known subblocks, always skip them. Stream.ReadSubBlockID(); if (Stream.SkipBlock()) return Error("Malformed block record"); continue; } if (Code == bitc::DEFINE_ABBREV) { Stream.ReadAbbrevRecord(); continue; } // Read a record. Record.clear(); switch (Stream.ReadRecord(Code, Record)) { default: // Default behavior: unknown type. break; case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] if (ConvertToString(Record, 1, ValueName)) return Error("Invalid VST_ENTRY record"); unsigned ValueID = Record[0]; if (ValueID >= ValueList.size()) return Error("Invalid Value ID in VST_ENTRY record"); Value *V = ValueList[ValueID]; V->setName(StringRef(ValueName.data(), ValueName.size())); ValueName.clear(); break; } case bitc::VST_CODE_BBENTRY: { if (ConvertToString(Record, 1, ValueName)) return Error("Invalid VST_BBENTRY record"); BasicBlock *BB = getBasicBlock(Record[0]); if (BB == 0) return Error("Invalid BB ID in VST_BBENTRY record"); BB->setName(StringRef(ValueName.data(), ValueName.size())); ValueName.clear(); break; } } } } bool BitcodeReader::ParseMetadata() { unsigned NextValueNo = MDValueList.size(); if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) return Error("Malformed block record"); SmallVector Record; // Read all the records. while (1) { unsigned Code = Stream.ReadCode(); if (Code == bitc::END_BLOCK) { if (Stream.ReadBlockEnd()) return Error("Error at end of PARAMATTR block"); return false; } if (Code == bitc::ENTER_SUBBLOCK) { // No known subblocks, always skip them. Stream.ReadSubBlockID(); if (Stream.SkipBlock()) return Error("Malformed block record"); continue; } if (Code == bitc::DEFINE_ABBREV) { Stream.ReadAbbrevRecord(); continue; } // Read a record. Record.clear(); switch (Stream.ReadRecord(Code, Record)) { default: // Default behavior: ignore. break; case bitc::METADATA_NAME: { // Read named of the named metadata. unsigned NameLength = Record.size(); SmallString<8> Name; Name.resize(NameLength); for (unsigned i = 0; i != NameLength; ++i) Name[i] = Record[i]; Record.clear(); Code = Stream.ReadCode(); // METADATA_NAME is always followed by METADATA_NAMED_NODE. if (Stream.ReadRecord(Code, Record) != bitc::METADATA_NAMED_NODE) assert ( 0 && "Inavlid Named Metadata record"); // Read named metadata elements. unsigned Size = Record.size(); SmallVector Elts; for (unsigned i = 0; i != Size; ++i) { Value *MD = MDValueList.getValueFwdRef(Record[i]); if (MetadataBase *B = dyn_cast(MD)) Elts.push_back(B); } Value *V = NamedMDNode::Create(Context, Name.str(), Elts.data(), Elts.size(), TheModule); MDValueList.AssignValue(V, NextValueNo++); break; } case bitc::METADATA_NODE: { if (Record.empty() || Record.size() % 2 == 1) return Error("Invalid METADATA_NODE record"); unsigned Size = Record.size(); SmallVector Elts; for (unsigned i = 0; i != Size; i += 2) { const Type *Ty = getTypeByID(Record[i], false); if (Ty == Type::getMetadataTy(Context)) Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); else if (Ty != Type::getVoidTy(Context)) Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty)); else Elts.push_back(NULL); } Value *V = MDNode::get(Context, &Elts[0], Elts.size()); MDValueList.AssignValue(V, NextValueNo++); break; } case bitc::METADATA_STRING: { unsigned MDStringLength = Record.size(); SmallString<8> String; String.resize(MDStringLength); for (unsigned i = 0; i != MDStringLength; ++i) String[i] = Record[i]; Value *V = MDString::get(Context, StringRef(String.data(), String.size())); MDValueList.AssignValue(V, NextValueNo++); break; } case bitc::METADATA_KIND: { unsigned RecordLength = Record.size(); if (Record.empty() || RecordLength < 2) return Error("Invalid METADATA_KIND record"); SmallString<8> Name; Name.resize(RecordLength-1); MDKindID Kind = Record[0]; for (unsigned i = 1; i != RecordLength; ++i) Name[i-1] = Record[i]; Metadata &TheMetadata = Context.getMetadata(); assert(TheMetadata.MDHandlerNames.find(Name.str()) == TheMetadata.MDHandlerNames.end() && "Already registered MDKind!"); TheMetadata.MDHandlerNames[Name.str()] = Kind; break; } } } } /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in /// the LSB for dense VBR encoding. static uint64_t DecodeSignRotatedValue(uint64_t V) { if ((V & 1) == 0) return V >> 1; if (V != 1) return -(V >> 1); // There is no such thing as -0 with integers. "-0" really means MININT. return 1ULL << 63; } /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global /// values and aliases that we can. bool BitcodeReader::ResolveGlobalAndAliasInits() { std::vector > GlobalInitWorklist; std::vector > AliasInitWorklist; GlobalInitWorklist.swap(GlobalInits); AliasInitWorklist.swap(AliasInits); while (!GlobalInitWorklist.empty()) { unsigned ValID = GlobalInitWorklist.back().second; if (ValID >= ValueList.size()) { // Not ready to resolve this yet, it requires something later in the file. GlobalInits.push_back(GlobalInitWorklist.back()); } else { if (Constant *C = dyn_cast(ValueList[ValID])) GlobalInitWorklist.back().first->setInitializer(C); else return Error("Global variable initializer is not a constant!"); } GlobalInitWorklist.pop_back(); } while (!AliasInitWorklist.empty()) { unsigned ValID = AliasInitWorklist.back().second; if (ValID >= ValueList.size()) { AliasInits.push_back(AliasInitWorklist.back()); } else { if (Constant *C = dyn_cast(ValueList[ValID])) AliasInitWorklist.back().first->setAliasee(C); else return Error("Alias initializer is not a constant!"); } AliasInitWorklist.pop_back(); } return false; } bool BitcodeReader::ParseConstants() { if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) return Error("Malformed block record"); SmallVector Record; // Read all the records for this value table. const Type *CurTy = Type::getInt32Ty(Context); unsigned NextCstNo = ValueList.size(); while (1) { unsigned Code = Stream.ReadCode(); if (Code == bitc::END_BLOCK) break; if (Code == bitc::ENTER_SUBBLOCK) { // No known subblocks, always skip them. Stream.ReadSubBlockID(); if (Stream.SkipBlock()) return Error("Malformed block record"); continue; } if (Code == bitc::DEFINE_ABBREV) { Stream.ReadAbbrevRecord(); continue; } // Read a record. Record.clear(); Value *V = 0; unsigned BitCode = Stream.ReadRecord(Code, Record); switch (BitCode) { default: // Default behavior: unknown constant case bitc::CST_CODE_UNDEF: // UNDEF V = UndefValue::get(CurTy); break; case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] if (Record.empty()) return Error("Malformed CST_SETTYPE record"); if (Record[0] >= TypeList.size()) return Error("Invalid Type ID in CST_SETTYPE record"); CurTy = TypeList[Record[0]]; continue; // Skip the ValueList manipulation. case bitc::CST_CODE_NULL: // NULL V = Constant::getNullValue(CurTy); break; case bitc::CST_CODE_INTEGER: // INTEGER: [intval] if (!isa(CurTy) || Record.empty()) return Error("Invalid CST_INTEGER record"); V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0])); break; case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] if (!isa(CurTy) || Record.empty()) return Error("Invalid WIDE_INTEGER record"); unsigned NumWords = Record.size(); SmallVector Words; Words.resize(NumWords); for (unsigned i = 0; i != NumWords; ++i) Words[i] = DecodeSignRotatedValue(Record[i]); V = ConstantInt::get(Context, APInt(cast(CurTy)->getBitWidth(), NumWords, &Words[0])); break; } case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] if (Record.empty()) return Error("Invalid FLOAT record"); if (CurTy == Type::getFloatTy(Context)) V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0]))); else if (CurTy == Type::getDoubleTy(Context)) V = ConstantFP::get(Context, APFloat(APInt(64, Record[0]))); else if (CurTy == Type::getX86_FP80Ty(Context)) { // Bits are not stored the same way as a normal i80 APInt, compensate. uint64_t Rearrange[2]; Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); Rearrange[1] = Record[0] >> 48; V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange))); } else if (CurTy == Type::getFP128Ty(Context)) V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true)); else if (CurTy == Type::getPPC_FP128Ty(Context)) V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]))); else V = UndefValue::get(CurTy); break; } case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] if (Record.empty()) return Error("Invalid CST_AGGREGATE record"); unsigned Size = Record.size(); std::vector Elts; if (const StructType *STy = dyn_cast(CurTy)) { for (unsigned i = 0; i != Size; ++i) Elts.push_back(ValueList.getConstantFwdRef(Record[i], STy->getElementType(i))); V = ConstantStruct::get(STy, Elts); } else if (const ArrayType *ATy = dyn_cast(CurTy)) { const Type *EltTy = ATy->getElementType(); for (unsigned i = 0; i != Size; ++i) Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); V = ConstantArray::get(ATy, Elts); } else if (const VectorType *VTy = dyn_cast(CurTy)) { const Type *EltTy = VTy->getElementType(); for (unsigned i = 0; i != Size; ++i) Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); V = ConstantVector::get(Elts); } else { V = UndefValue::get(CurTy); } break; } case bitc::CST_CODE_STRING: { // STRING: [values] if (Record.empty()) return Error("Invalid CST_AGGREGATE record"); const ArrayType *ATy = cast(CurTy); const Type *EltTy = ATy->getElementType(); unsigned Size = Record.size(); std::vector Elts; for (unsigned i = 0; i != Size; ++i) Elts.push_back(ConstantInt::get(EltTy, Record[i])); V = ConstantArray::get(ATy, Elts); break; } case bitc::CST_CODE_CSTRING: { // CSTRING: [values] if (Record.empty()) return Error("Invalid CST_AGGREGATE record"); const ArrayType *ATy = cast(CurTy); const Type *EltTy = ATy->getElementType(); unsigned Size = Record.size(); std::vector Elts; for (unsigned i = 0; i != Size; ++i) Elts.push_back(ConstantInt::get(EltTy, Record[i])); Elts.push_back(Constant::getNullValue(EltTy)); V = ConstantArray::get(ATy, Elts); break; } case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] if (Record.size() < 3) return Error("Invalid CE_BINOP record"); int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); if (Opc < 0) { V = UndefValue::get(CurTy); // Unknown binop. } else { Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); unsigned Flags = 0; if (Record.size() >= 4) { if (Opc == Instruction::Add || Opc == Instruction::Sub || Opc == Instruction::Mul) { if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) Flags |= OverflowingBinaryOperator::NoSignedWrap; if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; } else if (Opc == Instruction::SDiv) { if (Record[3] & (1 << bitc::SDIV_EXACT)) Flags |= SDivOperator::IsExact; } } V = ConstantExpr::get(Opc, LHS, RHS, Flags); } break; } case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] if (Record.size() < 3) return Error("Invalid CE_CAST record"); int Opc = GetDecodedCastOpcode(Record[0]); if (Opc < 0) { V = UndefValue::get(CurTy); // Unknown cast. } else { const Type *OpTy = getTypeByID(Record[1]); if (!OpTy) return Error("Invalid CE_CAST record"); Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); V = ConstantExpr::getCast(Opc, Op, CurTy); } break; } case bitc::CST_CODE_CE_INBOUNDS_GEP: case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] if (Record.size() & 1) return Error("Invalid CE_GEP record"); SmallVector Elts; for (unsigned i = 0, e = Record.size(); i != e; i += 2) { const Type *ElTy = getTypeByID(Record[i]); if (!ElTy) return Error("Invalid CE_GEP record"); Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); } if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1], Elts.size()-1); else V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], Elts.size()-1); break; } case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#] if (Record.size() < 3) return Error("Invalid CE_SELECT record"); V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], Type::getInt1Ty(Context)), ValueList.getConstantFwdRef(Record[1],CurTy), ValueList.getConstantFwdRef(Record[2],CurTy)); break; case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval] if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record"); const VectorType *OpTy = dyn_cast_or_null(getTypeByID(Record[0])); if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record"); Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); V = ConstantExpr::getExtractElement(Op0, Op1); break; } case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval] const VectorType *OpTy = dyn_cast(CurTy); if (Record.size() < 3 || OpTy == 0) return Error("Invalid CE_INSERTELT record"); Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy->getElementType()); Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); V = ConstantExpr::getInsertElement(Op0, Op1, Op2); break; } case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] const VectorType *OpTy = dyn_cast(CurTy); if (Record.size() < 3 || OpTy == 0) return Error("Invalid CE_SHUFFLEVEC record"); Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), OpTy->getNumElements()); Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); break; } case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] const VectorType *RTy = dyn_cast(CurTy); const VectorType *OpTy = dyn_cast(getTypeByID(Record[0])); if (Record.size() < 4 || RTy == 0 || OpTy == 0) return Error("Invalid CE_SHUFVEC_EX record"); Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), RTy->getNumElements()); Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); break; } case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] if (Record.size() < 4) return Error("Invalid CE_CMP record"); const Type *OpTy = getTypeByID(Record[0]); if (OpTy == 0) return Error("Invalid CE_CMP record"); Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); if (OpTy->isFloatingPoint()) V = ConstantExpr::getFCmp(Record[3], Op0, Op1); else V = ConstantExpr::getICmp(Record[3], Op0, Op1); break; } case bitc::CST_CODE_INLINEASM: { if (Record.size() < 2) return Error("Invalid INLINEASM record"); std::string AsmStr, ConstrStr; bool HasSideEffects = Record[0]; unsigned AsmStrSize = Record[1]; if (2+AsmStrSize >= Record.size()) return Error("Invalid INLINEASM record"); unsigned ConstStrSize = Record[2+AsmStrSize]; if (3+AsmStrSize+ConstStrSize > Record.size()) return Error("Invalid INLINEASM record"); for (unsigned i = 0; i != AsmStrSize; ++i) AsmStr += (char)Record[2+i]; for (unsigned i = 0; i != ConstStrSize; ++i) ConstrStr += (char)Record[3+AsmStrSize+i]; const PointerType *PTy = cast(CurTy); V = InlineAsm::get(cast(PTy->getElementType()), AsmStr, ConstrStr, HasSideEffects); break; } } ValueList.AssignValue(V, NextCstNo); ++NextCstNo; } if (NextCstNo != ValueList.size()) return Error("Invalid constant reference!"); if (Stream.ReadBlockEnd()) return Error("Error at end of constants block"); // Once all the constants have been read, go through and resolve forward // references. ValueList.ResolveConstantForwardRefs(); return false; } /// RememberAndSkipFunctionBody - When we see the block for a function body, /// remember where it is and then skip it. This lets us lazily deserialize the /// functions. bool BitcodeReader::RememberAndSkipFunctionBody() { // Get the function we are talking about. if (FunctionsWithBodies.empty()) return Error("Insufficient function protos"); Function *Fn = FunctionsWithBodies.back(); FunctionsWithBodies.pop_back(); // Save the current stream state. uint64_t CurBit = Stream.GetCurrentBitNo(); DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage()); // Set the functions linkage to GhostLinkage so we know it is lazily // deserialized. Fn->setLinkage(GlobalValue::GhostLinkage); // Skip over the function block for now. if (Stream.SkipBlock()) return Error("Malformed block record"); return false; } bool BitcodeReader::ParseModule(const std::string &ModuleID) { // Reject multiple MODULE_BLOCK's in a single bitstream. if (TheModule) return Error("Multiple MODULE_BLOCKs in same stream"); if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) return Error("Malformed block record"); // Otherwise, create the module. TheModule = new Module(ModuleID, Context); SmallVector Record; std::vector SectionTable; std::vector GCTable; // Read all the records for this module. while (!Stream.AtEndOfStream()) { unsigned Code = Stream.ReadCode(); if (Code == bitc::END_BLOCK) { if (Stream.ReadBlockEnd()) return Error("Error at end of module block"); // Patch the initializers for globals and aliases up. ResolveGlobalAndAliasInits(); if (!GlobalInits.empty() || !AliasInits.empty()) return Error("Malformed global initializer set"); if (!FunctionsWithBodies.empty()) return Error("Too few function bodies found"); // Look for intrinsic functions which need to be upgraded at some point for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); FI != FE; ++FI) { Function* NewFn; if (UpgradeIntrinsicFunction(FI, NewFn)) UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); } // Force deallocation of memory for these vectors to favor the client that // want lazy deserialization. std::vector >().swap(GlobalInits); std::vector >().swap(AliasInits); std::vector().swap(FunctionsWithBodies); return false; } if (Code == bitc::ENTER_SUBBLOCK) { switch (Stream.ReadSubBlockID()) { default: // Skip unknown content. if (Stream.SkipBlock()) return Error("Malformed block record"); break; case bitc::BLOCKINFO_BLOCK_ID: if (Stream.ReadBlockInfoBlock()) return Error("Malformed BlockInfoBlock"); break; case bitc::PARAMATTR_BLOCK_ID: if (ParseAttributeBlock()) return true; break; case bitc::TYPE_BLOCK_ID: if (ParseTypeTable()) return true; break; case bitc::TYPE_SYMTAB_BLOCK_ID: if (ParseTypeSymbolTable()) return true; break; case bitc::VALUE_SYMTAB_BLOCK_ID: if (ParseValueSymbolTable()) return true; break; case bitc::CONSTANTS_BLOCK_ID: if (ParseConstants() || ResolveGlobalAndAliasInits()) return true; break; case bitc::METADATA_BLOCK_ID: if (ParseMetadata()) return true; break; case bitc::FUNCTION_BLOCK_ID: // If this is the first function body we've seen, reverse the // FunctionsWithBodies list. if (!HasReversedFunctionsWithBodies) { std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); HasReversedFunctionsWithBodies = true; } if (RememberAndSkipFunctionBody()) return true; break; } continue; } if (Code == bitc::DEFINE_ABBREV) { Stream.ReadAbbrevRecord(); continue; } // Read a record. switch (Stream.ReadRecord(Code, Record)) { default: break; // Default behavior, ignore unknown content. case bitc::MODULE_CODE_VERSION: // VERSION: [version#] if (Record.size() < 1) return Error("Malformed MODULE_CODE_VERSION"); // Only version #0 is supported so far. if (Record[0] != 0) return Error("Unknown bitstream version!"); break; case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] std::string S; if (ConvertToString(Record, 0, S)) return Error("Invalid MODULE_CODE_TRIPLE record"); TheModule->setTargetTriple(S); break; } case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] std::string S; if (ConvertToString(Record, 0, S)) return Error("Invalid MODULE_CODE_DATALAYOUT record"); TheModule->setDataLayout(S); break; } case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] std::string S; if (ConvertToString(Record, 0, S)) return Error("Invalid MODULE_CODE_ASM record"); TheModule->setModuleInlineAsm(S); break; } case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] std::string S; if (ConvertToString(Record, 0, S)) return Error("Invalid MODULE_CODE_DEPLIB record"); TheModule->addLibrary(S); break; } case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] std::string S; if (ConvertToString(Record, 0, S)) return Error("Invalid MODULE_CODE_SECTIONNAME record"); SectionTable.push_back(S); break; } case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] std::string S; if (ConvertToString(Record, 0, S)) return Error("Invalid MODULE_CODE_GCNAME record"); GCTable.push_back(S); break; } // GLOBALVAR: [pointer type, isconst, initid, // linkage, alignment, section, visibility, threadlocal] case bitc::MODULE_CODE_GLOBALVAR: { if (Record.size() < 6) return Error("Invalid MODULE_CODE_GLOBALVAR record"); const Type *Ty = getTypeByID(Record[0]); if (!isa(Ty)) return Error("Global not a pointer type!"); unsigned AddressSpace = cast(Ty)->getAddressSpace(); Ty = cast(Ty)->getElementType(); bool isConstant = Record[1]; GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); unsigned Alignment = (1 << Record[4]) >> 1; std::string Section; if (Record[5]) { if (Record[5]-1 >= SectionTable.size()) return Error("Invalid section ID"); Section = SectionTable[Record[5]-1]; } GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; if (Record.size() > 6) Visibility = GetDecodedVisibility(Record[6]); bool isThreadLocal = false; if (Record.size() > 7) isThreadLocal = Record[7]; GlobalVariable *NewGV = new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0, isThreadLocal, AddressSpace); NewGV->setAlignment(Alignment); if (!Section.empty()) NewGV->setSection(Section); NewGV->setVisibility(Visibility); NewGV->setThreadLocal(isThreadLocal); ValueList.push_back(NewGV); // Remember which value to use for the global initializer. if (unsigned InitID = Record[2]) GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); break; } // FUNCTION: [type, callingconv, isproto, linkage, paramattr, // alignment, section, visibility, gc] case bitc::MODULE_CODE_FUNCTION: { if (Record.size() < 8) return Error("Invalid MODULE_CODE_FUNCTION record"); const Type *Ty = getTypeByID(Record[0]); if (!isa(Ty)) return Error("Function not a pointer type!"); const FunctionType *FTy = dyn_cast(cast(Ty)->getElementType()); if (!FTy) return Error("Function not a pointer to function type!"); Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, "", TheModule); Func->setCallingConv(static_cast(Record[1])); bool isProto = Record[2]; Func->setLinkage(GetDecodedLinkage(Record[3])); Func->setAttributes(getAttributes(Record[4])); Func->setAlignment((1 << Record[5]) >> 1); if (Record[6]) { if (Record[6]-1 >= SectionTable.size()) return Error("Invalid section ID"); Func->setSection(SectionTable[Record[6]-1]); } Func->setVisibility(GetDecodedVisibility(Record[7])); if (Record.size() > 8 && Record[8]) { if (Record[8]-1 > GCTable.size()) return Error("Invalid GC ID"); Func->setGC(GCTable[Record[8]-1].c_str()); } ValueList.push_back(Func); // If this is a function with a body, remember the prototype we are // creating now, so that we can match up the body with them later. if (!isProto) FunctionsWithBodies.push_back(Func); break; } // ALIAS: [alias type, aliasee val#, linkage] // ALIAS: [alias type, aliasee val#, linkage, visibility] case bitc::MODULE_CODE_ALIAS: { if (Record.size() < 3) return Error("Invalid MODULE_ALIAS record"); const Type *Ty = getTypeByID(Record[0]); if (!isa(Ty)) return Error("Function not a pointer type!"); GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]), "", 0, TheModule); // Old bitcode files didn't have visibility field. if (Record.size() > 3) NewGA->setVisibility(GetDecodedVisibility(Record[3])); ValueList.push_back(NewGA); AliasInits.push_back(std::make_pair(NewGA, Record[1])); break; } /// MODULE_CODE_PURGEVALS: [numvals] case bitc::MODULE_CODE_PURGEVALS: // Trim down the value list to the specified size. if (Record.size() < 1 || Record[0] > ValueList.size()) return Error("Invalid MODULE_PURGEVALS record"); ValueList.shrinkTo(Record[0]); break; } Record.clear(); } return Error("Premature end of bitstream"); } bool BitcodeReader::ParseBitcode() { TheModule = 0; if (Buffer->getBufferSize() & 3) return Error("Bitcode stream should be a multiple of 4 bytes in length"); unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart(); unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); // If we have a wrapper header, parse it and ignore the non-bc file contents. // The magic number is 0x0B17C0DE stored in little endian. if (isBitcodeWrapper(BufPtr, BufEnd)) if (SkipBitcodeWrapperHeader(BufPtr, BufEnd)) return Error("Invalid bitcode wrapper header"); StreamFile.init(BufPtr, BufEnd); Stream.init(StreamFile); // Sniff for the signature. if (Stream.Read(8) != 'B' || Stream.Read(8) != 'C' || Stream.Read(4) != 0x0 || Stream.Read(4) != 0xC || Stream.Read(4) != 0xE || Stream.Read(4) != 0xD) return Error("Invalid bitcode signature"); // We expect a number of well-defined blocks, though we don't necessarily // need to understand them all. while (!Stream.AtEndOfStream()) { unsigned Code = Stream.ReadCode(); if (Code != bitc::ENTER_SUBBLOCK) return Error("Invalid record at top-level"); unsigned BlockID = Stream.ReadSubBlockID(); // We only know the MODULE subblock ID. switch (BlockID) { case bitc::BLOCKINFO_BLOCK_ID: if (Stream.ReadBlockInfoBlock()) return Error("Malformed BlockInfoBlock"); break; case bitc::MODULE_BLOCK_ID: if (ParseModule(Buffer->getBufferIdentifier())) return true; break; default: if (Stream.SkipBlock()) return Error("Malformed block record"); break; } } return false; } /// ParseMetadataAttachment - Parse metadata attachments. bool BitcodeReader::ParseMetadataAttachment() { if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) return Error("Malformed block record"); Metadata &TheMetadata = Context.getMetadata(); SmallVector Record; while(1) { unsigned Code = Stream.ReadCode(); if (Code == bitc::END_BLOCK) { if (Stream.ReadBlockEnd()) return Error("Error at end of PARAMATTR block"); break; } if (Code == bitc::DEFINE_ABBREV) { Stream.ReadAbbrevRecord(); continue; } // Read a metadata attachment record. Record.clear(); switch (Stream.ReadRecord(Code, Record)) { default: // Default behavior: ignore. break; case bitc::METADATA_ATTACHMENT: { unsigned RecordLength = Record.size(); if (Record.empty() || (RecordLength - 1) % 2 == 1) return Error ("Invalid METADATA_ATTACHMENT reader!"); Instruction *Inst = InstructionList[Record[0]]; for (unsigned i = 1; i != RecordLength; i = i+2) { MDKindID Kind = Record[i]; Value *Node = MDValueList.getValueFwdRef(Record[i+1]); TheMetadata.setMD(Kind, cast(Node), Inst); } break; } } } return false; } /// ParseFunctionBody - Lazily parse the specified function body block. bool BitcodeReader::ParseFunctionBody(Function *F) { if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) return Error("Malformed block record"); unsigned ModuleValueListSize = ValueList.size(); // Add all the function arguments to the value table. for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) ValueList.push_back(I); unsigned NextValueNo = ValueList.size(); BasicBlock *CurBB = 0; unsigned CurBBNo = 0; // Read all the records. SmallVector Record; while (1) { unsigned Code = Stream.ReadCode(); if (Code == bitc::END_BLOCK) { if (Stream.ReadBlockEnd()) return Error("Error at end of function block"); break; } if (Code == bitc::ENTER_SUBBLOCK) { switch (Stream.ReadSubBlockID()) { default: // Skip unknown content. if (Stream.SkipBlock()) return Error("Malformed block record"); break; case bitc::CONSTANTS_BLOCK_ID: if (ParseConstants()) return true; NextValueNo = ValueList.size(); break; case bitc::VALUE_SYMTAB_BLOCK_ID: if (ParseValueSymbolTable()) return true; break; case bitc::METADATA_ATTACHMENT_ID: if (ParseMetadataAttachment()) return true; break; } continue; } if (Code == bitc::DEFINE_ABBREV) { Stream.ReadAbbrevRecord(); continue; } // Read a record. Record.clear(); Instruction *I = 0; unsigned BitCode = Stream.ReadRecord(Code, Record); switch (BitCode) { default: // Default behavior: reject return Error("Unknown instruction"); case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks] if (Record.size() < 1 || Record[0] == 0) return Error("Invalid DECLAREBLOCKS record"); // Create all the basic blocks for the function. FunctionBBs.resize(Record[0]); for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) FunctionBBs[i] = BasicBlock::Create(Context, "", F); CurBB = FunctionBBs[0]; continue; case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] unsigned OpNum = 0; Value *LHS, *RHS; if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || getValue(Record, OpNum, LHS->getType(), RHS) || OpNum+1 > Record.size()) return Error("Invalid BINOP record"); int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); if (Opc == -1) return Error("Invalid BINOP record"); I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); InstructionList.push_back(I); if (OpNum < Record.size()) { if (Opc == Instruction::Add || Opc == Instruction::Sub || Opc == Instruction::Mul) { if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) cast(I)->setHasNoSignedWrap(true); if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) cast(I)->setHasNoUnsignedWrap(true); } else if (Opc == Instruction::SDiv) { if (Record[3] & (1 << bitc::SDIV_EXACT)) cast(I)->setIsExact(true); } } break; } case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] unsigned OpNum = 0; Value *Op; if (getValueTypePair(Record, OpNum, NextValueNo, Op) || OpNum+2 != Record.size()) return Error("Invalid CAST record"); const Type *ResTy = getTypeByID(Record[OpNum]); int Opc = GetDecodedCastOpcode(Record[OpNum+1]); if (Opc == -1 || ResTy == 0) return Error("Invalid CAST record"); I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_INBOUNDS_GEP: case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] unsigned OpNum = 0; Value *BasePtr; if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) return Error("Invalid GEP record"); SmallVector GEPIdx; while (OpNum != Record.size()) { Value *Op; if (getValueTypePair(Record, OpNum, NextValueNo, Op)) return Error("Invalid GEP record"); GEPIdx.push_back(Op); } I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end()); InstructionList.push_back(I); if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) cast(I)->setIsInBounds(true); break; } case bitc::FUNC_CODE_INST_EXTRACTVAL: { // EXTRACTVAL: [opty, opval, n x indices] unsigned OpNum = 0; Value *Agg; if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) return Error("Invalid EXTRACTVAL record"); SmallVector EXTRACTVALIdx; for (unsigned RecSize = Record.size(); OpNum != RecSize; ++OpNum) { uint64_t Index = Record[OpNum]; if ((unsigned)Index != Index) return Error("Invalid EXTRACTVAL index"); EXTRACTVALIdx.push_back((unsigned)Index); } I = ExtractValueInst::Create(Agg, EXTRACTVALIdx.begin(), EXTRACTVALIdx.end()); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_INSERTVAL: { // INSERTVAL: [opty, opval, opty, opval, n x indices] unsigned OpNum = 0; Value *Agg; if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) return Error("Invalid INSERTVAL record"); Value *Val; if (getValueTypePair(Record, OpNum, NextValueNo, Val)) return Error("Invalid INSERTVAL record"); SmallVector INSERTVALIdx; for (unsigned RecSize = Record.size(); OpNum != RecSize; ++OpNum) { uint64_t Index = Record[OpNum]; if ((unsigned)Index != Index) return Error("Invalid INSERTVAL index"); INSERTVALIdx.push_back((unsigned)Index); } I = InsertValueInst::Create(Agg, Val, INSERTVALIdx.begin(), INSERTVALIdx.end()); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] // obsolete form of select // handles select i1 ... in old bitcode unsigned OpNum = 0; Value *TrueVal, *FalseVal, *Cond; if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || getValue(Record, OpNum, TrueVal->getType(), FalseVal) || getValue(Record, OpNum, Type::getInt1Ty(Context), Cond)) return Error("Invalid SELECT record"); I = SelectInst::Create(Cond, TrueVal, FalseVal); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] // new form of select // handles select i1 or select [N x i1] unsigned OpNum = 0; Value *TrueVal, *FalseVal, *Cond; if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || getValue(Record, OpNum, TrueVal->getType(), FalseVal) || getValueTypePair(Record, OpNum, NextValueNo, Cond)) return Error("Invalid SELECT record"); // select condition can be either i1 or [N x i1] if (const VectorType* vector_type = dyn_cast(Cond->getType())) { // expect if (vector_type->getElementType() != Type::getInt1Ty(Context)) return Error("Invalid SELECT condition type"); } else { // expect i1 if (Cond->getType() != Type::getInt1Ty(Context)) return Error("Invalid SELECT condition type"); } I = SelectInst::Create(Cond, TrueVal, FalseVal); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] unsigned OpNum = 0; Value *Vec, *Idx; if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || getValue(Record, OpNum, Type::getInt32Ty(Context), Idx)) return Error("Invalid EXTRACTELT record"); I = ExtractElementInst::Create(Vec, Idx); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] unsigned OpNum = 0; Value *Vec, *Elt, *Idx; if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || getValue(Record, OpNum, cast(Vec->getType())->getElementType(), Elt) || getValue(Record, OpNum, Type::getInt32Ty(Context), Idx)) return Error("Invalid INSERTELT record"); I = InsertElementInst::Create(Vec, Elt, Idx); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] unsigned OpNum = 0; Value *Vec1, *Vec2, *Mask; if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || getValue(Record, OpNum, Vec1->getType(), Vec2)) return Error("Invalid SHUFFLEVEC record"); if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) return Error("Invalid SHUFFLEVEC record"); I = new ShuffleVectorInst(Vec1, Vec2, Mask); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] // Old form of ICmp/FCmp returning bool // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were // both legal on vectors but had different behaviour. case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] // FCmp/ICmp returning bool or vector of bool unsigned OpNum = 0; Value *LHS, *RHS; if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || getValue(Record, OpNum, LHS->getType(), RHS) || OpNum+1 != Record.size()) return Error("Invalid CMP record"); if (LHS->getType()->isFPOrFPVector()) I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); else I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n] if (Record.size() != 2) return Error("Invalid GETRESULT record"); unsigned OpNum = 0; Value *Op; getValueTypePair(Record, OpNum, NextValueNo, Op); unsigned Index = Record[1]; I = ExtractValueInst::Create(Op, Index); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval] { unsigned Size = Record.size(); if (Size == 0) { I = ReturnInst::Create(Context); InstructionList.push_back(I); break; } unsigned OpNum = 0; SmallVector Vs; do { Value *Op = NULL; if (getValueTypePair(Record, OpNum, NextValueNo, Op)) return Error("Invalid RET record"); Vs.push_back(Op); } while(OpNum != Record.size()); const Type *ReturnType = F->getReturnType(); if (Vs.size() > 1 || (isa(ReturnType) && (Vs.empty() || Vs[0]->getType() != ReturnType))) { Value *RV = UndefValue::get(ReturnType); for (unsigned i = 0, e = Vs.size(); i != e; ++i) { I = InsertValueInst::Create(RV, Vs[i], i, "mrv"); InstructionList.push_back(I); CurBB->getInstList().push_back(I); ValueList.AssignValue(I, NextValueNo++); RV = I; } I = ReturnInst::Create(Context, RV); InstructionList.push_back(I); break; } I = ReturnInst::Create(Context, Vs[0]); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] if (Record.size() != 1 && Record.size() != 3) return Error("Invalid BR record"); BasicBlock *TrueDest = getBasicBlock(Record[0]); if (TrueDest == 0) return Error("Invalid BR record"); if (Record.size() == 1) { I = BranchInst::Create(TrueDest); InstructionList.push_back(I); } else { BasicBlock *FalseDest = getBasicBlock(Record[1]); Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context)); if (FalseDest == 0 || Cond == 0) return Error("Invalid BR record"); I = BranchInst::Create(TrueDest, FalseDest, Cond); InstructionList.push_back(I); } break; } case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, opval, n, n x ops] if (Record.size() < 3 || (Record.size() & 1) == 0) return Error("Invalid SWITCH record"); const Type *OpTy = getTypeByID(Record[0]); Value *Cond = getFnValueByID(Record[1], OpTy); BasicBlock *Default = getBasicBlock(Record[2]); if (OpTy == 0 || Cond == 0 || Default == 0) return Error("Invalid SWITCH record"); unsigned NumCases = (Record.size()-3)/2; SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); InstructionList.push_back(SI); for (unsigned i = 0, e = NumCases; i != e; ++i) { ConstantInt *CaseVal = dyn_cast_or_null(getFnValueByID(Record[3+i*2], OpTy)); BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); if (CaseVal == 0 || DestBB == 0) { delete SI; return Error("Invalid SWITCH record!"); } SI->addCase(CaseVal, DestBB); } I = SI; break; } case bitc::FUNC_CODE_INST_INVOKE: { // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] if (Record.size() < 4) return Error("Invalid INVOKE record"); AttrListPtr PAL = getAttributes(Record[0]); unsigned CCInfo = Record[1]; BasicBlock *NormalBB = getBasicBlock(Record[2]); BasicBlock *UnwindBB = getBasicBlock(Record[3]); unsigned OpNum = 4; Value *Callee; if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) return Error("Invalid INVOKE record"); const PointerType *CalleeTy = dyn_cast(Callee->getType()); const FunctionType *FTy = !CalleeTy ? 0 : dyn_cast(CalleeTy->getElementType()); // Check that the right number of fixed parameters are here. if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 || Record.size() < OpNum+FTy->getNumParams()) return Error("Invalid INVOKE record"); SmallVector Ops; for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); if (Ops.back() == 0) return Error("Invalid INVOKE record"); } if (!FTy->isVarArg()) { if (Record.size() != OpNum) return Error("Invalid INVOKE record"); } else { // Read type/value pairs for varargs params. while (OpNum != Record.size()) { Value *Op; if (getValueTypePair(Record, OpNum, NextValueNo, Op)) return Error("Invalid INVOKE record"); Ops.push_back(Op); } } I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops.begin(), Ops.end()); InstructionList.push_back(I); cast(I)->setCallingConv( static_cast(CCInfo)); cast(I)->setAttributes(PAL); break; } case bitc::FUNC_CODE_INST_UNWIND: // UNWIND I = new UnwindInst(Context); InstructionList.push_back(I); break; case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE I = new UnreachableInst(Context); InstructionList.push_back(I); break; case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] if (Record.size() < 1 || ((Record.size()-1)&1)) return Error("Invalid PHI record"); const Type *Ty = getTypeByID(Record[0]); if (!Ty) return Error("Invalid PHI record"); PHINode *PN = PHINode::Create(Ty); InstructionList.push_back(PN); PN->reserveOperandSpace((Record.size()-1)/2); for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { Value *V = getFnValueByID(Record[1+i], Ty); BasicBlock *BB = getBasicBlock(Record[2+i]); if (!V || !BB) return Error("Invalid PHI record"); PN->addIncoming(V, BB); } I = PN; break; } case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align] // Autoupgrade malloc instruction to malloc call. if (Record.size() < 3) return Error("Invalid MALLOC record"); const PointerType *Ty = dyn_cast_or_null(getTypeByID(Record[0])); Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context)); if (!Ty || !Size) return Error("Invalid MALLOC record"); if (!CurBB) return Error("Invalid malloc instruction with no BB"); const Type* Int32Ty = IntegerType::getInt32Ty(CurBB->getContext()); if (Size->getType() != Int32Ty) Size = CastInst::CreateIntegerCast(Size, Int32Ty, false /*ZExt*/, "", CurBB); Value* Malloc = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(), Size, NULL); I = cast(Malloc); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty] unsigned OpNum = 0; Value *Op; if (getValueTypePair(Record, OpNum, NextValueNo, Op) || OpNum != Record.size()) return Error("Invalid FREE record"); I = new FreeInst(Op); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align] if (Record.size() < 3) return Error("Invalid ALLOCA record"); const PointerType *Ty = dyn_cast_or_null(getTypeByID(Record[0])); Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context)); unsigned Align = Record[2]; if (!Ty || !Size) return Error("Invalid ALLOCA record"); I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] unsigned OpNum = 0; Value *Op; if (getValueTypePair(Record, OpNum, NextValueNo, Op) || OpNum+2 != Record.size()) return Error("Invalid LOAD record"); I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol] unsigned OpNum = 0; Value *Val, *Ptr; if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || getValue(Record, OpNum, cast(Ptr->getType())->getElementType(), Val) || OpNum+2 != Record.size()) return Error("Invalid STORE record"); I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol] // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0. unsigned OpNum = 0; Value *Val, *Ptr; if (getValueTypePair(Record, OpNum, NextValueNo, Val) || getValue(Record, OpNum, PointerType::getUnqual(Val->getType()), Ptr)|| OpNum+2 != Record.size()) return Error("Invalid STORE record"); I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); InstructionList.push_back(I); break; } case bitc::FUNC_CODE_INST_CALL: { // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] if (Record.size() < 3) return Error("Invalid CALL record"); AttrListPtr PAL = getAttributes(Record[0]); unsigned CCInfo = Record[1]; unsigned OpNum = 2; Value *Callee; if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) return Error("Invalid CALL record"); const PointerType *OpTy = dyn_cast(Callee->getType()); const FunctionType *FTy = 0; if (OpTy) FTy = dyn_cast(OpTy->getElementType()); if (!FTy || Record.size() < FTy->getNumParams()+OpNum) return Error("Invalid CALL record"); SmallVector Args; // Read the fixed params. for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID) Args.push_back(getBasicBlock(Record[OpNum])); else Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); if (Args.back() == 0) return Error("Invalid CALL record"); } // Read type/value pairs for varargs params. if (!FTy->isVarArg()) { if (OpNum != Record.size()) return Error("Invalid CALL record"); } else { while (OpNum != Record.size()) { Value *Op; if (getValueTypePair(Record, OpNum, NextValueNo, Op)) return Error("Invalid CALL record"); Args.push_back(Op); } } I = CallInst::Create(Callee, Args.begin(), Args.end()); InstructionList.push_back(I); cast(I)->setCallingConv( static_cast(CCInfo>>1)); cast(I)->setTailCall(CCInfo & 1); cast(I)->setAttributes(PAL); break; } case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] if (Record.size() < 3) return Error("Invalid VAARG record"); const Type *OpTy = getTypeByID(Record[0]); Value *Op = getFnValueByID(Record[1], OpTy); const Type *ResTy = getTypeByID(Record[2]); if (!OpTy || !Op || !ResTy) return Error("Invalid VAARG record"); I = new VAArgInst(Op, ResTy); InstructionList.push_back(I); break; } } // Add instruction to end of current BB. If there is no current BB, reject // this file. if (CurBB == 0) { delete I; return Error("Invalid instruction with no BB"); } CurBB->getInstList().push_back(I); // If this was a terminator instruction, move to the next block. if (isa(I)) { ++CurBBNo; CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0; } // Non-void values get registered in the value table for future use. if (I && I->getType() != Type::getVoidTy(Context)) ValueList.AssignValue(I, NextValueNo++); } // Check the function list for unresolved values. if (Argument *A = dyn_cast(ValueList.back())) { if (A->getParent() == 0) { // We found at least one unresolved value. Nuke them all to avoid leaks. for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ if ((A = dyn_cast(ValueList.back())) && A->getParent() == 0) { A->replaceAllUsesWith(UndefValue::get(A->getType())); delete A; } } return Error("Never resolved value found in function!"); } } // Trim the value list down to the size it was before we parsed this function. ValueList.shrinkTo(ModuleValueListSize); std::vector().swap(FunctionBBs); return false; } //===----------------------------------------------------------------------===// // ModuleProvider implementation //===----------------------------------------------------------------------===// bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) { // If it already is material, ignore the request. if (!F->hasNotBeenReadFromBitcode()) return false; DenseMap >::iterator DFII = DeferredFunctionInfo.find(F); assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); // Move the bit stream to the saved position of the deferred function body and // restore the real linkage type for the function. Stream.JumpToBit(DFII->second.first); F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second); if (ParseFunctionBody(F)) { if (ErrInfo) *ErrInfo = ErrorString; return true; } // Upgrade any old intrinsic calls in the function. for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { if (I->first != I->second) { for (Value::use_iterator UI = I->first->use_begin(), UE = I->first->use_end(); UI != UE; ) { if (CallInst* CI = dyn_cast(*UI++)) UpgradeIntrinsicCall(CI, I->second); } } } return false; } void BitcodeReader::dematerializeFunction(Function *F) { // If this function isn't materialized, or if it is a proto, this is a noop. if (F->hasNotBeenReadFromBitcode() || F->isDeclaration()) return; assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); // Just forget the function body, we can remat it later. F->deleteBody(); F->setLinkage(GlobalValue::GhostLinkage); } Module *BitcodeReader::materializeModule(std::string *ErrInfo) { // Iterate over the module, deserializing any functions that are still on // disk. for (Module::iterator F = TheModule->begin(), E = TheModule->end(); F != E; ++F) if (F->hasNotBeenReadFromBitcode() && materializeFunction(F, ErrInfo)) return 0; // Upgrade any intrinsic calls that slipped through (should not happen!) and // delete the old functions to clean up. We can't do this unless the entire // module is materialized because there could always be another function body // with calls to the old function. for (std::vector >::iterator I = UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { if (I->first != I->second) { for (Value::use_iterator UI = I->first->use_begin(), UE = I->first->use_end(); UI != UE; ) { if (CallInst* CI = dyn_cast(*UI++)) UpgradeIntrinsicCall(CI, I->second); } if (!I->first->use_empty()) I->first->replaceAllUsesWith(I->second); I->first->eraseFromParent(); } } std::vector >().swap(UpgradedIntrinsics); // Check debug info intrinsics. CheckDebugInfoIntrinsics(TheModule); return TheModule; } /// This method is provided by the parent ModuleProvde class and overriden /// here. It simply releases the module from its provided and frees up our /// state. /// @brief Release our hold on the generated module Module *BitcodeReader::releaseModule(std::string *ErrInfo) { // Since we're losing control of this Module, we must hand it back complete Module *M = ModuleProvider::releaseModule(ErrInfo); FreeState(); return M; } //===----------------------------------------------------------------------===// // External interface //===----------------------------------------------------------------------===// /// getBitcodeModuleProvider - lazy function-at-a-time loading from a file. /// ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer, LLVMContext& Context, std::string *ErrMsg) { BitcodeReader *R = new BitcodeReader(Buffer, Context); if (R->ParseBitcode()) { if (ErrMsg) *ErrMsg = R->getErrorString(); // Don't let the BitcodeReader dtor delete 'Buffer'. R->releaseMemoryBuffer(); delete R; return 0; } return R; } /// ParseBitcodeFile - Read the specified bitcode file, returning the module. /// If an error occurs, return null and fill in *ErrMsg if non-null. Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context, std::string *ErrMsg){ BitcodeReader *R; R = static_cast(getBitcodeModuleProvider(Buffer, Context, ErrMsg)); if (!R) return 0; // Read in the entire module. Module *M = R->materializeModule(ErrMsg); // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether // there was an error. R->releaseMemoryBuffer(); // If there was no error, tell ModuleProvider not to delete it when its dtor // is run. if (M) M = R->releaseModule(ErrMsg); delete R; return M; }