//===-- SlotCalculator.cpp - Calculate what slots values land in ----------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a useful analysis step to figure out what numbered // slots values in a program will land in (keeping track of per plane // information as required. // // This is used primarily for when writing a file to disk, either in bytecode // or source format. // //===----------------------------------------------------------------------===// #include "llvm/SlotCalculator.h" #include "llvm/Analysis/ConstantsScanner.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/iOther.h" #include "llvm/Module.h" #include "llvm/SymbolTable.h" #include "Support/PostOrderIterator.h" #include "Support/STLExtras.h" #include using namespace llvm; #if 0 #define SC_DEBUG(X) std::cerr << X #else #define SC_DEBUG(X) #endif SlotCalculator::SlotCalculator(const Module *M, bool buildBytecodeInfo) { BuildBytecodeInfo = buildBytecodeInfo; ModuleContainsAllFunctionConstants = false; TheModule = M; // Preload table... Make sure that all of the primitive types are in the table // and that their Primitive ID is equal to their slot # // SC_DEBUG("Inserting primitive types:\n"); for (unsigned i = 0; i < Type::FirstDerivedTyID; ++i) { assert(Type::getPrimitiveType((Type::PrimitiveID)i)); insertValue(Type::getPrimitiveType((Type::PrimitiveID)i), true); } if (M == 0) return; // Empty table... processModule(); } SlotCalculator::SlotCalculator(const Function *M, bool buildBytecodeInfo) { BuildBytecodeInfo = buildBytecodeInfo; ModuleContainsAllFunctionConstants = false; TheModule = M ? M->getParent() : 0; // Preload table... Make sure that all of the primitive types are in the table // and that their Primitive ID is equal to their slot # // SC_DEBUG("Inserting primitive types:\n"); for (unsigned i = 0; i < Type::FirstDerivedTyID; ++i) { assert(Type::getPrimitiveType((Type::PrimitiveID)i)); insertValue(Type::getPrimitiveType((Type::PrimitiveID)i), true); } if (TheModule == 0) return; // Empty table... processModule(); // Process module level stuff incorporateFunction(M); // Start out in incorporated state } unsigned SlotCalculator::getGlobalSlot(const Value *V) const { assert(!CompactionTable.empty() && "This method can only be used when compaction is enabled!"); if (const ConstantPointerRef *CPR = dyn_cast(V)) V = CPR->getValue(); std::map::const_iterator I = NodeMap.find(V); assert(I != NodeMap.end() && "Didn't find entry!"); return I->second; } // processModule - Process all of the module level function declarations and // types that are available. // void SlotCalculator::processModule() { SC_DEBUG("begin processModule!\n"); // Add all of the global variables to the value table... // for (Module::const_giterator I = TheModule->gbegin(), E = TheModule->gend(); I != E; ++I) getOrCreateSlot(I); // Scavenge the types out of the functions, then add the functions themselves // to the value table... // for (Module::const_iterator I = TheModule->begin(), E = TheModule->end(); I != E; ++I) getOrCreateSlot(I); // Add all of the module level constants used as initializers // for (Module::const_giterator I = TheModule->gbegin(), E = TheModule->gend(); I != E; ++I) if (I->hasInitializer()) getOrCreateSlot(I->getInitializer()); // Now that all global constants have been added, rearrange constant planes // that contain constant strings so that the strings occur at the start of the // plane, not somewhere in the middle. // if (BuildBytecodeInfo) { TypePlane &Types = Table[Type::TypeTyID]; for (unsigned plane = 0, e = Table.size(); plane != e; ++plane) { if (const ArrayType *AT = dyn_cast(Types[plane])) if (AT->getElementType() == Type::SByteTy || AT->getElementType() == Type::UByteTy) { TypePlane &Plane = Table[plane]; unsigned FirstNonStringID = 0; for (unsigned i = 0, e = Plane.size(); i != e; ++i) if (cast(Plane[i])->isString()) { // Check to see if we have to shuffle this string around. If not, // don't do anything. if (i != FirstNonStringID) { // Swap the plane entries.... std::swap(Plane[i], Plane[FirstNonStringID]); // Keep the NodeMap up to date. NodeMap[Plane[i]] = i; NodeMap[Plane[FirstNonStringID]] = FirstNonStringID; } ++FirstNonStringID; } } } } // If we are emitting a bytecode file, scan all of the functions for their // constants, which allows us to emit more compact modules. This is optional, // and is just used to compactify the constants used by different functions // together. // // This functionality is completely optional for the bytecode writer, but // tends to produce smaller bytecode files. This should not be used in the // future by clients that want to, for example, build and emit functions on // the fly. For now, however, it is unconditionally enabled when building // bytecode information. // if (BuildBytecodeInfo) { ModuleContainsAllFunctionConstants = true; SC_DEBUG("Inserting function constants:\n"); for (Module::const_iterator F = TheModule->begin(), E = TheModule->end(); F != E; ++F) { for (const_inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I){ for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) if (isa(I->getOperand(op))) getOrCreateSlot(I->getOperand(op)); getOrCreateSlot(I->getType()); if (const VANextInst *VAN = dyn_cast(*I)) getOrCreateSlot(VAN->getArgType()); } processSymbolTableConstants(&F->getSymbolTable()); } } // Insert constants that are named at module level into the slot pool so that // the module symbol table can refer to them... // if (BuildBytecodeInfo) { SC_DEBUG("Inserting SymbolTable values:\n"); processSymbolTable(&TheModule->getSymbolTable()); } // Now that we have collected together all of the information relevant to the // module, compactify the type table if it is particularly big and outputting // a bytecode file. The basic problem we run into is that some programs have // a large number of types, which causes the type field to overflow its size, // which causes instructions to explode in size (particularly call // instructions). To avoid this behavior, we "sort" the type table so that // all non-value types are pushed to the end of the type table, giving nice // low numbers to the types that can be used by instructions, thus reducing // the amount of explodage we suffer. if (BuildBytecodeInfo && Table[Type::TypeTyID].size() >= 64) { // Scan through the type table moving value types to the start of the table. TypePlane *Types = &Table[Type::TypeTyID]; unsigned FirstNonValueTypeID = 0; for (unsigned i = 0, e = Types->size(); i != e; ++i) if (cast((*Types)[i])->isFirstClassType() || cast((*Types)[i])->isPrimitiveType()) { // Check to see if we have to shuffle this type around. If not, don't // do anything. if (i != FirstNonValueTypeID) { assert(i != Type::TypeTyID && FirstNonValueTypeID != Type::TypeTyID && "Cannot move around the type plane!"); // Swap the type ID's. std::swap((*Types)[i], (*Types)[FirstNonValueTypeID]); // Keep the NodeMap up to date. NodeMap[(*Types)[i]] = i; NodeMap[(*Types)[FirstNonValueTypeID]] = FirstNonValueTypeID; // When we move a type, make sure to move its value plane as needed. if (Table.size() > FirstNonValueTypeID) { if (Table.size() <= i) Table.resize(i+1); std::swap(Table[i], Table[FirstNonValueTypeID]); Types = &Table[Type::TypeTyID]; } } ++FirstNonValueTypeID; } } SC_DEBUG("end processModule!\n"); } // processSymbolTable - Insert all of the values in the specified symbol table // into the values table... // void SlotCalculator::processSymbolTable(const SymbolTable *ST) { for (SymbolTable::const_iterator I = ST->begin(), E = ST->end(); I != E; ++I) for (SymbolTable::type_const_iterator TI = I->second.begin(), TE = I->second.end(); TI != TE; ++TI) getOrCreateSlot(TI->second); } void SlotCalculator::processSymbolTableConstants(const SymbolTable *ST) { for (SymbolTable::const_iterator I = ST->begin(), E = ST->end(); I != E; ++I) for (SymbolTable::type_const_iterator TI = I->second.begin(), TE = I->second.end(); TI != TE; ++TI) if (isa(TI->second) || isa(TI->second)) getOrCreateSlot(TI->second); } void SlotCalculator::incorporateFunction(const Function *F) { assert(ModuleLevel.size() == 0 && "Module already incorporated!"); SC_DEBUG("begin processFunction!\n"); // If we emitted all of the function constants, build a compaction table. if (BuildBytecodeInfo && ModuleContainsAllFunctionConstants) buildCompactionTable(F); else { // Save the Table state before we process the function... for (unsigned i = 0, e = Table.size(); i != e; ++i) ModuleLevel.push_back(Table[i].size()); } // Iterate over function arguments, adding them to the value table... for(Function::const_aiterator I = F->abegin(), E = F->aend(); I != E; ++I) getOrCreateSlot(I); if (BuildBytecodeInfo && // Assembly writer does not need this! !ModuleContainsAllFunctionConstants) { // Iterate over all of the instructions in the function, looking for // constant values that are referenced. Add these to the value pools // before any nonconstant values. This will be turned into the constant // pool for the bytecode writer. // // Emit all of the constants that are being used by the instructions in // the function... for_each(constant_begin(F), constant_end(F), bind_obj(this, &SlotCalculator::getOrCreateSlot)); // If there is a symbol table, it is possible that the user has names for // constants that are not being used. In this case, we will have problems // if we don't emit the constants now, because otherwise we will get // symbol table references to constants not in the output. Scan for these // constants now. // processSymbolTableConstants(&F->getSymbolTable()); } SC_DEBUG("Inserting Instructions:\n"); // Add all of the instructions to the type planes... for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { getOrCreateSlot(BB); for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) { getOrCreateSlot(I); if (const VANextInst *VAN = dyn_cast(I)) getOrCreateSlot(VAN->getArgType()); } } SC_DEBUG("end processFunction!\n"); } void SlotCalculator::purgeFunction() { assert(ModuleLevel.size() != 0 && "Module not incorporated!"); unsigned NumModuleTypes = ModuleLevel.size(); SC_DEBUG("begin purgeFunction!\n"); // First, free the compaction map if used. CompactionNodeMap.clear(); // Next, remove values from existing type planes for (unsigned i = 0; i != NumModuleTypes; ++i) if (i >= CompactionTable.size() || CompactionTable[i].empty()) { unsigned ModuleSize = ModuleLevel[i];// Size of plane before function came TypePlane &CurPlane = Table[i]; while (CurPlane.size() != ModuleSize) { std::map::iterator NI = NodeMap.find(CurPlane.back()); assert(NI != NodeMap.end() && "Node not in nodemap?"); NodeMap.erase(NI); // Erase from nodemap CurPlane.pop_back(); // Shrink plane } } // We don't need this state anymore, free it up. ModuleLevel.clear(); if (!CompactionTable.empty()) { CompactionTable.clear(); } else { // FIXME: this will require adjustment when we don't compact everything. // Finally, remove any type planes defined by the function... while (NumModuleTypes != Table.size()) { TypePlane &Plane = Table.back(); SC_DEBUG("Removing Plane " << (Table.size()-1) << " of size " << Plane.size() << "\n"); while (Plane.size()) { NodeMap.erase(NodeMap.find(Plane.back())); // Erase from nodemap Plane.pop_back(); // Shrink plane } Table.pop_back(); // Nuke the plane, we don't like it. } } SC_DEBUG("end purgeFunction!\n"); } static inline bool hasNullValue(unsigned TyID) { return TyID != Type::LabelTyID && TyID != Type::TypeTyID && TyID != Type::VoidTyID; } /// getOrCreateCompactionTableSlot - This method is used to build up the initial /// approximation of the compaction table. unsigned SlotCalculator::getOrCreateCompactionTableSlot(const Value *V) { std::map::iterator I = CompactionNodeMap.lower_bound(V); if (I != CompactionNodeMap.end() && I->first == V) return I->second; // Already exists? // Make sure the type is in the table. unsigned Ty = getOrCreateCompactionTableSlot(V->getType()); if (CompactionTable.size() <= Ty) CompactionTable.resize(Ty+1); assert(!isa(V) || ModuleLevel.empty()); TypePlane &TyPlane = CompactionTable[Ty]; // Make sure to insert the null entry if the thing we are inserting is not a // null constant. if (TyPlane.empty() && hasNullValue(V->getType()->getPrimitiveID())) { Value *ZeroInitializer = Constant::getNullValue(V->getType()); if (V != ZeroInitializer) { TyPlane.push_back(ZeroInitializer); CompactionNodeMap[ZeroInitializer] = 0; } } unsigned SlotNo = TyPlane.size(); TyPlane.push_back(V); CompactionNodeMap.insert(std::make_pair(V, SlotNo)); return SlotNo; } /// buildCompactionTable - Since all of the function constants and types are /// stored in the module-level constant table, we don't need to emit a function /// constant table. Also due to this, the indices for various constants and /// types might be very large in large programs. In order to avoid blowing up /// the size of instructions in the bytecode encoding, we build a compaction /// table, which defines a mapping from function-local identifiers to global /// identifiers. void SlotCalculator::buildCompactionTable(const Function *F) { assert(CompactionNodeMap.empty() && "Compaction table already built!"); // First step, insert the primitive types. CompactionTable.resize(Type::TypeTyID+1); for (unsigned i = 0; i != Type::FirstDerivedTyID; ++i) { const Type *PrimTy = Type::getPrimitiveType((Type::PrimitiveID)i); CompactionTable[Type::TypeTyID].push_back(PrimTy); CompactionNodeMap[PrimTy] = i; } // Next, include any types used by function arguments. for (Function::const_aiterator I = F->abegin(), E = F->aend(); I != E; ++I) getOrCreateCompactionTableSlot(I->getType()); // Next, find all of the types and values that are referred to by the // instructions in the program. for (const_inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) { getOrCreateCompactionTableSlot(I->getType()); for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) if (isa(I->getOperand(op)) || isa(I->getOperand(op))) getOrCreateCompactionTableSlot(I->getOperand(op)); if (const VANextInst *VAN = dyn_cast(*I)) getOrCreateCompactionTableSlot(VAN->getArgType()); } const SymbolTable &ST = F->getSymbolTable(); for (SymbolTable::const_iterator I = ST.begin(), E = ST.end(); I != E; ++I) for (SymbolTable::type_const_iterator TI = I->second.begin(), TE = I->second.end(); TI != TE; ++TI) if (isa(TI->second) || isa(TI->second) || isa(TI->second)) getOrCreateCompactionTableSlot(TI->second); // Now that we have all of the values in the table, and know what types are // referenced, make sure that there is at least the zero initializer in any // used type plane. Since the type was used, we will be emitting instructions // to the plane even if there are no constants in it. CompactionTable.resize(CompactionTable[Type::TypeTyID].size()); for (unsigned i = 0, e = CompactionTable.size(); i != e; ++i) if (CompactionTable[i].empty() && i != Type::VoidTyID && i != Type::LabelTyID) { const Type *Ty = cast(CompactionTable[Type::TypeTyID][i]); getOrCreateCompactionTableSlot(Constant::getNullValue(Ty)); } // Okay, now at this point, we have a legal compaction table. Since we want // to emit the smallest possible binaries, we delete planes that do not NEED // to be compacted, starting with the type plane. // If decided not to compact anything, do not modify ModuleLevels. if (CompactionTable.empty()) // FIXME: must update ModuleLevel. return; // Finally, for any planes that we have decided to compact, update the // ModuleLevel entries to be accurate. // FIXME: This does not yet work for partially compacted tables. ModuleLevel.resize(CompactionTable.size()); for (unsigned i = 0, e = CompactionTable.size(); i != e; ++i) ModuleLevel[i] = CompactionTable[i].size(); } int SlotCalculator::getSlot(const Value *V) const { // If there is a CompactionTable active... if (!CompactionNodeMap.empty()) { std::map::const_iterator I = CompactionNodeMap.find(V); if (I != CompactionNodeMap.end()) return (int)I->second; return -1; } std::map::const_iterator I = NodeMap.find(V); if (I != NodeMap.end()) return (int)I->second; // Do not number ConstantPointerRef's at all. They are an abomination. if (const ConstantPointerRef *CPR = dyn_cast(V)) return getSlot(CPR->getValue()); return -1; } int SlotCalculator::getOrCreateSlot(const Value *V) { int SlotNo = getSlot(V); // Check to see if it's already in! if (SlotNo != -1) return SlotNo; // Do not number ConstantPointerRef's at all. They are an abomination. if (const ConstantPointerRef *CPR = dyn_cast(V)) return getOrCreateSlot(CPR->getValue()); if (!isa(V)) // Initializers for globals are handled explicitly if (const Constant *C = dyn_cast(V)) { assert(CompactionNodeMap.empty() && "All needed constants should be in the compaction map already!"); // If we are emitting a bytecode file, do not index the characters that // make up constant strings. We emit constant strings as special // entities that don't require their individual characters to be emitted. if (!BuildBytecodeInfo || !isa(C) || !cast(C)->isString()) { // This makes sure that if a constant has uses (for example an array of // const ints), that they are inserted also. // for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); I != E; ++I) getOrCreateSlot(*I); } else { assert(ModuleLevel.empty() && "How can a constant string be directly accessed in a function?"); // Otherwise, if we are emitting a bytecode file and this IS a string, // remember it. if (!C->isNullValue()) ConstantStrings.push_back(cast(C)); } } return insertValue(V); } int SlotCalculator::insertValue(const Value *D, bool dontIgnore) { assert(D && "Can't insert a null value!"); assert(getSlot(D) == -1 && "Value is already in the table!"); // If we are building a compaction map, and if this plane is being compacted, // insert the value into the compaction map, not into the global map. if (!CompactionNodeMap.empty()) { if (D->getType() == Type::VoidTy) return -1; // Do not insert void values assert(!isa(D) && !isa(D) && !isa(D) && "Types, constants, and globals should be in global SymTab!"); // FIXME: this does not yet handle partially compacted tables yet! return getOrCreateCompactionTableSlot(D); } // If this node does not contribute to a plane, or if the node has a // name and we don't want names, then ignore the silly node... Note that types // do need slot numbers so that we can keep track of where other values land. // if (!dontIgnore) // Don't ignore nonignorables! if (D->getType() == Type::VoidTy || // Ignore void type nodes (!BuildBytecodeInfo && // Ignore named and constants (D->hasName() || isa(D)) && !isa(D))) { SC_DEBUG("ignored value " << *D << "\n"); return -1; // We do need types unconditionally though } // If it's a type, make sure that all subtypes of the type are included... if (const Type *TheTy = dyn_cast(D)) { // Insert the current type before any subtypes. This is important because // recursive types elements are inserted in a bottom up order. Changing // this here can break things. For example: // // global { \2 * } { { \2 }* null } // int ResultSlot = doInsertValue(TheTy); SC_DEBUG(" Inserted type: " << TheTy->getDescription() << " slot=" << ResultSlot << "\n"); // Loop over any contained types in the definition... in post // order. // for (po_iterator I = po_begin(TheTy), E = po_end(TheTy); I != E; ++I) { if (*I != TheTy) { const Type *SubTy = *I; // If we haven't seen this sub type before, add it to our type table! if (getSlot(SubTy) == -1) { SC_DEBUG(" Inserting subtype: " << SubTy->getDescription() << "\n"); int Slot = doInsertValue(SubTy); SC_DEBUG(" Inserted subtype: " << SubTy->getDescription() << " slot=" << Slot << "\n"); } } } return ResultSlot; } // Okay, everything is happy, actually insert the silly value now... return doInsertValue(D); } // doInsertValue - This is a small helper function to be called only // be insertValue. // int SlotCalculator::doInsertValue(const Value *D) { const Type *Typ = D->getType(); unsigned Ty; // Used for debugging DefSlot=-1 assertion... //if (Typ == Type::TypeTy) // cerr << "Inserting type '" << cast(D)->getDescription() << "'!\n"; if (Typ->isDerivedType()) { int ValSlot = getSlot(Typ); if (ValSlot == -1) { // Have we already entered this type? // Nope, this is the first we have seen the type, process it. ValSlot = insertValue(Typ, true); assert(ValSlot != -1 && "ProcessType returned -1 for a type?"); } Ty = (unsigned)ValSlot; } else { Ty = Typ->getPrimitiveID(); } if (Table.size() <= Ty) // Make sure we have the type plane allocated... Table.resize(Ty+1, TypePlane()); // If this is the first value to get inserted into the type plane, make sure // to insert the implicit null value... if (Table[Ty].empty() && BuildBytecodeInfo && hasNullValue(Ty)) { Value *ZeroInitializer = Constant::getNullValue(Typ); // If we are pushing zeroinit, it will be handled below. if (D != ZeroInitializer) { Table[Ty].push_back(ZeroInitializer); NodeMap[ZeroInitializer] = 0; } } // Insert node into table and NodeMap... unsigned DestSlot = NodeMap[D] = Table[Ty].size(); Table[Ty].push_back(D); SC_DEBUG(" Inserting value [" << Ty << "] = " << D << " slot=" << DestSlot << " ["); // G = Global, C = Constant, T = Type, F = Function, o = other SC_DEBUG((isa(D) ? "G" : (isa(D) ? "C" : (isa(D) ? "T" : (isa(D) ? "F" : "o"))))); SC_DEBUG("]\n"); return (int)DestSlot; }