//===-- llvm/CodeGen/AsmPrinter/DbgValueHistoryCalculator.cpp -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "DbgValueHistoryCalculator.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/IR/DebugInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetRegisterInfo.h" #include #include using namespace llvm; #define DEBUG_TYPE "dwarfdebug" // \brief If @MI is a DBG_VALUE with debug value described by a // defined register, returns the number of this register. // In the other case, returns 0. static unsigned isDescribedByReg(const MachineInstr &MI) { assert(MI.isDebugValue()); assert(MI.getNumOperands() == 4); // If location of variable is described using a register (directly or // indirecltly), this register is always a first operand. return MI.getOperand(0).isReg() ? MI.getOperand(0).getReg() : 0; } void DbgValueHistoryMap::startInstrRange(const MDNode *Var, const MachineInstr &MI) { // Instruction range should start with a DBG_VALUE instruction for the // variable. assert(MI.isDebugValue() && "not a DBG_VALUE"); auto &Ranges = VarInstrRanges[Var]; if (!Ranges.empty() && Ranges.back().second == nullptr && Ranges.back().first->isIdenticalTo(&MI)) { DEBUG(dbgs() << "Coalescing identical DBG_VALUE entries:\n" << "\t" << Ranges.back().first << "\t" << MI << "\n"); return; } Ranges.push_back(std::make_pair(&MI, nullptr)); } void DbgValueHistoryMap::endInstrRange(const MDNode *Var, const MachineInstr &MI) { auto &Ranges = VarInstrRanges[Var]; // Verify that the current instruction range is not yet closed. assert(!Ranges.empty() && Ranges.back().second == nullptr); // For now, instruction ranges are not allowed to cross basic block // boundaries. assert(Ranges.back().first->getParent() == MI.getParent()); Ranges.back().second = &MI; } unsigned DbgValueHistoryMap::getRegisterForVar(const MDNode *Var) const { const auto &I = VarInstrRanges.find(Var); if (I == VarInstrRanges.end()) return 0; const auto &Ranges = I->second; if (Ranges.empty() || Ranges.back().second != nullptr) return 0; return isDescribedByReg(*Ranges.back().first); } namespace { // Maps physreg numbers to the variables they describe. typedef std::map> RegDescribedVarsMap; } // \brief Claim that @Var is not described by @RegNo anymore. static void dropRegDescribedVar(RegDescribedVarsMap &RegVars, unsigned RegNo, const MDNode *Var) { const auto &I = RegVars.find(RegNo); assert(RegNo != 0U && I != RegVars.end()); auto &VarSet = I->second; const auto &VarPos = std::find(VarSet.begin(), VarSet.end(), Var); assert(VarPos != VarSet.end()); VarSet.erase(VarPos); // Don't keep empty sets in a map to keep it as small as possible. if (VarSet.empty()) RegVars.erase(I); } // \brief Claim that @Var is now described by @RegNo. static void addRegDescribedVar(RegDescribedVarsMap &RegVars, unsigned RegNo, const MDNode *Var) { assert(RegNo != 0U); auto &VarSet = RegVars[RegNo]; assert(std::find(VarSet.begin(), VarSet.end(), Var) == VarSet.end()); VarSet.push_back(Var); } // \brief Terminate the location range for variables described by register at // @I by inserting @ClobberingInstr to their history. static void clobberRegisterUses(RegDescribedVarsMap &RegVars, RegDescribedVarsMap::iterator I, DbgValueHistoryMap &HistMap, const MachineInstr &ClobberingInstr) { // Iterate over all variables described by this register and add this // instruction to their history, clobbering it. for (const auto &Var : I->second) HistMap.endInstrRange(Var, ClobberingInstr); RegVars.erase(I); } // \brief Terminate the location range for variables described by register // @RegNo by inserting @ClobberingInstr to their history. static void clobberRegisterUses(RegDescribedVarsMap &RegVars, unsigned RegNo, DbgValueHistoryMap &HistMap, const MachineInstr &ClobberingInstr) { const auto &I = RegVars.find(RegNo); if (I == RegVars.end()) return; clobberRegisterUses(RegVars, I, HistMap, ClobberingInstr); } // \brief Collect all registers clobbered by @MI and apply the functor // @Func to their RegNo. // @Func should be a functor with a void(unsigned) signature. We're // not using std::function here for performance reasons. It has a // small but measurable impact. By using a functor instead of a // std::set& here, we can avoid the overhead of constructing // temporaries in calculateDbgValueHistory, which has a significant // performance impact. template static void applyToClobberedRegisters(const MachineInstr &MI, const TargetRegisterInfo *TRI, Callable Func) { for (const MachineOperand &MO : MI.operands()) { if (!MO.isReg() || !MO.isDef() || !MO.getReg()) continue; for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI) Func(*AI); } } // \brief Returns the first instruction in @MBB which corresponds to // the function epilogue, or nullptr if @MBB doesn't contain an epilogue. static const MachineInstr *getFirstEpilogueInst(const MachineBasicBlock &MBB) { auto LastMI = MBB.getLastNonDebugInstr(); if (LastMI == MBB.end() || !LastMI->isReturn()) return nullptr; // Assume that epilogue starts with instruction having the same debug location // as the return instruction. DebugLoc LastLoc = LastMI->getDebugLoc(); auto Res = LastMI; for (MachineBasicBlock::const_reverse_iterator I(std::next(LastMI)), E = MBB.rend(); I != E; ++I) { if (I->getDebugLoc() != LastLoc) return Res; Res = &*I; } // If all instructions have the same debug location, assume whole MBB is // an epilogue. return MBB.begin(); } // \brief Collect registers that are modified in the function body (their // contents is changed outside of the prologue and epilogue). static void collectChangingRegs(const MachineFunction *MF, const TargetRegisterInfo *TRI, BitVector &Regs) { for (const auto &MBB : *MF) { auto FirstEpilogueInst = getFirstEpilogueInst(MBB); for (const auto &MI : MBB) { if (&MI == FirstEpilogueInst) break; if (!MI.getFlag(MachineInstr::FrameSetup)) applyToClobberedRegisters(MI, TRI, [&](unsigned r) { Regs.set(r); }); } } } void llvm::calculateDbgValueHistory(const MachineFunction *MF, const TargetRegisterInfo *TRI, DbgValueHistoryMap &Result) { BitVector ChangingRegs(TRI->getNumRegs()); collectChangingRegs(MF, TRI, ChangingRegs); RegDescribedVarsMap RegVars; for (const auto &MBB : *MF) { for (const auto &MI : MBB) { if (!MI.isDebugValue()) { // Not a DBG_VALUE instruction. It may clobber registers which describe // some variables. applyToClobberedRegisters(MI, TRI, [&](unsigned RegNo) { if (ChangingRegs.test(RegNo)) clobberRegisterUses(RegVars, RegNo, Result, MI); }); continue; } assert(MI.getNumOperands() > 1 && "Invalid DBG_VALUE instruction!"); // Use the base variable (without any DW_OP_piece expressions) // as index into History. The full variables including the // piece expressions are attached to the MI. DIVariable Var = MI.getDebugVariable(); if (unsigned PrevReg = Result.getRegisterForVar(Var)) dropRegDescribedVar(RegVars, PrevReg, Var); Result.startInstrRange(Var, MI); if (unsigned NewReg = isDescribedByReg(MI)) addRegDescribedVar(RegVars, NewReg, Var); } // Make sure locations for register-described variables are valid only // until the end of the basic block (unless it's the last basic block, in // which case let their liveness run off to the end of the function). if (!MBB.empty() && &MBB != &MF->back()) { for (auto I = RegVars.begin(), E = RegVars.end(); I != E;) { auto CurElem = I++; // CurElem can be erased below. if (ChangingRegs.test(CurElem->first)) clobberRegisterUses(RegVars, CurElem, Result, MBB.back()); } } } }