//===-- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains support for writing dwarf debug info into asm files. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "dwarfdebug" #include "DwarfDebug.h" #include "DIE.h" #include "DIEHash.h" #include "DwarfAccelTable.h" #include "DwarfCompileUnit.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/Triple.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/DIBuilder.h" #include "llvm/DebugInfo.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Module.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCSection.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Dwarf.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Support/MD5.h" #include "llvm/Support/Path.h" #include "llvm/Support/Timer.h" #include "llvm/Support/ValueHandle.h" #include "llvm/Target/TargetFrameLowering.h" #include "llvm/Target/TargetLoweringObjectFile.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Target/TargetRegisterInfo.h" using namespace llvm; static cl::opt DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, cl::desc("Disable debug info printing")); static cl::opt UnknownLocations( "use-unknown-locations", cl::Hidden, cl::desc("Make an absence of debug location information explicit."), cl::init(false)); static cl::opt GenerateODRHash("generate-odr-hash", cl::Hidden, cl::desc("Add an ODR hash to external type DIEs."), cl::init(false)); static cl::opt GenerateCUHash("generate-cu-hash", cl::Hidden, cl::desc("Add the CU hash as the dwo_id."), cl::init(false)); static cl::opt GenerateGnuPubSections("generate-gnu-dwarf-pub-sections", cl::Hidden, cl::desc("Generate GNU-style pubnames and pubtypes"), cl::init(false)); namespace { enum DefaultOnOff { Default, Enable, Disable }; } static cl::opt DwarfAccelTables("dwarf-accel-tables", cl::Hidden, cl::desc("Output prototype dwarf accelerator tables."), cl::values(clEnumVal(Default, "Default for platform"), clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled"), clEnumValEnd), cl::init(Default)); static cl::opt SplitDwarf("split-dwarf", cl::Hidden, cl::desc("Output prototype dwarf split debug info."), cl::values(clEnumVal(Default, "Default for platform"), clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled"), clEnumValEnd), cl::init(Default)); static cl::opt DwarfPubSections("generate-dwarf-pub-sections", cl::Hidden, cl::desc("Generate DWARF pubnames and pubtypes sections"), cl::values(clEnumVal(Default, "Default for platform"), clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled"), clEnumValEnd), cl::init(Default)); static const char *const DWARFGroupName = "DWARF Emission"; static const char *const DbgTimerName = "DWARF Debug Writer"; //===----------------------------------------------------------------------===// // Configuration values for initial hash set sizes (log2). // static const unsigned InitAbbreviationsSetSize = 9; // log2(512) namespace llvm { DIType DbgVariable::getType() const { DIType Ty = Var.getType(); // FIXME: isBlockByrefVariable should be reformulated in terms of complex // addresses instead. if (Var.isBlockByrefVariable()) { /* Byref variables, in Blocks, are declared by the programmer as "SomeType VarName;", but the compiler creates a __Block_byref_x_VarName struct, and gives the variable VarName either the struct, or a pointer to the struct, as its type. This is necessary for various behind-the-scenes things the compiler needs to do with by-reference variables in blocks. However, as far as the original *programmer* is concerned, the variable should still have type 'SomeType', as originally declared. The following function dives into the __Block_byref_x_VarName struct to find the original type of the variable. This will be passed back to the code generating the type for the Debug Information Entry for the variable 'VarName'. 'VarName' will then have the original type 'SomeType' in its debug information. The original type 'SomeType' will be the type of the field named 'VarName' inside the __Block_byref_x_VarName struct. NOTE: In order for this to not completely fail on the debugger side, the Debug Information Entry for the variable VarName needs to have a DW_AT_location that tells the debugger how to unwind through the pointers and __Block_byref_x_VarName struct to find the actual value of the variable. The function addBlockByrefType does this. */ DIType subType = Ty; uint16_t tag = Ty.getTag(); if (tag == dwarf::DW_TAG_pointer_type) subType = DD->resolve(DIDerivedType(Ty).getTypeDerivedFrom()); DIArray Elements = DICompositeType(subType).getTypeArray(); for (unsigned i = 0, N = Elements.getNumElements(); i < N; ++i) { DIDerivedType DT = DIDerivedType(Elements.getElement(i)); if (getName() == DT.getName()) return (DD->resolve(DT.getTypeDerivedFrom())); } } return Ty; } } // end llvm namespace /// Return Dwarf Version by checking module flags. static unsigned getDwarfVersionFromModule(const Module *M) { Value *Val = M->getModuleFlag("Dwarf Version"); if (!Val) return dwarf::DWARF_VERSION; return cast(Val)->getZExtValue(); } DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M) : Asm(A), MMI(Asm->MMI), FirstCU(0), AbbreviationsSet(InitAbbreviationsSetSize), SourceIdMap(DIEValueAllocator), PrevLabel(NULL), GlobalCUIndexCount(0), InfoHolder(A, &AbbreviationsSet, &Abbreviations, "info_string", DIEValueAllocator), SkeletonAbbrevSet(InitAbbreviationsSetSize), SkeletonHolder(A, &SkeletonAbbrevSet, &SkeletonAbbrevs, "skel_string", DIEValueAllocator) { DwarfInfoSectionSym = DwarfAbbrevSectionSym = 0; DwarfStrSectionSym = TextSectionSym = 0; DwarfDebugRangeSectionSym = DwarfDebugLocSectionSym = DwarfLineSectionSym = 0; DwarfAddrSectionSym = 0; DwarfAbbrevDWOSectionSym = DwarfStrDWOSectionSym = 0; FunctionBeginSym = FunctionEndSym = 0; // Turn on accelerator tables and older gdb compatibility // for Darwin by default, pubnames by default for non-Darwin, // and handle split dwarf. bool IsDarwin = Triple(A->getTargetTriple()).isOSDarwin(); if (DwarfAccelTables == Default) HasDwarfAccelTables = IsDarwin; else HasDwarfAccelTables = DwarfAccelTables == Enable; if (SplitDwarf == Default) HasSplitDwarf = false; else HasSplitDwarf = SplitDwarf == Enable; if (DwarfPubSections == Default) HasDwarfPubSections = !IsDarwin; else HasDwarfPubSections = DwarfPubSections == Enable; DwarfVersion = getDwarfVersionFromModule(MMI->getModule()); { NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); beginModule(); } } DwarfDebug::~DwarfDebug() { } // Switch to the specified MCSection and emit an assembler // temporary label to it if SymbolStem is specified. static MCSymbol *emitSectionSym(AsmPrinter *Asm, const MCSection *Section, const char *SymbolStem = 0) { Asm->OutStreamer.SwitchSection(Section); if (!SymbolStem) return 0; MCSymbol *TmpSym = Asm->GetTempSymbol(SymbolStem); Asm->OutStreamer.EmitLabel(TmpSym); return TmpSym; } MCSymbol *DwarfUnits::getStringPoolSym() { return Asm->GetTempSymbol(StringPref); } MCSymbol *DwarfUnits::getStringPoolEntry(StringRef Str) { std::pair &Entry = StringPool.GetOrCreateValue(Str).getValue(); if (Entry.first) return Entry.first; Entry.second = NextStringPoolNumber++; return Entry.first = Asm->GetTempSymbol(StringPref, Entry.second); } unsigned DwarfUnits::getStringPoolIndex(StringRef Str) { std::pair &Entry = StringPool.GetOrCreateValue(Str).getValue(); if (Entry.first) return Entry.second; Entry.second = NextStringPoolNumber++; Entry.first = Asm->GetTempSymbol(StringPref, Entry.second); return Entry.second; } unsigned DwarfUnits::getAddrPoolIndex(const MCSymbol *Sym) { return getAddrPoolIndex(MCSymbolRefExpr::Create(Sym, Asm->OutContext)); } unsigned DwarfUnits::getAddrPoolIndex(const MCExpr *Sym) { std::pair::iterator, bool> P = AddressPool.insert(std::make_pair(Sym, NextAddrPoolNumber)); if (P.second) ++NextAddrPoolNumber; return P.first->second; } // Define a unique number for the abbreviation. // void DwarfUnits::assignAbbrevNumber(DIEAbbrev &Abbrev) { // Check the set for priors. DIEAbbrev *InSet = AbbreviationsSet->GetOrInsertNode(&Abbrev); // If it's newly added. if (InSet == &Abbrev) { // Add to abbreviation list. Abbreviations->push_back(&Abbrev); // Assign the vector position + 1 as its number. Abbrev.setNumber(Abbreviations->size()); } else { // Assign existing abbreviation number. Abbrev.setNumber(InSet->getNumber()); } } static bool isObjCClass(StringRef Name) { return Name.startswith("+") || Name.startswith("-"); } static bool hasObjCCategory(StringRef Name) { if (!isObjCClass(Name)) return false; return Name.find(") ") != StringRef::npos; } static void getObjCClassCategory(StringRef In, StringRef &Class, StringRef &Category) { if (!hasObjCCategory(In)) { Class = In.slice(In.find('[') + 1, In.find(' ')); Category = ""; return; } Class = In.slice(In.find('[') + 1, In.find('(')); Category = In.slice(In.find('[') + 1, In.find(' ')); return; } static StringRef getObjCMethodName(StringRef In) { return In.slice(In.find(' ') + 1, In.find(']')); } // Add the various names to the Dwarf accelerator table names. // TODO: Determine whether or not we should add names for programs // that do not have a DW_AT_name or DW_AT_linkage_name field - this // is only slightly different than the lookup of non-standard ObjC names. static void addSubprogramNames(CompileUnit *TheCU, DISubprogram SP, DIE* Die) { if (!SP.isDefinition()) return; TheCU->addAccelName(SP.getName(), Die); // If the linkage name is different than the name, go ahead and output // that as well into the name table. if (SP.getLinkageName() != "" && SP.getName() != SP.getLinkageName()) TheCU->addAccelName(SP.getLinkageName(), Die); // If this is an Objective-C selector name add it to the ObjC accelerator // too. if (isObjCClass(SP.getName())) { StringRef Class, Category; getObjCClassCategory(SP.getName(), Class, Category); TheCU->addAccelObjC(Class, Die); if (Category != "") TheCU->addAccelObjC(Category, Die); // Also add the base method name to the name table. TheCU->addAccelName(getObjCMethodName(SP.getName()), Die); } } /// isSubprogramContext - Return true if Context is either a subprogram /// or another context nested inside a subprogram. bool DwarfDebug::isSubprogramContext(const MDNode *Context) { if (!Context) return false; DIDescriptor D(Context); if (D.isSubprogram()) return true; if (D.isType()) return isSubprogramContext(resolve(DIType(Context).getContext())); return false; } // Find DIE for the given subprogram and attach appropriate DW_AT_low_pc // and DW_AT_high_pc attributes. If there are global variables in this // scope then create and insert DIEs for these variables. DIE *DwarfDebug::updateSubprogramScopeDIE(CompileUnit *SPCU, const MDNode *SPNode) { DIE *SPDie = getSPDIE(SPNode); assert(SPDie && "Unable to find subprogram DIE!"); DISubprogram SP(SPNode); // If we're updating an abstract DIE, then we will be adding the children and // object pointer later on. But what we don't want to do is process the // concrete DIE twice. DIE *AbsSPDIE = AbstractSPDies.lookup(SPNode); if (AbsSPDIE) { bool InSameCU = (AbsSPDIE->getCompileUnit() == SPCU->getCUDie()); // Pick up abstract subprogram DIE. SPDie = new DIE(dwarf::DW_TAG_subprogram); // If AbsSPDIE belongs to a different CU, use DW_FORM_ref_addr instead of // DW_FORM_ref4. SPCU->addDIEEntry(SPDie, dwarf::DW_AT_abstract_origin, InSameCU ? dwarf::DW_FORM_ref4 : dwarf::DW_FORM_ref_addr, AbsSPDIE); SPCU->addDie(SPDie); } else { DISubprogram SPDecl = SP.getFunctionDeclaration(); if (!SPDecl.isSubprogram()) { // There is not any need to generate specification DIE for a function // defined at compile unit level. If a function is defined inside another // function then gdb prefers the definition at top level and but does not // expect specification DIE in parent function. So avoid creating // specification DIE for a function defined inside a function. if (SP.isDefinition() && !SP.getContext().isCompileUnit() && !SP.getContext().isFile() && !isSubprogramContext(SP.getContext())) { SPCU->addFlag(SPDie, dwarf::DW_AT_declaration); // Add arguments. DICompositeType SPTy = SP.getType(); DIArray Args = SPTy.getTypeArray(); uint16_t SPTag = SPTy.getTag(); if (SPTag == dwarf::DW_TAG_subroutine_type) for (unsigned i = 1, N = Args.getNumElements(); i < N; ++i) { DIE *Arg = new DIE(dwarf::DW_TAG_formal_parameter); DIType ATy = DIType(Args.getElement(i)); SPCU->addType(Arg, ATy); if (ATy.isArtificial()) SPCU->addFlag(Arg, dwarf::DW_AT_artificial); if (ATy.isObjectPointer()) SPCU->addDIEEntry(SPDie, dwarf::DW_AT_object_pointer, dwarf::DW_FORM_ref4, Arg); SPDie->addChild(Arg); } DIE *SPDeclDie = SPDie; SPDie = new DIE(dwarf::DW_TAG_subprogram); SPCU->addDIEEntry(SPDie, dwarf::DW_AT_specification, dwarf::DW_FORM_ref4, SPDeclDie); SPCU->addDie(SPDie); } } } SPCU->addLabelAddress(SPDie, dwarf::DW_AT_low_pc, Asm->GetTempSymbol("func_begin", Asm->getFunctionNumber())); SPCU->addLabelAddress(SPDie, dwarf::DW_AT_high_pc, Asm->GetTempSymbol("func_end", Asm->getFunctionNumber())); const TargetRegisterInfo *RI = Asm->TM.getRegisterInfo(); MachineLocation Location(RI->getFrameRegister(*Asm->MF)); SPCU->addAddress(SPDie, dwarf::DW_AT_frame_base, Location); // Add name to the name table, we do this here because we're guaranteed // to have concrete versions of our DW_TAG_subprogram nodes. addSubprogramNames(SPCU, SP, SPDie); return SPDie; } /// Check whether we should create a DIE for the given Scope, return true /// if we don't create a DIE (the corresponding DIE is null). bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) { if (Scope->isAbstractScope()) return false; // We don't create a DIE if there is no Range. const SmallVectorImpl &Ranges = Scope->getRanges(); if (Ranges.empty()) return true; if (Ranges.size() > 1) return false; // We don't create a DIE if we have a single Range and the end label // is null. SmallVectorImpl::const_iterator RI = Ranges.begin(); MCSymbol *End = getLabelAfterInsn(RI->second); return !End; } // Construct new DW_TAG_lexical_block for this scope and attach // DW_AT_low_pc/DW_AT_high_pc labels. DIE *DwarfDebug::constructLexicalScopeDIE(CompileUnit *TheCU, LexicalScope *Scope) { if (isLexicalScopeDIENull(Scope)) return 0; DIE *ScopeDIE = new DIE(dwarf::DW_TAG_lexical_block); if (Scope->isAbstractScope()) return ScopeDIE; const SmallVectorImpl &Ranges = Scope->getRanges(); // If we have multiple ranges, emit them into the range section. if (Ranges.size() > 1) { // .debug_range section has not been laid out yet. Emit offset in // .debug_range as a uint, size 4, for now. emitDIE will handle // DW_AT_ranges appropriately. TheCU->addUInt(ScopeDIE, dwarf::DW_AT_ranges, dwarf::DW_FORM_data4, DebugRangeSymbols.size() * Asm->getDataLayout().getPointerSize()); for (SmallVectorImpl::const_iterator RI = Ranges.begin(), RE = Ranges.end(); RI != RE; ++RI) { DebugRangeSymbols.push_back(getLabelBeforeInsn(RI->first)); DebugRangeSymbols.push_back(getLabelAfterInsn(RI->second)); } // Terminate the range list. DebugRangeSymbols.push_back(NULL); DebugRangeSymbols.push_back(NULL); return ScopeDIE; } // Construct the address range for this DIE. SmallVectorImpl::const_iterator RI = Ranges.begin(); MCSymbol *Start = getLabelBeforeInsn(RI->first); MCSymbol *End = getLabelAfterInsn(RI->second); assert(End && "End label should not be null!"); assert(Start->isDefined() && "Invalid starting label for an inlined scope!"); assert(End->isDefined() && "Invalid end label for an inlined scope!"); TheCU->addLabelAddress(ScopeDIE, dwarf::DW_AT_low_pc, Start); TheCU->addLabelAddress(ScopeDIE, dwarf::DW_AT_high_pc, End); return ScopeDIE; } // This scope represents inlined body of a function. Construct DIE to // represent this concrete inlined copy of the function. DIE *DwarfDebug::constructInlinedScopeDIE(CompileUnit *TheCU, LexicalScope *Scope) { const SmallVectorImpl &Ranges = Scope->getRanges(); assert(Ranges.empty() == false && "LexicalScope does not have instruction markers!"); if (!Scope->getScopeNode()) return NULL; DIScope DS(Scope->getScopeNode()); DISubprogram InlinedSP = getDISubprogram(DS); DIE *OriginDIE = getSPDIE(InlinedSP); if (!OriginDIE) { DEBUG(dbgs() << "Unable to find original DIE for an inlined subprogram."); return NULL; } DIE *ScopeDIE = new DIE(dwarf::DW_TAG_inlined_subroutine); TheCU->addDIEEntry(ScopeDIE, dwarf::DW_AT_abstract_origin, dwarf::DW_FORM_ref4, OriginDIE); if (Ranges.size() > 1) { // .debug_range section has not been laid out yet. Emit offset in // .debug_range as a uint, size 4, for now. emitDIE will handle // DW_AT_ranges appropriately. TheCU->addUInt(ScopeDIE, dwarf::DW_AT_ranges, dwarf::DW_FORM_data4, DebugRangeSymbols.size() * Asm->getDataLayout().getPointerSize()); for (SmallVectorImpl::const_iterator RI = Ranges.begin(), RE = Ranges.end(); RI != RE; ++RI) { DebugRangeSymbols.push_back(getLabelBeforeInsn(RI->first)); DebugRangeSymbols.push_back(getLabelAfterInsn(RI->second)); } DebugRangeSymbols.push_back(NULL); DebugRangeSymbols.push_back(NULL); } else { SmallVectorImpl::const_iterator RI = Ranges.begin(); MCSymbol *StartLabel = getLabelBeforeInsn(RI->first); MCSymbol *EndLabel = getLabelAfterInsn(RI->second); if (StartLabel == 0 || EndLabel == 0) llvm_unreachable("Unexpected Start and End labels for an inlined scope!"); assert(StartLabel->isDefined() && "Invalid starting label for an inlined scope!"); assert(EndLabel->isDefined() && "Invalid end label for an inlined scope!"); TheCU->addLabelAddress(ScopeDIE, dwarf::DW_AT_low_pc, StartLabel); TheCU->addLabelAddress(ScopeDIE, dwarf::DW_AT_high_pc, EndLabel); } InlinedSubprogramDIEs.insert(OriginDIE); // Add the call site information to the DIE. DILocation DL(Scope->getInlinedAt()); TheCU->addUInt(ScopeDIE, dwarf::DW_AT_call_file, 0, getOrCreateSourceID(DL.getFilename(), DL.getDirectory(), TheCU->getUniqueID())); TheCU->addUInt(ScopeDIE, dwarf::DW_AT_call_line, 0, DL.getLineNumber()); // Add name to the name table, we do this here because we're guaranteed // to have concrete versions of our DW_TAG_inlined_subprogram nodes. addSubprogramNames(TheCU, InlinedSP, ScopeDIE); return ScopeDIE; } DIE *DwarfDebug::createScopeChildrenDIE(CompileUnit *TheCU, LexicalScope *Scope, SmallVectorImpl &Children) { DIE *ObjectPointer = NULL; // Collect arguments for current function. if (LScopes.isCurrentFunctionScope(Scope)) for (unsigned i = 0, N = CurrentFnArguments.size(); i < N; ++i) if (DbgVariable *ArgDV = CurrentFnArguments[i]) if (DIE *Arg = TheCU->constructVariableDIE(ArgDV, Scope->isAbstractScope())) { Children.push_back(Arg); if (ArgDV->isObjectPointer()) ObjectPointer = Arg; } // Collect lexical scope children first. const SmallVectorImpl &Variables =ScopeVariables.lookup(Scope); for (unsigned i = 0, N = Variables.size(); i < N; ++i) if (DIE *Variable = TheCU->constructVariableDIE(Variables[i], Scope->isAbstractScope())) { Children.push_back(Variable); if (Variables[i]->isObjectPointer()) ObjectPointer = Variable; } const SmallVectorImpl &Scopes = Scope->getChildren(); for (unsigned j = 0, M = Scopes.size(); j < M; ++j) if (DIE *Nested = constructScopeDIE(TheCU, Scopes[j])) Children.push_back(Nested); return ObjectPointer; } // Construct a DIE for this scope. DIE *DwarfDebug::constructScopeDIE(CompileUnit *TheCU, LexicalScope *Scope) { if (!Scope || !Scope->getScopeNode()) return NULL; DIScope DS(Scope->getScopeNode()); SmallVector Children; DIE *ObjectPointer = NULL; bool ChildrenCreated = false; // We try to create the scope DIE first, then the children DIEs. This will // avoid creating un-used children then removing them later when we find out // the scope DIE is null. DIE *ScopeDIE = NULL; if (Scope->getInlinedAt()) ScopeDIE = constructInlinedScopeDIE(TheCU, Scope); else if (DS.isSubprogram()) { ProcessedSPNodes.insert(DS); if (Scope->isAbstractScope()) { ScopeDIE = getSPDIE(DS); // Note down abstract DIE. if (ScopeDIE) AbstractSPDies.insert(std::make_pair(DS, ScopeDIE)); } else ScopeDIE = updateSubprogramScopeDIE(TheCU, DS); } else { // Early exit when we know the scope DIE is going to be null. if (isLexicalScopeDIENull(Scope)) return NULL; // We create children here when we know the scope DIE is not going to be // null and the children will be added to the scope DIE. ObjectPointer = createScopeChildrenDIE(TheCU, Scope, Children); ChildrenCreated = true; // There is no need to emit empty lexical block DIE. std::pair Range = std::equal_range( ScopesWithImportedEntities.begin(), ScopesWithImportedEntities.end(), std::pair(DS, (const MDNode*)0), less_first()); if (Children.empty() && Range.first == Range.second) return NULL; ScopeDIE = constructLexicalScopeDIE(TheCU, Scope); assert(ScopeDIE && "Scope DIE should not be null."); for (ImportedEntityMap::const_iterator i = Range.first; i != Range.second; ++i) constructImportedEntityDIE(TheCU, i->second, ScopeDIE); } if (!ScopeDIE) { assert(Children.empty() && "We create children only when the scope DIE is not null."); return NULL; } if (!ChildrenCreated) // We create children when the scope DIE is not null. ObjectPointer = createScopeChildrenDIE(TheCU, Scope, Children); // Add children for (SmallVectorImpl::iterator I = Children.begin(), E = Children.end(); I != E; ++I) ScopeDIE->addChild(*I); if (DS.isSubprogram() && ObjectPointer != NULL) TheCU->addDIEEntry(ScopeDIE, dwarf::DW_AT_object_pointer, dwarf::DW_FORM_ref4, ObjectPointer); if (DS.isSubprogram()) TheCU->addPubTypes(DISubprogram(DS)); return ScopeDIE; } // Look up the source id with the given directory and source file names. // If none currently exists, create a new id and insert it in the // SourceIds map. This can update DirectoryNames and SourceFileNames maps // as well. unsigned DwarfDebug::getOrCreateSourceID(StringRef FileName, StringRef DirName, unsigned CUID) { // If we use .loc in assembly, we can't separate .file entries according to // compile units. Thus all files will belong to the default compile unit. if (Asm->TM.hasMCUseLoc() && Asm->OutStreamer.getKind() == MCStreamer::SK_AsmStreamer) CUID = 0; // If FE did not provide a file name, then assume stdin. if (FileName.empty()) return getOrCreateSourceID("", StringRef(), CUID); // TODO: this might not belong here. See if we can factor this better. if (DirName == CompilationDir) DirName = ""; // FileIDCUMap stores the current ID for the given compile unit. unsigned SrcId = FileIDCUMap[CUID] + 1; // We look up the CUID/file/dir by concatenating them with a zero byte. SmallString<128> NamePair; NamePair += utostr(CUID); NamePair += '\0'; NamePair += DirName; NamePair += '\0'; // Zero bytes are not allowed in paths. NamePair += FileName; StringMapEntry &Ent = SourceIdMap.GetOrCreateValue(NamePair, SrcId); if (Ent.getValue() != SrcId) return Ent.getValue(); FileIDCUMap[CUID] = SrcId; // Print out a .file directive to specify files for .loc directives. Asm->OutStreamer.EmitDwarfFileDirective(SrcId, DirName, FileName, CUID); return SrcId; } // Create new CompileUnit for the given metadata node with tag // DW_TAG_compile_unit. CompileUnit *DwarfDebug::constructCompileUnit(const MDNode *N) { DICompileUnit DIUnit(N); StringRef FN = DIUnit.getFilename(); CompilationDir = DIUnit.getDirectory(); DIE *Die = new DIE(dwarf::DW_TAG_compile_unit); CompileUnit *NewCU = new CompileUnit(GlobalCUIndexCount++, Die, N, Asm, this, &InfoHolder); FileIDCUMap[NewCU->getUniqueID()] = 0; // Call this to emit a .file directive if it wasn't emitted for the source // file this CU comes from yet. getOrCreateSourceID(FN, CompilationDir, NewCU->getUniqueID()); NewCU->addString(Die, dwarf::DW_AT_producer, DIUnit.getProducer()); NewCU->addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2, DIUnit.getLanguage()); NewCU->addString(Die, dwarf::DW_AT_name, FN); // 2.17.1 requires that we use DW_AT_low_pc for a single entry point // into an entity. We're using 0 (or a NULL label) for this. For // split dwarf it's in the skeleton CU so omit it here. if (!useSplitDwarf()) NewCU->addLabelAddress(Die, dwarf::DW_AT_low_pc, NULL); // Define start line table label for each Compile Unit. MCSymbol *LineTableStartSym = Asm->GetTempSymbol("line_table_start", NewCU->getUniqueID()); Asm->OutStreamer.getContext().setMCLineTableSymbol(LineTableStartSym, NewCU->getUniqueID()); // Use a single line table if we are using .loc and generating assembly. bool UseTheFirstCU = (Asm->TM.hasMCUseLoc() && Asm->OutStreamer.getKind() == MCStreamer::SK_AsmStreamer) || (NewCU->getUniqueID() == 0); if (!useSplitDwarf()) { // DW_AT_stmt_list is a offset of line number information for this // compile unit in debug_line section. For split dwarf this is // left in the skeleton CU and so not included. // The line table entries are not always emitted in assembly, so it // is not okay to use line_table_start here. if (Asm->MAI->doesDwarfUseRelocationsAcrossSections()) NewCU->addLabel(Die, dwarf::DW_AT_stmt_list, dwarf::DW_FORM_sec_offset, UseTheFirstCU ? Asm->GetTempSymbol("section_line") : LineTableStartSym); else if (UseTheFirstCU) NewCU->addUInt(Die, dwarf::DW_AT_stmt_list, dwarf::DW_FORM_data4, 0); else NewCU->addDelta(Die, dwarf::DW_AT_stmt_list, dwarf::DW_FORM_data4, LineTableStartSym, DwarfLineSectionSym); // If we're using split dwarf the compilation dir is going to be in the // skeleton CU and so we don't need to duplicate it here. if (!CompilationDir.empty()) NewCU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); // Flags to let the linker know we have emitted new style pubnames. Only // emit it here if we don't have a skeleton CU for split dwarf. if (GenerateGnuPubSections) { if (Asm->MAI->doesDwarfUseRelocationsAcrossSections()) NewCU->addLabel(Die, dwarf::DW_AT_GNU_pubnames, dwarf::DW_FORM_sec_offset, Asm->GetTempSymbol("gnu_pubnames", NewCU->getUniqueID())); else NewCU->addDelta(Die, dwarf::DW_AT_GNU_pubnames, dwarf::DW_FORM_data4, Asm->GetTempSymbol("gnu_pubnames", NewCU->getUniqueID()), DwarfGnuPubNamesSectionSym); if (Asm->MAI->doesDwarfUseRelocationsAcrossSections()) NewCU->addLabel(Die, dwarf::DW_AT_GNU_pubtypes, dwarf::DW_FORM_sec_offset, Asm->GetTempSymbol("gnu_pubtypes", NewCU->getUniqueID())); else NewCU->addDelta(Die, dwarf::DW_AT_GNU_pubtypes, dwarf::DW_FORM_data4, Asm->GetTempSymbol("gnu_pubtypes", NewCU->getUniqueID()), DwarfGnuPubTypesSectionSym); } } if (DIUnit.isOptimized()) NewCU->addFlag(Die, dwarf::DW_AT_APPLE_optimized); StringRef Flags = DIUnit.getFlags(); if (!Flags.empty()) NewCU->addString(Die, dwarf::DW_AT_APPLE_flags, Flags); if (unsigned RVer = DIUnit.getRunTimeVersion()) NewCU->addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers, dwarf::DW_FORM_data1, RVer); if (!FirstCU) FirstCU = NewCU; InfoHolder.addUnit(NewCU); CUMap.insert(std::make_pair(N, NewCU)); return NewCU; } // Construct subprogram DIE. void DwarfDebug::constructSubprogramDIE(CompileUnit *TheCU, const MDNode *N) { CompileUnit *&CURef = SPMap[N]; if (CURef) return; CURef = TheCU; DISubprogram SP(N); if (!SP.isDefinition()) // This is a method declaration which will be handled while constructing // class type. return; DIE *SubprogramDie = TheCU->getOrCreateSubprogramDIE(SP); // Expose as a global name. TheCU->addGlobalName(SP.getName(), SubprogramDie); } void DwarfDebug::constructImportedEntityDIE(CompileUnit *TheCU, const MDNode *N) { DIImportedEntity Module(N); if (!Module.Verify()) return; if (DIE *D = TheCU->getOrCreateContextDIE(Module.getContext())) constructImportedEntityDIE(TheCU, Module, D); } void DwarfDebug::constructImportedEntityDIE(CompileUnit *TheCU, const MDNode *N, DIE *Context) { DIImportedEntity Module(N); if (!Module.Verify()) return; return constructImportedEntityDIE(TheCU, Module, Context); } void DwarfDebug::constructImportedEntityDIE(CompileUnit *TheCU, const DIImportedEntity &Module, DIE *Context) { assert(Module.Verify() && "Use one of the MDNode * overloads to handle invalid metadata"); assert(Context && "Should always have a context for an imported_module"); DIE *IMDie = new DIE(Module.getTag()); TheCU->insertDIE(Module, IMDie); DIE *EntityDie; DIDescriptor Entity = Module.getEntity(); if (Entity.isNameSpace()) EntityDie = TheCU->getOrCreateNameSpace(DINameSpace(Entity)); else if (Entity.isSubprogram()) EntityDie = TheCU->getOrCreateSubprogramDIE(DISubprogram(Entity)); else if (Entity.isType()) EntityDie = TheCU->getOrCreateTypeDIE(DIType(Entity)); else EntityDie = TheCU->getDIE(Entity); unsigned FileID = getOrCreateSourceID(Module.getContext().getFilename(), Module.getContext().getDirectory(), TheCU->getUniqueID()); TheCU->addUInt(IMDie, dwarf::DW_AT_decl_file, 0, FileID); TheCU->addUInt(IMDie, dwarf::DW_AT_decl_line, 0, Module.getLineNumber()); TheCU->addDIEEntry(IMDie, dwarf::DW_AT_import, dwarf::DW_FORM_ref4, EntityDie); StringRef Name = Module.getName(); if (!Name.empty()) TheCU->addString(IMDie, dwarf::DW_AT_name, Name); Context->addChild(IMDie); } // Emit all Dwarf sections that should come prior to the content. Create // global DIEs and emit initial debug info sections. This is invoked by // the target AsmPrinter. void DwarfDebug::beginModule() { if (DisableDebugInfoPrinting) return; const Module *M = MMI->getModule(); // If module has named metadata anchors then use them, otherwise scan the // module using debug info finder to collect debug info. NamedMDNode *CU_Nodes = M->getNamedMetadata("llvm.dbg.cu"); if (!CU_Nodes) return; TypeIdentifierMap = generateDITypeIdentifierMap(CU_Nodes); // Emit initial sections so we can reference labels later. emitSectionLabels(); for (unsigned i = 0, e = CU_Nodes->getNumOperands(); i != e; ++i) { DICompileUnit CUNode(CU_Nodes->getOperand(i)); CompileUnit *CU = constructCompileUnit(CUNode); DIArray ImportedEntities = CUNode.getImportedEntities(); for (unsigned i = 0, e = ImportedEntities.getNumElements(); i != e; ++i) ScopesWithImportedEntities.push_back(std::make_pair( DIImportedEntity(ImportedEntities.getElement(i)).getContext(), ImportedEntities.getElement(i))); std::sort(ScopesWithImportedEntities.begin(), ScopesWithImportedEntities.end(), less_first()); DIArray GVs = CUNode.getGlobalVariables(); for (unsigned i = 0, e = GVs.getNumElements(); i != e; ++i) CU->createGlobalVariableDIE(GVs.getElement(i)); DIArray SPs = CUNode.getSubprograms(); for (unsigned i = 0, e = SPs.getNumElements(); i != e; ++i) constructSubprogramDIE(CU, SPs.getElement(i)); DIArray EnumTypes = CUNode.getEnumTypes(); for (unsigned i = 0, e = EnumTypes.getNumElements(); i != e; ++i) CU->getOrCreateTypeDIE(EnumTypes.getElement(i)); DIArray RetainedTypes = CUNode.getRetainedTypes(); for (unsigned i = 0, e = RetainedTypes.getNumElements(); i != e; ++i) CU->getOrCreateTypeDIE(RetainedTypes.getElement(i)); // Emit imported_modules last so that the relevant context is already // available. for (unsigned i = 0, e = ImportedEntities.getNumElements(); i != e; ++i) constructImportedEntityDIE(CU, ImportedEntities.getElement(i)); } // Tell MMI that we have debug info. MMI->setDebugInfoAvailability(true); // Prime section data. SectionMap[Asm->getObjFileLowering().getTextSection()]; } // Attach DW_AT_inline attribute with inlined subprogram DIEs. void DwarfDebug::computeInlinedDIEs() { // Attach DW_AT_inline attribute with inlined subprogram DIEs. for (SmallPtrSet::iterator AI = InlinedSubprogramDIEs.begin(), AE = InlinedSubprogramDIEs.end(); AI != AE; ++AI) { DIE *ISP = *AI; FirstCU->addUInt(ISP, dwarf::DW_AT_inline, 0, dwarf::DW_INL_inlined); } for (DenseMap::iterator AI = AbstractSPDies.begin(), AE = AbstractSPDies.end(); AI != AE; ++AI) { DIE *ISP = AI->second; if (InlinedSubprogramDIEs.count(ISP)) continue; FirstCU->addUInt(ISP, dwarf::DW_AT_inline, 0, dwarf::DW_INL_inlined); } } // Collect info for variables that were optimized out. void DwarfDebug::collectDeadVariables() { const Module *M = MMI->getModule(); DenseMap DeadFnScopeMap; if (NamedMDNode *CU_Nodes = M->getNamedMetadata("llvm.dbg.cu")) { for (unsigned i = 0, e = CU_Nodes->getNumOperands(); i != e; ++i) { DICompileUnit TheCU(CU_Nodes->getOperand(i)); DIArray Subprograms = TheCU.getSubprograms(); for (unsigned i = 0, e = Subprograms.getNumElements(); i != e; ++i) { DISubprogram SP(Subprograms.getElement(i)); if (ProcessedSPNodes.count(SP) != 0) continue; if (!SP.isSubprogram()) continue; if (!SP.isDefinition()) continue; DIArray Variables = SP.getVariables(); if (Variables.getNumElements() == 0) continue; LexicalScope *Scope = new LexicalScope(NULL, DIDescriptor(SP), NULL, false); DeadFnScopeMap[SP] = Scope; // Construct subprogram DIE and add variables DIEs. CompileUnit *SPCU = CUMap.lookup(TheCU); assert(SPCU && "Unable to find Compile Unit!"); constructSubprogramDIE(SPCU, SP); DIE *ScopeDIE = getSPDIE(SP); for (unsigned vi = 0, ve = Variables.getNumElements(); vi != ve; ++vi) { DIVariable DV(Variables.getElement(vi)); if (!DV.isVariable()) continue; DbgVariable NewVar(DV, NULL, this); if (DIE *VariableDIE = SPCU->constructVariableDIE(&NewVar, Scope->isAbstractScope())) ScopeDIE->addChild(VariableDIE); } } } } DeleteContainerSeconds(DeadFnScopeMap); } // Type Signature [7.27] and ODR Hash code. /// \brief Grabs the string in whichever attribute is passed in and returns /// a reference to it. Returns "" if the attribute doesn't exist. static StringRef getDIEStringAttr(DIE *Die, unsigned Attr) { DIEValue *V = Die->findAttribute(Attr); if (DIEString *S = dyn_cast_or_null(V)) return S->getString(); return StringRef(""); } /// Return true if the current DIE is contained within an anonymous namespace. static bool isContainedInAnonNamespace(DIE *Die) { DIE *Parent = Die->getParent(); while (Parent) { if (Parent->getTag() == dwarf::DW_TAG_namespace && getDIEStringAttr(Parent, dwarf::DW_AT_name) == "") return true; Parent = Parent->getParent(); } return false; } /// Test if the current CU language is C++ and that we have /// a named type that is not contained in an anonymous namespace. static bool shouldAddODRHash(CompileUnit *CU, DIE *Die) { return CU->getLanguage() == dwarf::DW_LANG_C_plus_plus && getDIEStringAttr(Die, dwarf::DW_AT_name) != "" && !isContainedInAnonNamespace(Die); } void DwarfDebug::finalizeModuleInfo() { // Collect info for variables that were optimized out. collectDeadVariables(); // Attach DW_AT_inline attribute with inlined subprogram DIEs. computeInlinedDIEs(); // Split out type units and conditionally add an ODR tag to the split // out type. // FIXME: Do type splitting. for (unsigned i = 0, e = TypeUnits.size(); i != e; ++i) { DIE *Die = TypeUnits[i]; DIEHash Hash; // If we've requested ODR hashes and it's applicable for an ODR hash then // add the ODR signature now. // FIXME: This should be added onto the type unit, not the type, but this // works as an intermediate stage. if (GenerateODRHash && shouldAddODRHash(CUMap.begin()->second, Die)) CUMap.begin()->second->addUInt(Die, dwarf::DW_AT_GNU_odr_signature, dwarf::DW_FORM_data8, Hash.computeDIEODRSignature(Die)); } // Process the worklist to add attributes with the correct form (ref_addr or // ref4). for (unsigned I = 0, E = DIEEntryWorklist.size(); I < E; I++) { addDIEEntry(DIEEntryWorklist[I].Die, DIEEntryWorklist[I].Attribute, dwarf::DW_FORM_ref4, DIEEntryWorklist[I].Entry); assert(E == DIEEntryWorklist.size() && "We should not add to the worklist during finalization."); } // Handle anything that needs to be done on a per-cu basis. for (DenseMap::iterator CUI = CUMap.begin(), CUE = CUMap.end(); CUI != CUE; ++CUI) { CompileUnit *TheCU = CUI->second; // Emit DW_AT_containing_type attribute to connect types with their // vtable holding type. TheCU->constructContainingTypeDIEs(); // If we're splitting the dwarf out now that we've got the entire // CU then construct a skeleton CU based upon it. if (useSplitDwarf()) { uint64_t ID = 0; if (GenerateCUHash) { DIEHash CUHash; ID = CUHash.computeCUSignature(TheCU->getCUDie()); } // This should be a unique identifier when we want to build .dwp files. TheCU->addUInt(TheCU->getCUDie(), dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8, ID); // Now construct the skeleton CU associated. CompileUnit *SkCU = constructSkeletonCU(TheCU); // This should be a unique identifier when we want to build .dwp files. SkCU->addUInt(SkCU->getCUDie(), dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8, ID); } } // Compute DIE offsets and sizes. InfoHolder.computeSizeAndOffsets(); if (useSplitDwarf()) SkeletonHolder.computeSizeAndOffsets(); } void DwarfDebug::endSections() { // Filter labels by section. for (size_t n = 0; n < ArangeLabels.size(); n++) { const SymbolCU &SCU = ArangeLabels[n]; if (SCU.Sym->isInSection()) { // Make a note of this symbol and it's section. const MCSection *Section = &SCU.Sym->getSection(); if (!Section->getKind().isMetadata()) SectionMap[Section].push_back(SCU); } else { // Some symbols (e.g. common/bss on mach-o) can have no section but still // appear in the output. This sucks as we rely on sections to build // arange spans. We can do it without, but it's icky. SectionMap[NULL].push_back(SCU); } } // Add terminating symbols for each section. for (SectionMapType::iterator it = SectionMap.begin(); it != SectionMap.end(); it++) { const MCSection *Section = it->first; MCSymbol *Sym = NULL; if (Section) { Sym = Asm->GetTempSymbol(Section->getLabelEndName()); Asm->OutStreamer.SwitchSection(Section); Asm->OutStreamer.EmitLabel(Sym); } // Insert a final terminator. SectionMap[Section].push_back(SymbolCU(NULL, Sym)); } } // Emit all Dwarf sections that should come after the content. void DwarfDebug::endModule() { if (!FirstCU) return; // End any existing sections. // TODO: Does this need to happen? endSections(); // Finalize the debug info for the module. finalizeModuleInfo(); if (!useSplitDwarf()) { emitDebugStr(); // Emit all the DIEs into a debug info section. emitDebugInfo(); // Corresponding abbreviations into a abbrev section. emitAbbreviations(); // Emit info into a debug loc section. emitDebugLoc(); // Emit info into a debug aranges section. emitDebugARanges(); // Emit info into a debug ranges section. emitDebugRanges(); // Emit info into a debug macinfo section. emitDebugMacInfo(); } else { // TODO: Fill this in for separated debug sections and separate // out information into new sections. emitDebugStr(); if (useSplitDwarf()) emitDebugStrDWO(); // Emit the debug info section and compile units. emitDebugInfo(); emitDebugInfoDWO(); // Corresponding abbreviations into a abbrev section. emitAbbreviations(); emitDebugAbbrevDWO(); // Emit info into a debug loc section. emitDebugLoc(); // Emit info into a debug aranges section. emitDebugARanges(); // Emit info into a debug ranges section. emitDebugRanges(); // Emit info into a debug macinfo section. emitDebugMacInfo(); // Emit DWO addresses. InfoHolder.emitAddresses(Asm->getObjFileLowering().getDwarfAddrSection()); } // Emit info into the dwarf accelerator table sections. if (useDwarfAccelTables()) { emitAccelNames(); emitAccelObjC(); emitAccelNamespaces(); emitAccelTypes(); } // Emit the pubnames and pubtypes sections if requested. if (HasDwarfPubSections) { emitDebugPubNames(GenerateGnuPubSections); emitDebugPubTypes(GenerateGnuPubSections); } // clean up. SPMap.clear(); for (DenseMap::iterator I = CUMap.begin(), E = CUMap.end(); I != E; ++I) delete I->second; for (SmallVectorImpl::iterator I = SkeletonCUs.begin(), E = SkeletonCUs.end(); I != E; ++I) delete *I; // Reset these for the next Module if we have one. FirstCU = NULL; } // Find abstract variable, if any, associated with Var. DbgVariable *DwarfDebug::findAbstractVariable(DIVariable &DV, DebugLoc ScopeLoc) { LLVMContext &Ctx = DV->getContext(); // More then one inlined variable corresponds to one abstract variable. DIVariable Var = cleanseInlinedVariable(DV, Ctx); DbgVariable *AbsDbgVariable = AbstractVariables.lookup(Var); if (AbsDbgVariable) return AbsDbgVariable; LexicalScope *Scope = LScopes.findAbstractScope(ScopeLoc.getScope(Ctx)); if (!Scope) return NULL; AbsDbgVariable = new DbgVariable(Var, NULL, this); addScopeVariable(Scope, AbsDbgVariable); AbstractVariables[Var] = AbsDbgVariable; return AbsDbgVariable; } // If Var is a current function argument then add it to CurrentFnArguments list. bool DwarfDebug::addCurrentFnArgument(const MachineFunction *MF, DbgVariable *Var, LexicalScope *Scope) { if (!LScopes.isCurrentFunctionScope(Scope)) return false; DIVariable DV = Var->getVariable(); if (DV.getTag() != dwarf::DW_TAG_arg_variable) return false; unsigned ArgNo = DV.getArgNumber(); if (ArgNo == 0) return false; size_t Size = CurrentFnArguments.size(); if (Size == 0) CurrentFnArguments.resize(MF->getFunction()->arg_size()); // llvm::Function argument size is not good indicator of how many // arguments does the function have at source level. if (ArgNo > Size) CurrentFnArguments.resize(ArgNo * 2); CurrentFnArguments[ArgNo - 1] = Var; return true; } // Collect variable information from side table maintained by MMI. void DwarfDebug::collectVariableInfoFromMMITable(const MachineFunction *MF, SmallPtrSet &Processed) { MachineModuleInfo::VariableDbgInfoMapTy &VMap = MMI->getVariableDbgInfo(); for (MachineModuleInfo::VariableDbgInfoMapTy::iterator VI = VMap.begin(), VE = VMap.end(); VI != VE; ++VI) { const MDNode *Var = VI->first; if (!Var) continue; Processed.insert(Var); DIVariable DV(Var); const std::pair &VP = VI->second; LexicalScope *Scope = LScopes.findLexicalScope(VP.second); // If variable scope is not found then skip this variable. if (Scope == 0) continue; DbgVariable *AbsDbgVariable = findAbstractVariable(DV, VP.second); DbgVariable *RegVar = new DbgVariable(DV, AbsDbgVariable, this); RegVar->setFrameIndex(VP.first); if (!addCurrentFnArgument(MF, RegVar, Scope)) addScopeVariable(Scope, RegVar); if (AbsDbgVariable) AbsDbgVariable->setFrameIndex(VP.first); } } // Return true if debug value, encoded by DBG_VALUE instruction, is in a // defined reg. static bool isDbgValueInDefinedReg(const MachineInstr *MI) { assert(MI->isDebugValue() && "Invalid DBG_VALUE machine instruction!"); return MI->getNumOperands() == 3 && MI->getOperand(0).isReg() && MI->getOperand(0).getReg() && (MI->getOperand(1).isImm() || (MI->getOperand(1).isReg() && MI->getOperand(1).getReg() == 0U)); } // Get .debug_loc entry for the instruction range starting at MI. static DotDebugLocEntry getDebugLocEntry(AsmPrinter *Asm, const MCSymbol *FLabel, const MCSymbol *SLabel, const MachineInstr *MI) { const MDNode *Var = MI->getOperand(MI->getNumOperands() - 1).getMetadata(); assert(MI->getNumOperands() == 3); if (MI->getOperand(0).isReg()) { MachineLocation MLoc; // If the second operand is an immediate, this is a // register-indirect address. if (!MI->getOperand(1).isImm()) MLoc.set(MI->getOperand(0).getReg()); else MLoc.set(MI->getOperand(0).getReg(), MI->getOperand(1).getImm()); return DotDebugLocEntry(FLabel, SLabel, MLoc, Var); } if (MI->getOperand(0).isImm()) return DotDebugLocEntry(FLabel, SLabel, MI->getOperand(0).getImm()); if (MI->getOperand(0).isFPImm()) return DotDebugLocEntry(FLabel, SLabel, MI->getOperand(0).getFPImm()); if (MI->getOperand(0).isCImm()) return DotDebugLocEntry(FLabel, SLabel, MI->getOperand(0).getCImm()); llvm_unreachable("Unexpected 3 operand DBG_VALUE instruction!"); } // Find variables for each lexical scope. void DwarfDebug::collectVariableInfo(const MachineFunction *MF, SmallPtrSet &Processed) { // Grab the variable info that was squirreled away in the MMI side-table. collectVariableInfoFromMMITable(MF, Processed); for (SmallVectorImpl::const_iterator UVI = UserVariables.begin(), UVE = UserVariables.end(); UVI != UVE; ++UVI) { const MDNode *Var = *UVI; if (Processed.count(Var)) continue; // History contains relevant DBG_VALUE instructions for Var and instructions // clobbering it. SmallVectorImpl &History = DbgValues[Var]; if (History.empty()) continue; const MachineInstr *MInsn = History.front(); DIVariable DV(Var); LexicalScope *Scope = NULL; if (DV.getTag() == dwarf::DW_TAG_arg_variable && DISubprogram(DV.getContext()).describes(MF->getFunction())) Scope = LScopes.getCurrentFunctionScope(); else if (MDNode *IA = DV.getInlinedAt()) Scope = LScopes.findInlinedScope(DebugLoc::getFromDILocation(IA)); else Scope = LScopes.findLexicalScope(cast(DV->getOperand(1))); // If variable scope is not found then skip this variable. if (!Scope) continue; Processed.insert(DV); assert(MInsn->isDebugValue() && "History must begin with debug value"); DbgVariable *AbsVar = findAbstractVariable(DV, MInsn->getDebugLoc()); DbgVariable *RegVar = new DbgVariable(DV, AbsVar, this); if (!addCurrentFnArgument(MF, RegVar, Scope)) addScopeVariable(Scope, RegVar); if (AbsVar) AbsVar->setMInsn(MInsn); // Simplify ranges that are fully coalesced. if (History.size() <= 1 || (History.size() == 2 && MInsn->isIdenticalTo(History.back()))) { RegVar->setMInsn(MInsn); continue; } // Handle multiple DBG_VALUE instructions describing one variable. RegVar->setDotDebugLocOffset(DotDebugLocEntries.size()); for (SmallVectorImpl::const_iterator HI = History.begin(), HE = History.end(); HI != HE; ++HI) { const MachineInstr *Begin = *HI; assert(Begin->isDebugValue() && "Invalid History entry"); // Check if DBG_VALUE is truncating a range. if (Begin->getNumOperands() > 1 && Begin->getOperand(0).isReg() && !Begin->getOperand(0).getReg()) continue; // Compute the range for a register location. const MCSymbol *FLabel = getLabelBeforeInsn(Begin); const MCSymbol *SLabel = 0; if (HI + 1 == HE) // If Begin is the last instruction in History then its value is valid // until the end of the function. SLabel = FunctionEndSym; else { const MachineInstr *End = HI[1]; DEBUG(dbgs() << "DotDebugLoc Pair:\n" << "\t" << *Begin << "\t" << *End << "\n"); if (End->isDebugValue()) SLabel = getLabelBeforeInsn(End); else { // End is a normal instruction clobbering the range. SLabel = getLabelAfterInsn(End); assert(SLabel && "Forgot label after clobber instruction"); ++HI; } } // The value is valid until the next DBG_VALUE or clobber. DotDebugLocEntries.push_back(getDebugLocEntry(Asm, FLabel, SLabel, Begin)); } DotDebugLocEntries.push_back(DotDebugLocEntry()); } // Collect info for variables that were optimized out. LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); DIArray Variables = DISubprogram(FnScope->getScopeNode()).getVariables(); for (unsigned i = 0, e = Variables.getNumElements(); i != e; ++i) { DIVariable DV(Variables.getElement(i)); if (!DV || !DV.isVariable() || !Processed.insert(DV)) continue; if (LexicalScope *Scope = LScopes.findLexicalScope(DV.getContext())) addScopeVariable(Scope, new DbgVariable(DV, NULL, this)); } } // Return Label preceding the instruction. MCSymbol *DwarfDebug::getLabelBeforeInsn(const MachineInstr *MI) { MCSymbol *Label = LabelsBeforeInsn.lookup(MI); assert(Label && "Didn't insert label before instruction"); return Label; } // Return Label immediately following the instruction. MCSymbol *DwarfDebug::getLabelAfterInsn(const MachineInstr *MI) { return LabelsAfterInsn.lookup(MI); } // Process beginning of an instruction. void DwarfDebug::beginInstruction(const MachineInstr *MI) { // Check if source location changes, but ignore DBG_VALUE locations. if (!MI->isDebugValue()) { DebugLoc DL = MI->getDebugLoc(); if (DL != PrevInstLoc && (!DL.isUnknown() || UnknownLocations)) { unsigned Flags = 0; PrevInstLoc = DL; if (DL == PrologEndLoc) { Flags |= DWARF2_FLAG_PROLOGUE_END; PrologEndLoc = DebugLoc(); } if (PrologEndLoc.isUnknown()) Flags |= DWARF2_FLAG_IS_STMT; if (!DL.isUnknown()) { const MDNode *Scope = DL.getScope(Asm->MF->getFunction()->getContext()); recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags); } else recordSourceLine(0, 0, 0, 0); } } // Insert labels where requested. DenseMap::iterator I = LabelsBeforeInsn.find(MI); // No label needed. if (I == LabelsBeforeInsn.end()) return; // Label already assigned. if (I->second) return; if (!PrevLabel) { PrevLabel = MMI->getContext().CreateTempSymbol(); Asm->OutStreamer.EmitLabel(PrevLabel); } I->second = PrevLabel; } // Process end of an instruction. void DwarfDebug::endInstruction(const MachineInstr *MI) { // Don't create a new label after DBG_VALUE instructions. // They don't generate code. if (!MI->isDebugValue()) PrevLabel = 0; DenseMap::iterator I = LabelsAfterInsn.find(MI); // No label needed. if (I == LabelsAfterInsn.end()) return; // Label already assigned. if (I->second) return; // We need a label after this instruction. if (!PrevLabel) { PrevLabel = MMI->getContext().CreateTempSymbol(); Asm->OutStreamer.EmitLabel(PrevLabel); } I->second = PrevLabel; } // Each LexicalScope has first instruction and last instruction to mark // beginning and end of a scope respectively. Create an inverse map that list // scopes starts (and ends) with an instruction. One instruction may start (or // end) multiple scopes. Ignore scopes that are not reachable. void DwarfDebug::identifyScopeMarkers() { SmallVector WorkList; WorkList.push_back(LScopes.getCurrentFunctionScope()); while (!WorkList.empty()) { LexicalScope *S = WorkList.pop_back_val(); const SmallVectorImpl &Children = S->getChildren(); if (!Children.empty()) for (SmallVectorImpl::const_iterator SI = Children.begin(), SE = Children.end(); SI != SE; ++SI) WorkList.push_back(*SI); if (S->isAbstractScope()) continue; const SmallVectorImpl &Ranges = S->getRanges(); if (Ranges.empty()) continue; for (SmallVectorImpl::const_iterator RI = Ranges.begin(), RE = Ranges.end(); RI != RE; ++RI) { assert(RI->first && "InsnRange does not have first instruction!"); assert(RI->second && "InsnRange does not have second instruction!"); requestLabelBeforeInsn(RI->first); requestLabelAfterInsn(RI->second); } } } // Get MDNode for DebugLoc's scope. static MDNode *getScopeNode(DebugLoc DL, const LLVMContext &Ctx) { if (MDNode *InlinedAt = DL.getInlinedAt(Ctx)) return getScopeNode(DebugLoc::getFromDILocation(InlinedAt), Ctx); return DL.getScope(Ctx); } // Walk up the scope chain of given debug loc and find line number info // for the function. static DebugLoc getFnDebugLoc(DebugLoc DL, const LLVMContext &Ctx) { const MDNode *Scope = getScopeNode(DL, Ctx); DISubprogram SP = getDISubprogram(Scope); if (SP.isSubprogram()) { // Check for number of operands since the compatibility is // cheap here. if (SP->getNumOperands() > 19) return DebugLoc::get(SP.getScopeLineNumber(), 0, SP); else return DebugLoc::get(SP.getLineNumber(), 0, SP); } return DebugLoc(); } // Gather pre-function debug information. Assumes being called immediately // after the function entry point has been emitted. void DwarfDebug::beginFunction(const MachineFunction *MF) { if (!MMI->hasDebugInfo()) return; LScopes.initialize(*MF); if (LScopes.empty()) return; identifyScopeMarkers(); // Set DwarfCompileUnitID in MCContext to the Compile Unit this function // belongs to. LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); CompileUnit *TheCU = SPMap.lookup(FnScope->getScopeNode()); assert(TheCU && "Unable to find compile unit!"); if (Asm->TM.hasMCUseLoc() && Asm->OutStreamer.getKind() == MCStreamer::SK_AsmStreamer) // Use a single line table if we are using .loc and generating assembly. Asm->OutStreamer.getContext().setDwarfCompileUnitID(0); else Asm->OutStreamer.getContext().setDwarfCompileUnitID(TheCU->getUniqueID()); FunctionBeginSym = Asm->GetTempSymbol("func_begin", Asm->getFunctionNumber()); // Assumes in correct section after the entry point. Asm->OutStreamer.EmitLabel(FunctionBeginSym); assert(UserVariables.empty() && DbgValues.empty() && "Maps weren't cleaned"); const TargetRegisterInfo *TRI = Asm->TM.getRegisterInfo(); // LiveUserVar - Map physreg numbers to the MDNode they contain. std::vector LiveUserVar(TRI->getNumRegs()); for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); I != E; ++I) { bool AtBlockEntry = true; for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end(); II != IE; ++II) { const MachineInstr *MI = II; if (MI->isDebugValue()) { assert(MI->getNumOperands() > 1 && "Invalid machine instruction!"); // Keep track of user variables. const MDNode *Var = MI->getOperand(MI->getNumOperands() - 1).getMetadata(); // Variable is in a register, we need to check for clobbers. if (isDbgValueInDefinedReg(MI)) LiveUserVar[MI->getOperand(0).getReg()] = Var; // Check the history of this variable. SmallVectorImpl &History = DbgValues[Var]; if (History.empty()) { UserVariables.push_back(Var); // The first mention of a function argument gets the FunctionBeginSym // label, so arguments are visible when breaking at function entry. DIVariable DV(Var); if (DV.isVariable() && DV.getTag() == dwarf::DW_TAG_arg_variable && DISubprogram(getDISubprogram(DV.getContext())) .describes(MF->getFunction())) LabelsBeforeInsn[MI] = FunctionBeginSym; } else { // We have seen this variable before. Try to coalesce DBG_VALUEs. const MachineInstr *Prev = History.back(); if (Prev->isDebugValue()) { // Coalesce identical entries at the end of History. if (History.size() >= 2 && Prev->isIdenticalTo(History[History.size() - 2])) { DEBUG(dbgs() << "Coalescing identical DBG_VALUE entries:\n" << "\t" << *Prev << "\t" << *History[History.size() - 2] << "\n"); History.pop_back(); } // Terminate old register assignments that don't reach MI; MachineFunction::const_iterator PrevMBB = Prev->getParent(); if (PrevMBB != I && (!AtBlockEntry || llvm::next(PrevMBB) != I) && isDbgValueInDefinedReg(Prev)) { // Previous register assignment needs to terminate at the end of // its basic block. MachineBasicBlock::const_iterator LastMI = PrevMBB->getLastNonDebugInstr(); if (LastMI == PrevMBB->end()) { // Drop DBG_VALUE for empty range. DEBUG(dbgs() << "Dropping DBG_VALUE for empty range:\n" << "\t" << *Prev << "\n"); History.pop_back(); } else if (llvm::next(PrevMBB) != PrevMBB->getParent()->end()) // Terminate after LastMI. History.push_back(LastMI); } } } History.push_back(MI); } else { // Not a DBG_VALUE instruction. if (!MI->isLabel()) AtBlockEntry = false; // First known non-DBG_VALUE and non-frame setup location marks // the beginning of the function body. if (!MI->getFlag(MachineInstr::FrameSetup) && (PrologEndLoc.isUnknown() && !MI->getDebugLoc().isUnknown())) PrologEndLoc = MI->getDebugLoc(); // Check if the instruction clobbers any registers with debug vars. for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(), MOE = MI->operands_end(); MOI != MOE; ++MOI) { if (!MOI->isReg() || !MOI->isDef() || !MOI->getReg()) continue; for (MCRegAliasIterator AI(MOI->getReg(), TRI, true); AI.isValid(); ++AI) { unsigned Reg = *AI; const MDNode *Var = LiveUserVar[Reg]; if (!Var) continue; // Reg is now clobbered. LiveUserVar[Reg] = 0; // Was MD last defined by a DBG_VALUE referring to Reg? DbgValueHistoryMap::iterator HistI = DbgValues.find(Var); if (HistI == DbgValues.end()) continue; SmallVectorImpl &History = HistI->second; if (History.empty()) continue; const MachineInstr *Prev = History.back(); // Sanity-check: Register assignments are terminated at the end of // their block. if (!Prev->isDebugValue() || Prev->getParent() != MI->getParent()) continue; // Is the variable still in Reg? if (!isDbgValueInDefinedReg(Prev) || Prev->getOperand(0).getReg() != Reg) continue; // Var is clobbered. Make sure the next instruction gets a label. History.push_back(MI); } } } } } for (DbgValueHistoryMap::iterator I = DbgValues.begin(), E = DbgValues.end(); I != E; ++I) { SmallVectorImpl &History = I->second; if (History.empty()) continue; // Make sure the final register assignments are terminated. const MachineInstr *Prev = History.back(); if (Prev->isDebugValue() && isDbgValueInDefinedReg(Prev)) { const MachineBasicBlock *PrevMBB = Prev->getParent(); MachineBasicBlock::const_iterator LastMI = PrevMBB->getLastNonDebugInstr(); if (LastMI == PrevMBB->end()) // Drop DBG_VALUE for empty range. History.pop_back(); else if (PrevMBB != &PrevMBB->getParent()->back()) { // Terminate after LastMI. History.push_back(LastMI); } } // Request labels for the full history. for (unsigned i = 0, e = History.size(); i != e; ++i) { const MachineInstr *MI = History[i]; if (MI->isDebugValue()) requestLabelBeforeInsn(MI); else requestLabelAfterInsn(MI); } } PrevInstLoc = DebugLoc(); PrevLabel = FunctionBeginSym; // Record beginning of function. if (!PrologEndLoc.isUnknown()) { DebugLoc FnStartDL = getFnDebugLoc(PrologEndLoc, MF->getFunction()->getContext()); recordSourceLine(FnStartDL.getLine(), FnStartDL.getCol(), FnStartDL.getScope(MF->getFunction()->getContext()), // We'd like to list the prologue as "not statements" but GDB behaves // poorly if we do that. Revisit this with caution/GDB (7.5+) testing. DWARF2_FLAG_IS_STMT); } } void DwarfDebug::addScopeVariable(LexicalScope *LS, DbgVariable *Var) { SmallVectorImpl &Vars = ScopeVariables[LS]; DIVariable DV = Var->getVariable(); // Variables with positive arg numbers are parameters. if (unsigned ArgNum = DV.getArgNumber()) { // Keep all parameters in order at the start of the variable list to ensure // function types are correct (no out-of-order parameters) // // This could be improved by only doing it for optimized builds (unoptimized // builds have the right order to begin with), searching from the back (this // would catch the unoptimized case quickly), or doing a binary search // rather than linear search. SmallVectorImpl::iterator I = Vars.begin(); while (I != Vars.end()) { unsigned CurNum = (*I)->getVariable().getArgNumber(); // A local (non-parameter) variable has been found, insert immediately // before it. if (CurNum == 0) break; // A later indexed parameter has been found, insert immediately before it. if (CurNum > ArgNum) break; ++I; } Vars.insert(I, Var); return; } Vars.push_back(Var); } // Gather and emit post-function debug information. void DwarfDebug::endFunction(const MachineFunction *MF) { if (!MMI->hasDebugInfo() || LScopes.empty()) return; // Define end label for subprogram. FunctionEndSym = Asm->GetTempSymbol("func_end", Asm->getFunctionNumber()); // Assumes in correct section after the entry point. Asm->OutStreamer.EmitLabel(FunctionEndSym); // Set DwarfCompileUnitID in MCContext to default value. Asm->OutStreamer.getContext().setDwarfCompileUnitID(0); SmallPtrSet ProcessedVars; collectVariableInfo(MF, ProcessedVars); LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); CompileUnit *TheCU = SPMap.lookup(FnScope->getScopeNode()); assert(TheCU && "Unable to find compile unit!"); // Construct abstract scopes. ArrayRef AList = LScopes.getAbstractScopesList(); for (unsigned i = 0, e = AList.size(); i != e; ++i) { LexicalScope *AScope = AList[i]; DISubprogram SP(AScope->getScopeNode()); if (SP.isSubprogram()) { // Collect info for variables that were optimized out. DIArray Variables = SP.getVariables(); for (unsigned i = 0, e = Variables.getNumElements(); i != e; ++i) { DIVariable DV(Variables.getElement(i)); if (!DV || !DV.isVariable() || !ProcessedVars.insert(DV)) continue; // Check that DbgVariable for DV wasn't created earlier, when // findAbstractVariable() was called for inlined instance of DV. LLVMContext &Ctx = DV->getContext(); DIVariable CleanDV = cleanseInlinedVariable(DV, Ctx); if (AbstractVariables.lookup(CleanDV)) continue; if (LexicalScope *Scope = LScopes.findAbstractScope(DV.getContext())) addScopeVariable(Scope, new DbgVariable(DV, NULL, this)); } } if (ProcessedSPNodes.count(AScope->getScopeNode()) == 0) constructScopeDIE(TheCU, AScope); } DIE *CurFnDIE = constructScopeDIE(TheCU, FnScope); if (!MF->getTarget().Options.DisableFramePointerElim(*MF)) TheCU->addFlag(CurFnDIE, dwarf::DW_AT_APPLE_omit_frame_ptr); // Clear debug info for (ScopeVariablesMap::iterator I = ScopeVariables.begin(), E = ScopeVariables.end(); I != E; ++I) DeleteContainerPointers(I->second); ScopeVariables.clear(); DeleteContainerPointers(CurrentFnArguments); UserVariables.clear(); DbgValues.clear(); AbstractVariables.clear(); LabelsBeforeInsn.clear(); LabelsAfterInsn.clear(); PrevLabel = NULL; } // Register a source line with debug info. Returns the unique label that was // emitted and which provides correspondence to the source line list. void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S, unsigned Flags) { StringRef Fn; StringRef Dir; unsigned Src = 1; if (S) { DIDescriptor Scope(S); if (Scope.isCompileUnit()) { DICompileUnit CU(S); Fn = CU.getFilename(); Dir = CU.getDirectory(); } else if (Scope.isFile()) { DIFile F(S); Fn = F.getFilename(); Dir = F.getDirectory(); } else if (Scope.isSubprogram()) { DISubprogram SP(S); Fn = SP.getFilename(); Dir = SP.getDirectory(); } else if (Scope.isLexicalBlockFile()) { DILexicalBlockFile DBF(S); Fn = DBF.getFilename(); Dir = DBF.getDirectory(); } else if (Scope.isLexicalBlock()) { DILexicalBlock DB(S); Fn = DB.getFilename(); Dir = DB.getDirectory(); } else llvm_unreachable("Unexpected scope info"); Src = getOrCreateSourceID(Fn, Dir, Asm->OutStreamer.getContext().getDwarfCompileUnitID()); } Asm->OutStreamer.EmitDwarfLocDirective(Src, Line, Col, Flags, 0, 0, Fn); } //===----------------------------------------------------------------------===// // Emit Methods //===----------------------------------------------------------------------===// // Compute the size and offset of a DIE. unsigned DwarfUnits::computeSizeAndOffset(DIE *Die, unsigned Offset) { // Get the children. const std::vector &Children = Die->getChildren(); // Record the abbreviation. assignAbbrevNumber(Die->getAbbrev()); // Get the abbreviation for this DIE. unsigned AbbrevNumber = Die->getAbbrevNumber(); const DIEAbbrev *Abbrev = Abbreviations->at(AbbrevNumber - 1); // Set DIE offset Die->setOffset(Offset); // Start the size with the size of abbreviation code. Offset += MCAsmInfo::getULEB128Size(AbbrevNumber); const SmallVectorImpl &Values = Die->getValues(); const SmallVectorImpl &AbbrevData = Abbrev->getData(); // Size the DIE attribute values. for (unsigned i = 0, N = Values.size(); i < N; ++i) // Size attribute value. Offset += Values[i]->SizeOf(Asm, AbbrevData[i].getForm()); // Size the DIE children if any. if (!Children.empty()) { assert(Abbrev->getChildrenFlag() == dwarf::DW_CHILDREN_yes && "Children flag not set"); for (unsigned j = 0, M = Children.size(); j < M; ++j) Offset = computeSizeAndOffset(Children[j], Offset); // End of children marker. Offset += sizeof(int8_t); } Die->setSize(Offset - Die->getOffset()); return Offset; } // Compute the size and offset of all the DIEs. void DwarfUnits::computeSizeAndOffsets() { // Offset from the beginning of debug info section. unsigned SecOffset = 0; for (SmallVectorImpl::iterator I = CUs.begin(), E = CUs.end(); I != E; ++I) { (*I)->setDebugInfoOffset(SecOffset); unsigned Offset = sizeof(int32_t) + // Length of Compilation Unit Info sizeof(int16_t) + // DWARF version number sizeof(int32_t) + // Offset Into Abbrev. Section sizeof(int8_t); // Pointer Size (in bytes) unsigned EndOffset = computeSizeAndOffset((*I)->getCUDie(), Offset); SecOffset += EndOffset; } } // Emit initial Dwarf sections with a label at the start of each one. void DwarfDebug::emitSectionLabels() { const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); // Dwarf sections base addresses. DwarfInfoSectionSym = emitSectionSym(Asm, TLOF.getDwarfInfoSection(), "section_info"); DwarfAbbrevSectionSym = emitSectionSym(Asm, TLOF.getDwarfAbbrevSection(), "section_abbrev"); if (useSplitDwarf()) DwarfAbbrevDWOSectionSym = emitSectionSym(Asm, TLOF.getDwarfAbbrevDWOSection(), "section_abbrev_dwo"); emitSectionSym(Asm, TLOF.getDwarfARangesSection()); if (const MCSection *MacroInfo = TLOF.getDwarfMacroInfoSection()) emitSectionSym(Asm, MacroInfo); DwarfLineSectionSym = emitSectionSym(Asm, TLOF.getDwarfLineSection(), "section_line"); emitSectionSym(Asm, TLOF.getDwarfLocSection()); if (GenerateGnuPubSections) { DwarfGnuPubNamesSectionSym = emitSectionSym(Asm, TLOF.getDwarfGnuPubNamesSection()); DwarfGnuPubTypesSectionSym = emitSectionSym(Asm, TLOF.getDwarfGnuPubTypesSection()); } else if (HasDwarfPubSections) { emitSectionSym(Asm, TLOF.getDwarfPubNamesSection()); emitSectionSym(Asm, TLOF.getDwarfPubTypesSection()); } DwarfStrSectionSym = emitSectionSym(Asm, TLOF.getDwarfStrSection(), "info_string"); if (useSplitDwarf()) { DwarfStrDWOSectionSym = emitSectionSym(Asm, TLOF.getDwarfStrDWOSection(), "skel_string"); DwarfAddrSectionSym = emitSectionSym(Asm, TLOF.getDwarfAddrSection(), "addr_sec"); } DwarfDebugRangeSectionSym = emitSectionSym(Asm, TLOF.getDwarfRangesSection(), "debug_range"); DwarfDebugLocSectionSym = emitSectionSym(Asm, TLOF.getDwarfLocSection(), "section_debug_loc"); TextSectionSym = emitSectionSym(Asm, TLOF.getTextSection(), "text_begin"); emitSectionSym(Asm, TLOF.getDataSection()); } // Recursively emits a debug information entry. void DwarfDebug::emitDIE(DIE *Die, std::vector *Abbrevs) { // Get the abbreviation for this DIE. unsigned AbbrevNumber = Die->getAbbrevNumber(); const DIEAbbrev *Abbrev = Abbrevs->at(AbbrevNumber - 1); // Emit the code (index) for the abbreviation. if (Asm->isVerbose()) Asm->OutStreamer.AddComment("Abbrev [" + Twine(AbbrevNumber) + "] 0x" + Twine::utohexstr(Die->getOffset()) + ":0x" + Twine::utohexstr(Die->getSize()) + " " + dwarf::TagString(Abbrev->getTag())); Asm->EmitULEB128(AbbrevNumber); const SmallVectorImpl &Values = Die->getValues(); const SmallVectorImpl &AbbrevData = Abbrev->getData(); // Emit the DIE attribute values. for (unsigned i = 0, N = Values.size(); i < N; ++i) { unsigned Attr = AbbrevData[i].getAttribute(); unsigned Form = AbbrevData[i].getForm(); assert(Form && "Too many attributes for DIE (check abbreviation)"); if (Asm->isVerbose()) Asm->OutStreamer.AddComment(dwarf::AttributeString(Attr)); switch (Attr) { case dwarf::DW_AT_abstract_origin: case dwarf::DW_AT_type: case dwarf::DW_AT_friend: case dwarf::DW_AT_specification: case dwarf::DW_AT_containing_type: { DIEEntry *E = cast(Values[i]); DIE *Origin = E->getEntry(); unsigned Addr = Origin->getOffset(); if (Form == dwarf::DW_FORM_ref_addr) { // For DW_FORM_ref_addr, output the offset from beginning of debug info // section. Origin->getOffset() returns the offset from start of the // compile unit. DwarfUnits &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; Addr += Holder.getCUOffset(Origin->getCompileUnit()); } Asm->OutStreamer.EmitIntValue(Addr, Form == dwarf::DW_FORM_ref_addr ? DIEEntry::getRefAddrSize(Asm) : 4); break; } case dwarf::DW_AT_ranges: { // DW_AT_range Value encodes offset in debug_range section. DIEInteger *V = cast(Values[i]); if (Asm->MAI->doesDwarfUseRelocationsAcrossSections()) { Asm->EmitLabelPlusOffset(DwarfDebugRangeSectionSym, V->getValue(), 4); } else { Asm->EmitLabelOffsetDifference(DwarfDebugRangeSectionSym, V->getValue(), DwarfDebugRangeSectionSym, 4); } break; } case dwarf::DW_AT_location: { if (DIELabel *L = dyn_cast(Values[i])) { if (Asm->MAI->doesDwarfUseRelocationsAcrossSections()) Asm->EmitLabelReference(L->getValue(), 4); else Asm->EmitLabelDifference(L->getValue(), DwarfDebugLocSectionSym, 4); } else { Values[i]->EmitValue(Asm, Form); } break; } case dwarf::DW_AT_accessibility: { if (Asm->isVerbose()) { DIEInteger *V = cast(Values[i]); Asm->OutStreamer.AddComment(dwarf::AccessibilityString(V->getValue())); } Values[i]->EmitValue(Asm, Form); break; } default: // Emit an attribute using the defined form. Values[i]->EmitValue(Asm, Form); break; } } // Emit the DIE children if any. if (Abbrev->getChildrenFlag() == dwarf::DW_CHILDREN_yes) { const std::vector &Children = Die->getChildren(); for (unsigned j = 0, M = Children.size(); j < M; ++j) emitDIE(Children[j], Abbrevs); if (Asm->isVerbose()) Asm->OutStreamer.AddComment("End Of Children Mark"); Asm->EmitInt8(0); } } // Emit the various dwarf units to the unit section USection with // the abbreviations going into ASection. void DwarfUnits::emitUnits(DwarfDebug *DD, const MCSection *USection, const MCSection *ASection, const MCSymbol *ASectionSym) { Asm->OutStreamer.SwitchSection(USection); for (SmallVectorImpl::iterator I = CUs.begin(), E = CUs.end(); I != E; ++I) { CompileUnit *TheCU = *I; DIE *Die = TheCU->getCUDie(); // Emit the compile units header. Asm->OutStreamer .EmitLabel(Asm->GetTempSymbol(USection->getLabelBeginName(), TheCU->getUniqueID())); // Emit size of content not including length itself unsigned ContentSize = Die->getSize() + sizeof(int16_t) + // DWARF version number sizeof(int32_t) + // Offset Into Abbrev. Section sizeof(int8_t); // Pointer Size (in bytes) Asm->OutStreamer.AddComment("Length of Compilation Unit Info"); Asm->EmitInt32(ContentSize); Asm->OutStreamer.AddComment("DWARF version number"); Asm->EmitInt16(DD->getDwarfVersion()); Asm->OutStreamer.AddComment("Offset Into Abbrev. Section"); Asm->EmitSectionOffset(Asm->GetTempSymbol(ASection->getLabelBeginName()), ASectionSym); Asm->OutStreamer.AddComment("Address Size (in bytes)"); Asm->EmitInt8(Asm->getDataLayout().getPointerSize()); DD->emitDIE(Die, Abbreviations); Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol(USection->getLabelEndName(), TheCU->getUniqueID())); } } /// For a given compile unit DIE, returns offset from beginning of debug info. unsigned DwarfUnits::getCUOffset(DIE *Die) { assert(Die->getTag() == dwarf::DW_TAG_compile_unit && "Input DIE should be compile unit in getCUOffset."); for (SmallVectorImpl::iterator I = CUs.begin(), E = CUs.end(); I != E; ++I) { CompileUnit *TheCU = *I; if (TheCU->getCUDie() == Die) return TheCU->getDebugInfoOffset(); } llvm_unreachable("The compile unit DIE should belong to CUs in DwarfUnits."); } // Emit the debug info section. void DwarfDebug::emitDebugInfo() { DwarfUnits &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; Holder.emitUnits(this, Asm->getObjFileLowering().getDwarfInfoSection(), Asm->getObjFileLowering().getDwarfAbbrevSection(), DwarfAbbrevSectionSym); } // Emit the abbreviation section. void DwarfDebug::emitAbbreviations() { if (!useSplitDwarf()) emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection(), &Abbreviations); else emitSkeletonAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection()); } void DwarfDebug::emitAbbrevs(const MCSection *Section, std::vector *Abbrevs) { // Check to see if it is worth the effort. if (!Abbrevs->empty()) { // Start the debug abbrev section. Asm->OutStreamer.SwitchSection(Section); MCSymbol *Begin = Asm->GetTempSymbol(Section->getLabelBeginName()); Asm->OutStreamer.EmitLabel(Begin); // For each abbrevation. for (unsigned i = 0, N = Abbrevs->size(); i < N; ++i) { // Get abbreviation data const DIEAbbrev *Abbrev = Abbrevs->at(i); // Emit the abbrevations code (base 1 index.) Asm->EmitULEB128(Abbrev->getNumber(), "Abbreviation Code"); // Emit the abbreviations data. Abbrev->Emit(Asm); } // Mark end of abbreviations. Asm->EmitULEB128(0, "EOM(3)"); MCSymbol *End = Asm->GetTempSymbol(Section->getLabelEndName()); Asm->OutStreamer.EmitLabel(End); } } // Emit the last address of the section and the end of the line matrix. void DwarfDebug::emitEndOfLineMatrix(unsigned SectionEnd) { // Define last address of section. Asm->OutStreamer.AddComment("Extended Op"); Asm->EmitInt8(0); Asm->OutStreamer.AddComment("Op size"); Asm->EmitInt8(Asm->getDataLayout().getPointerSize() + 1); Asm->OutStreamer.AddComment("DW_LNE_set_address"); Asm->EmitInt8(dwarf::DW_LNE_set_address); Asm->OutStreamer.AddComment("Section end label"); Asm->OutStreamer.EmitSymbolValue(Asm->GetTempSymbol("section_end",SectionEnd), Asm->getDataLayout().getPointerSize()); // Mark end of matrix. Asm->OutStreamer.AddComment("DW_LNE_end_sequence"); Asm->EmitInt8(0); Asm->EmitInt8(1); Asm->EmitInt8(1); } // Emit visible names into a hashed accelerator table section. void DwarfDebug::emitAccelNames() { DwarfAccelTable AT(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset, dwarf::DW_FORM_data4)); for (DenseMap::iterator I = CUMap.begin(), E = CUMap.end(); I != E; ++I) { CompileUnit *TheCU = I->second; const StringMap > &Names = TheCU->getAccelNames(); for (StringMap >::const_iterator GI = Names.begin(), GE = Names.end(); GI != GE; ++GI) { StringRef Name = GI->getKey(); const std::vector &Entities = GI->second; for (std::vector::const_iterator DI = Entities.begin(), DE = Entities.end(); DI != DE; ++DI) AT.AddName(Name, (*DI)); } } AT.FinalizeTable(Asm, "Names"); Asm->OutStreamer.SwitchSection( Asm->getObjFileLowering().getDwarfAccelNamesSection()); MCSymbol *SectionBegin = Asm->GetTempSymbol("names_begin"); Asm->OutStreamer.EmitLabel(SectionBegin); // Emit the full data. AT.Emit(Asm, SectionBegin, &InfoHolder); } // Emit objective C classes and categories into a hashed accelerator table // section. void DwarfDebug::emitAccelObjC() { DwarfAccelTable AT(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset, dwarf::DW_FORM_data4)); for (DenseMap::iterator I = CUMap.begin(), E = CUMap.end(); I != E; ++I) { CompileUnit *TheCU = I->second; const StringMap > &Names = TheCU->getAccelObjC(); for (StringMap >::const_iterator GI = Names.begin(), GE = Names.end(); GI != GE; ++GI) { StringRef Name = GI->getKey(); const std::vector &Entities = GI->second; for (std::vector::const_iterator DI = Entities.begin(), DE = Entities.end(); DI != DE; ++DI) AT.AddName(Name, (*DI)); } } AT.FinalizeTable(Asm, "ObjC"); Asm->OutStreamer.SwitchSection(Asm->getObjFileLowering() .getDwarfAccelObjCSection()); MCSymbol *SectionBegin = Asm->GetTempSymbol("objc_begin"); Asm->OutStreamer.EmitLabel(SectionBegin); // Emit the full data. AT.Emit(Asm, SectionBegin, &InfoHolder); } // Emit namespace dies into a hashed accelerator table. void DwarfDebug::emitAccelNamespaces() { DwarfAccelTable AT(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset, dwarf::DW_FORM_data4)); for (DenseMap::iterator I = CUMap.begin(), E = CUMap.end(); I != E; ++I) { CompileUnit *TheCU = I->second; const StringMap > &Names = TheCU->getAccelNamespace(); for (StringMap >::const_iterator GI = Names.begin(), GE = Names.end(); GI != GE; ++GI) { StringRef Name = GI->getKey(); const std::vector &Entities = GI->second; for (std::vector::const_iterator DI = Entities.begin(), DE = Entities.end(); DI != DE; ++DI) AT.AddName(Name, (*DI)); } } AT.FinalizeTable(Asm, "namespac"); Asm->OutStreamer.SwitchSection(Asm->getObjFileLowering() .getDwarfAccelNamespaceSection()); MCSymbol *SectionBegin = Asm->GetTempSymbol("namespac_begin"); Asm->OutStreamer.EmitLabel(SectionBegin); // Emit the full data. AT.Emit(Asm, SectionBegin, &InfoHolder); } // Emit type dies into a hashed accelerator table. void DwarfDebug::emitAccelTypes() { std::vector Atoms; Atoms.push_back(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset, dwarf::DW_FORM_data4)); Atoms.push_back(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_tag, dwarf::DW_FORM_data2)); Atoms.push_back(DwarfAccelTable::Atom(dwarf::DW_ATOM_type_flags, dwarf::DW_FORM_data1)); DwarfAccelTable AT(Atoms); for (DenseMap::iterator I = CUMap.begin(), E = CUMap.end(); I != E; ++I) { CompileUnit *TheCU = I->second; const StringMap > > &Names = TheCU->getAccelTypes(); for (StringMap > >::const_iterator GI = Names.begin(), GE = Names.end(); GI != GE; ++GI) { StringRef Name = GI->getKey(); const std::vector > &Entities = GI->second; for (std::vector >::const_iterator DI = Entities.begin(), DE = Entities.end(); DI !=DE; ++DI) AT.AddName(Name, (*DI).first, (*DI).second); } } AT.FinalizeTable(Asm, "types"); Asm->OutStreamer.SwitchSection(Asm->getObjFileLowering() .getDwarfAccelTypesSection()); MCSymbol *SectionBegin = Asm->GetTempSymbol("types_begin"); Asm->OutStreamer.EmitLabel(SectionBegin); // Emit the full data. AT.Emit(Asm, SectionBegin, &InfoHolder); } // Public name handling. // The format for the various pubnames: // // dwarf pubnames - offset/name pairs where the offset is the offset into the CU // for the DIE that is named. // // gnu pubnames - offset/index value/name tuples where the offset is the offset // into the CU and the index value is computed according to the type of value // for the DIE that is named. // // For type units the offset is the offset of the skeleton DIE. For split dwarf // it's the offset within the debug_info/debug_types dwo section, however, the // reference in the pubname header doesn't change. /// computeIndexValue - Compute the gdb index value for the DIE and CU. static dwarf::PubIndexEntryDescriptor computeIndexValue(CompileUnit *CU, DIE *Die) { dwarf::GDBIndexEntryLinkage Linkage = Die->findAttribute(dwarf::DW_AT_external) ? dwarf::GIEL_EXTERNAL : dwarf::GIEL_STATIC; switch (Die->getTag()) { case dwarf::DW_TAG_class_type: case dwarf::DW_TAG_structure_type: case dwarf::DW_TAG_union_type: case dwarf::DW_TAG_enumeration_type: return dwarf::PubIndexEntryDescriptor( dwarf::GIEK_TYPE, CU->getLanguage() != dwarf::DW_LANG_C_plus_plus ? dwarf::GIEL_STATIC : dwarf::GIEL_EXTERNAL); case dwarf::DW_TAG_typedef: case dwarf::DW_TAG_base_type: case dwarf::DW_TAG_subrange_type: return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC); case dwarf::DW_TAG_namespace: return dwarf::GIEK_TYPE; case dwarf::DW_TAG_subprogram: return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage); case dwarf::DW_TAG_constant: case dwarf::DW_TAG_variable: return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage); case dwarf::DW_TAG_enumerator: return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, dwarf::GIEL_STATIC); default: return dwarf::GIEK_NONE; } } /// emitDebugPubNames - Emit visible names into a debug pubnames section. /// void DwarfDebug::emitDebugPubNames(bool GnuStyle) { const MCSection *ISec = Asm->getObjFileLowering().getDwarfInfoSection(); const MCSection *PSec = GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection() : Asm->getObjFileLowering().getDwarfPubNamesSection(); typedef DenseMap CUMapType; for (CUMapType::iterator I = CUMap.begin(), E = CUMap.end(); I != E; ++I) { CompileUnit *TheCU = I->second; unsigned ID = TheCU->getUniqueID(); // Start the dwarf pubnames section. Asm->OutStreamer.SwitchSection(PSec); // Emit a label so we can reference the beginning of this pubname section. if (GnuStyle) Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("gnu_pubnames", TheCU->getUniqueID())); // Emit the header. Asm->OutStreamer.AddComment("Length of Public Names Info"); Asm->EmitLabelDifference(Asm->GetTempSymbol("pubnames_end", ID), Asm->GetTempSymbol("pubnames_begin", ID), 4); Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("pubnames_begin", ID)); Asm->OutStreamer.AddComment("DWARF Version"); Asm->EmitInt16(dwarf::DW_PUBNAMES_VERSION); Asm->OutStreamer.AddComment("Offset of Compilation Unit Info"); Asm->EmitSectionOffset(Asm->GetTempSymbol(ISec->getLabelBeginName(), ID), DwarfInfoSectionSym); Asm->OutStreamer.AddComment("Compilation Unit Length"); Asm->EmitLabelDifference(Asm->GetTempSymbol(ISec->getLabelEndName(), ID), Asm->GetTempSymbol(ISec->getLabelBeginName(), ID), 4); // Emit the pubnames for this compilation unit. const StringMap &Globals = TheCU->getGlobalNames(); for (StringMap::const_iterator GI = Globals.begin(), GE = Globals.end(); GI != GE; ++GI) { const char *Name = GI->getKeyData(); DIE *Entity = GI->second; Asm->OutStreamer.AddComment("DIE offset"); Asm->EmitInt32(Entity->getOffset()); if (GnuStyle) { dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheCU, Entity); Asm->OutStreamer.AddComment( Twine("Kind: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage)); Asm->EmitInt8(Desc.toBits()); } if (Asm->isVerbose()) Asm->OutStreamer.AddComment("External Name"); Asm->OutStreamer.EmitBytes(StringRef(Name, GI->getKeyLength()+1)); } Asm->OutStreamer.AddComment("End Mark"); Asm->EmitInt32(0); Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("pubnames_end", ID)); } } void DwarfDebug::emitDebugPubTypes(bool GnuStyle) { const MCSection *ISec = Asm->getObjFileLowering().getDwarfInfoSection(); const MCSection *PSec = GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection() : Asm->getObjFileLowering().getDwarfPubTypesSection(); for (DenseMap::iterator I = CUMap.begin(), E = CUMap.end(); I != E; ++I) { CompileUnit *TheCU = I->second; // Start the dwarf pubtypes section. Asm->OutStreamer.SwitchSection(PSec); // Emit a label so we can reference the beginning of this pubtype section. if (GnuStyle) Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("gnu_pubtypes", TheCU->getUniqueID())); // Emit the header. Asm->OutStreamer.AddComment("Length of Public Types Info"); Asm->EmitLabelDifference( Asm->GetTempSymbol("pubtypes_end", TheCU->getUniqueID()), Asm->GetTempSymbol("pubtypes_begin", TheCU->getUniqueID()), 4); Asm->OutStreamer.EmitLabel( Asm->GetTempSymbol("pubtypes_begin", TheCU->getUniqueID())); if (Asm->isVerbose()) Asm->OutStreamer.AddComment("DWARF Version"); Asm->EmitInt16(dwarf::DW_PUBTYPES_VERSION); Asm->OutStreamer.AddComment("Offset of Compilation Unit Info"); Asm->EmitSectionOffset( Asm->GetTempSymbol(ISec->getLabelBeginName(), TheCU->getUniqueID()), DwarfInfoSectionSym); Asm->OutStreamer.AddComment("Compilation Unit Length"); Asm->EmitLabelDifference( Asm->GetTempSymbol(ISec->getLabelEndName(), TheCU->getUniqueID()), Asm->GetTempSymbol(ISec->getLabelBeginName(), TheCU->getUniqueID()), 4); // Emit the pubtypes. const StringMap &Globals = TheCU->getGlobalTypes(); for (StringMap::const_iterator GI = Globals.begin(), GE = Globals.end(); GI != GE; ++GI) { const char *Name = GI->getKeyData(); DIE *Entity = GI->second; if (Asm->isVerbose()) Asm->OutStreamer.AddComment("DIE offset"); Asm->EmitInt32(Entity->getOffset()); if (GnuStyle) { dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheCU, Entity); Asm->OutStreamer.AddComment( Twine("Kind: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage)); Asm->EmitInt8(Desc.toBits()); } if (Asm->isVerbose()) Asm->OutStreamer.AddComment("External Name"); // Emit the name with a terminating null byte. Asm->OutStreamer.EmitBytes(StringRef(Name, GI->getKeyLength() + 1)); } Asm->OutStreamer.AddComment("End Mark"); Asm->EmitInt32(0); Asm->OutStreamer.EmitLabel( Asm->GetTempSymbol("pubtypes_end", TheCU->getUniqueID())); } } // Emit strings into a string section. void DwarfUnits::emitStrings(const MCSection *StrSection, const MCSection *OffsetSection = NULL, const MCSymbol *StrSecSym = NULL) { if (StringPool.empty()) return; // Start the dwarf str section. Asm->OutStreamer.SwitchSection(StrSection); // Get all of the string pool entries and put them in an array by their ID so // we can sort them. SmallVector >*>, 64> Entries; for (StringMap >::iterator I = StringPool.begin(), E = StringPool.end(); I != E; ++I) Entries.push_back(std::make_pair(I->second.second, &*I)); array_pod_sort(Entries.begin(), Entries.end()); for (unsigned i = 0, e = Entries.size(); i != e; ++i) { // Emit a label for reference from debug information entries. Asm->OutStreamer.EmitLabel(Entries[i].second->getValue().first); // Emit the string itself with a terminating null byte. Asm->OutStreamer.EmitBytes(StringRef(Entries[i].second->getKeyData(), Entries[i].second->getKeyLength()+1)); } // If we've got an offset section go ahead and emit that now as well. if (OffsetSection) { Asm->OutStreamer.SwitchSection(OffsetSection); unsigned offset = 0; unsigned size = 4; // FIXME: DWARF64 is 8. for (unsigned i = 0, e = Entries.size(); i != e; ++i) { Asm->OutStreamer.EmitIntValue(offset, size); offset += Entries[i].second->getKeyLength() + 1; } } } // Emit strings into a string section. void DwarfUnits::emitAddresses(const MCSection *AddrSection) { if (AddressPool.empty()) return; // Start the dwarf addr section. Asm->OutStreamer.SwitchSection(AddrSection); // Order the address pool entries by ID SmallVector Entries(AddressPool.size()); for (DenseMap::iterator I = AddressPool.begin(), E = AddressPool.end(); I != E; ++I) Entries[I->second] = I->first; for (unsigned i = 0, e = Entries.size(); i != e; ++i) { // Emit an expression for reference from debug information entries. if (const MCExpr *Expr = Entries[i]) Asm->OutStreamer.EmitValue(Expr, Asm->getDataLayout().getPointerSize()); else Asm->OutStreamer.EmitIntValue(0, Asm->getDataLayout().getPointerSize()); } } // Emit visible names into a debug str section. void DwarfDebug::emitDebugStr() { DwarfUnits &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection()); } // Emit locations into the debug loc section. void DwarfDebug::emitDebugLoc() { if (DotDebugLocEntries.empty()) return; for (SmallVectorImpl::iterator I = DotDebugLocEntries.begin(), E = DotDebugLocEntries.end(); I != E; ++I) { DotDebugLocEntry &Entry = *I; if (I + 1 != DotDebugLocEntries.end()) Entry.Merge(I+1); } // Start the dwarf loc section. Asm->OutStreamer.SwitchSection( Asm->getObjFileLowering().getDwarfLocSection()); unsigned char Size = Asm->getDataLayout().getPointerSize(); Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("debug_loc", 0)); unsigned index = 1; for (SmallVectorImpl::iterator I = DotDebugLocEntries.begin(), E = DotDebugLocEntries.end(); I != E; ++I, ++index) { DotDebugLocEntry &Entry = *I; if (Entry.isMerged()) continue; if (Entry.isEmpty()) { Asm->OutStreamer.EmitIntValue(0, Size); Asm->OutStreamer.EmitIntValue(0, Size); Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("debug_loc", index)); } else { Asm->OutStreamer.EmitSymbolValue(Entry.getBeginSym(), Size); Asm->OutStreamer.EmitSymbolValue(Entry.getEndSym(), Size); DIVariable DV(Entry.getVariable()); Asm->OutStreamer.AddComment("Loc expr size"); MCSymbol *begin = Asm->OutStreamer.getContext().CreateTempSymbol(); MCSymbol *end = Asm->OutStreamer.getContext().CreateTempSymbol(); Asm->EmitLabelDifference(end, begin, 2); Asm->OutStreamer.EmitLabel(begin); if (Entry.isInt()) { DIBasicType BTy(DV.getType()); if (BTy.Verify() && (BTy.getEncoding() == dwarf::DW_ATE_signed || BTy.getEncoding() == dwarf::DW_ATE_signed_char)) { Asm->OutStreamer.AddComment("DW_OP_consts"); Asm->EmitInt8(dwarf::DW_OP_consts); Asm->EmitSLEB128(Entry.getInt()); } else { Asm->OutStreamer.AddComment("DW_OP_constu"); Asm->EmitInt8(dwarf::DW_OP_constu); Asm->EmitULEB128(Entry.getInt()); } } else if (Entry.isLocation()) { MachineLocation Loc = Entry.getLoc(); if (!DV.hasComplexAddress()) // Regular entry. Asm->EmitDwarfRegOp(Loc, DV.isIndirect()); else { // Complex address entry. unsigned N = DV.getNumAddrElements(); unsigned i = 0; if (N >= 2 && DV.getAddrElement(0) == DIBuilder::OpPlus) { if (Loc.getOffset()) { i = 2; Asm->EmitDwarfRegOp(Loc, DV.isIndirect()); Asm->OutStreamer.AddComment("DW_OP_deref"); Asm->EmitInt8(dwarf::DW_OP_deref); Asm->OutStreamer.AddComment("DW_OP_plus_uconst"); Asm->EmitInt8(dwarf::DW_OP_plus_uconst); Asm->EmitSLEB128(DV.getAddrElement(1)); } else { // If first address element is OpPlus then emit // DW_OP_breg + Offset instead of DW_OP_reg + Offset. MachineLocation TLoc(Loc.getReg(), DV.getAddrElement(1)); Asm->EmitDwarfRegOp(TLoc, DV.isIndirect()); i = 2; } } else { Asm->EmitDwarfRegOp(Loc, DV.isIndirect()); } // Emit remaining complex address elements. for (; i < N; ++i) { uint64_t Element = DV.getAddrElement(i); if (Element == DIBuilder::OpPlus) { Asm->EmitInt8(dwarf::DW_OP_plus_uconst); Asm->EmitULEB128(DV.getAddrElement(++i)); } else if (Element == DIBuilder::OpDeref) { if (!Loc.isReg()) Asm->EmitInt8(dwarf::DW_OP_deref); } else llvm_unreachable("unknown Opcode found in complex address"); } } } // else ... ignore constant fp. There is not any good way to // to represent them here in dwarf. Asm->OutStreamer.EmitLabel(end); } } } struct SymbolCUSorter { SymbolCUSorter(const MCStreamer &s) : Streamer(s) {} const MCStreamer &Streamer; bool operator() (const SymbolCU &A, const SymbolCU &B) { unsigned IA = A.Sym ? Streamer.GetSymbolOrder(A.Sym) : 0; unsigned IB = B.Sym ? Streamer.GetSymbolOrder(B.Sym) : 0; // Symbols with no order assigned should be placed at the end. // (e.g. section end labels) if (IA == 0) IA = (unsigned)(-1); if (IB == 0) IB = (unsigned)(-1); return IA < IB; } }; static bool SectionSort(const MCSection *A, const MCSection *B) { std::string LA = (A ? A->getLabelBeginName() : ""); std::string LB = (B ? B->getLabelBeginName() : ""); return LA < LB; } static bool CUSort(const CompileUnit *A, const CompileUnit *B) { return (A->getUniqueID() < B->getUniqueID()); } struct ArangeSpan { const MCSymbol *Start, *End; }; // Emit a debug aranges section, containing a CU lookup for any // address we can tie back to a CU. void DwarfDebug::emitDebugARanges() { // Start the dwarf aranges section. Asm->OutStreamer .SwitchSection(Asm->getObjFileLowering().getDwarfARangesSection()); typedef DenseMap > SpansType; SpansType Spans; // Build a list of sections used. std::vector Sections; for (SectionMapType::iterator it = SectionMap.begin(); it != SectionMap.end(); it++) { const MCSection *Section = it->first; Sections.push_back(Section); } // Sort the sections into order. // This is only done to ensure consistent output order across different runs. std::sort(Sections.begin(), Sections.end(), SectionSort); // Build a set of address spans, sorted by CU. for (size_t SecIdx=0;SecIdx &List = SectionMap[Section]; if (List.size() < 2) continue; // Sort the symbols by offset within the section. SymbolCUSorter sorter(Asm->OutStreamer); std::sort(List.begin(), List.end(), sorter); // If we have no section (e.g. common), just write out // individual spans for each symbol. if (Section == NULL) { for (size_t n = 0; n < List.size(); n++) { const SymbolCU &Cur = List[n]; ArangeSpan Span; Span.Start = Cur.Sym; Span.End = NULL; if (Cur.CU) Spans[Cur.CU].push_back(Span); } } else { // Build spans between each label. const MCSymbol *StartSym = List[0].Sym; for (size_t n = 1; n < List.size(); n++) { const SymbolCU &Prev = List[n - 1]; const SymbolCU &Cur = List[n]; // Try and build the longest span we can within the same CU. if (Cur.CU != Prev.CU) { ArangeSpan Span; Span.Start = StartSym; Span.End = Cur.Sym; Spans[Prev.CU].push_back(Span); StartSym = Cur.Sym; } } } } const MCSection *ISec = Asm->getObjFileLowering().getDwarfInfoSection(); unsigned PtrSize = Asm->getDataLayout().getPointerSize(); // Build a list of CUs used. std::vector CUs; for (SpansType::iterator it = Spans.begin(); it != Spans.end(); it++) { CompileUnit *CU = it->first; CUs.push_back(CU); } // Sort the CU list (again, to ensure consistent output order). std::sort(CUs.begin(), CUs.end(), CUSort); // Emit an arange table for each CU we used. for (size_t CUIdx=0;CUIdx &List = Spans[CU]; // Emit size of content not including length itself. unsigned ContentSize = sizeof(int16_t) // DWARF ARange version number + sizeof(int32_t) // Offset of CU in the .debug_info section + sizeof(int8_t) // Pointer Size (in bytes) + sizeof(int8_t); // Segment Size (in bytes) unsigned TupleSize = PtrSize * 2; // 7.20 in the Dwarf specs requires the table to be aligned to a tuple. unsigned Padding = 0; while (((sizeof(int32_t) + ContentSize + Padding) % TupleSize) != 0) Padding++; ContentSize += Padding; ContentSize += (List.size() + 1) * TupleSize; // For each compile unit, write the list of spans it covers. Asm->OutStreamer.AddComment("Length of ARange Set"); Asm->EmitInt32(ContentSize); Asm->OutStreamer.AddComment("DWARF Arange version number"); Asm->EmitInt16(dwarf::DW_ARANGES_VERSION); Asm->OutStreamer.AddComment("Offset Into Debug Info Section"); Asm->EmitSectionOffset( Asm->GetTempSymbol(ISec->getLabelBeginName(), CU->getUniqueID()), DwarfInfoSectionSym); Asm->OutStreamer.AddComment("Address Size (in bytes)"); Asm->EmitInt8(PtrSize); Asm->OutStreamer.AddComment("Segment Size (in bytes)"); Asm->EmitInt8(0); for (unsigned n = 0; n < Padding; n++) Asm->EmitInt8(0xff); for (unsigned n = 0; n < List.size(); n++) { const ArangeSpan &Span = List[n]; Asm->EmitLabelReference(Span.Start, PtrSize); // Calculate the size as being from the span start to it's end. if (Span.End) { Asm->EmitLabelDifference(Span.End, Span.Start, PtrSize); } else { // For symbols without an end marker (e.g. common), we // write a single arange entry containing just that one symbol. uint64_t Size = SymSize[Span.Start]; if (Size == 0) Size = 1; Asm->OutStreamer.EmitIntValue(Size, PtrSize); } } Asm->OutStreamer.AddComment("ARange terminator"); Asm->OutStreamer.EmitIntValue(0, PtrSize); Asm->OutStreamer.EmitIntValue(0, PtrSize); } } // Emit visible names into a debug ranges section. void DwarfDebug::emitDebugRanges() { // Start the dwarf ranges section. Asm->OutStreamer .SwitchSection(Asm->getObjFileLowering().getDwarfRangesSection()); unsigned char Size = Asm->getDataLayout().getPointerSize(); for (SmallVectorImpl::iterator I = DebugRangeSymbols.begin(), E = DebugRangeSymbols.end(); I != E; ++I) { if (*I) Asm->OutStreamer.EmitSymbolValue(const_cast(*I), Size); else Asm->OutStreamer.EmitIntValue(0, Size); } } // Emit visible names into a debug macinfo section. void DwarfDebug::emitDebugMacInfo() { if (const MCSection *LineInfo = Asm->getObjFileLowering().getDwarfMacroInfoSection()) { // Start the dwarf macinfo section. Asm->OutStreamer.SwitchSection(LineInfo); } } // DWARF5 Experimental Separate Dwarf emitters. // This DIE has the following attributes: DW_AT_comp_dir, DW_AT_stmt_list, // DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges, DW_AT_dwo_name, DW_AT_dwo_id, // DW_AT_ranges_base, DW_AT_addr_base. CompileUnit *DwarfDebug::constructSkeletonCU(const CompileUnit *CU) { DIE *Die = new DIE(dwarf::DW_TAG_compile_unit); CompileUnit *NewCU = new CompileUnit(CU->getUniqueID(), Die, CU->getNode(), Asm, this, &SkeletonHolder); NewCU->addLocalString(Die, dwarf::DW_AT_GNU_dwo_name, DICompileUnit(CU->getNode()).getSplitDebugFilename()); // Relocate to the beginning of the addr_base section, else 0 for the // beginning of the one for this compile unit. if (Asm->MAI->doesDwarfUseRelocationsAcrossSections()) NewCU->addLabel(Die, dwarf::DW_AT_GNU_addr_base, dwarf::DW_FORM_sec_offset, DwarfAddrSectionSym); else NewCU->addUInt(Die, dwarf::DW_AT_GNU_addr_base, dwarf::DW_FORM_sec_offset, 0); // 2.17.1 requires that we use DW_AT_low_pc for a single entry point // into an entity. We're using 0, or a NULL label for this. NewCU->addUInt(Die, dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0); // DW_AT_stmt_list is a offset of line number information for this // compile unit in debug_line section. // FIXME: Should handle multiple compile units. if (Asm->MAI->doesDwarfUseRelocationsAcrossSections()) NewCU->addLabel(Die, dwarf::DW_AT_stmt_list, dwarf::DW_FORM_sec_offset, DwarfLineSectionSym); else NewCU->addUInt(Die, dwarf::DW_AT_stmt_list, dwarf::DW_FORM_sec_offset, 0); if (!CompilationDir.empty()) NewCU->addLocalString(Die, dwarf::DW_AT_comp_dir, CompilationDir); // Flags to let the linker know we have emitted new style pubnames. if (GenerateGnuPubSections) { if (Asm->MAI->doesDwarfUseRelocationsAcrossSections()) NewCU->addLabel(Die, dwarf::DW_AT_GNU_pubnames, dwarf::DW_FORM_sec_offset, Asm->GetTempSymbol("gnu_pubnames", NewCU->getUniqueID())); else NewCU->addDelta(Die, dwarf::DW_AT_GNU_pubnames, dwarf::DW_FORM_data4, Asm->GetTempSymbol("gnu_pubnames", NewCU->getUniqueID()), DwarfGnuPubNamesSectionSym); if (Asm->MAI->doesDwarfUseRelocationsAcrossSections()) NewCU->addLabel(Die, dwarf::DW_AT_GNU_pubtypes, dwarf::DW_FORM_sec_offset, Asm->GetTempSymbol("gnu_pubtypes", NewCU->getUniqueID())); else NewCU->addDelta(Die, dwarf::DW_AT_GNU_pubtypes, dwarf::DW_FORM_data4, Asm->GetTempSymbol("gnu_pubtypes", NewCU->getUniqueID()), DwarfGnuPubTypesSectionSym); } // Flag if we've emitted any ranges and their location for the compile unit. if (DebugRangeSymbols.size()) { if (Asm->MAI->doesDwarfUseRelocationsAcrossSections()) NewCU->addLabel(Die, dwarf::DW_AT_GNU_ranges_base, dwarf::DW_FORM_sec_offset, DwarfDebugRangeSectionSym); else NewCU->addUInt(Die, dwarf::DW_AT_GNU_ranges_base, dwarf::DW_FORM_data4, 0); } SkeletonHolder.addUnit(NewCU); SkeletonCUs.push_back(NewCU); return NewCU; } void DwarfDebug::emitSkeletonAbbrevs(const MCSection *Section) { assert(useSplitDwarf() && "No split dwarf debug info?"); emitAbbrevs(Section, &SkeletonAbbrevs); } // Emit the .debug_info.dwo section for separated dwarf. This contains the // compile units that would normally be in debug_info. void DwarfDebug::emitDebugInfoDWO() { assert(useSplitDwarf() && "No split dwarf debug info?"); InfoHolder.emitUnits(this, Asm->getObjFileLowering().getDwarfInfoDWOSection(), Asm->getObjFileLowering().getDwarfAbbrevDWOSection(), DwarfAbbrevDWOSectionSym); } // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the // abbreviations for the .debug_info.dwo section. void DwarfDebug::emitDebugAbbrevDWO() { assert(useSplitDwarf() && "No split dwarf?"); emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection(), &Abbreviations); } // Emit the .debug_str.dwo section for separated dwarf. This contains the // string section and is identical in format to traditional .debug_str // sections. void DwarfDebug::emitDebugStrDWO() { assert(useSplitDwarf() && "No split dwarf?"); const MCSection *OffSec = Asm->getObjFileLowering() .getDwarfStrOffDWOSection(); const MCSymbol *StrSym = DwarfStrSectionSym; InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(), OffSec, StrSym); } /// When we don't know whether the correct form is ref4 or ref_addr, we create /// a worklist item and insert it to DIEEntryWorklist. void DwarfDebug::addDIEEntry(DIE *Die, uint16_t Attribute, uint16_t Form, DIEEntry *Entry) { /// Early exit when we only have a single CU. if (GlobalCUIndexCount == 1 || Form != dwarf::DW_FORM_ref4) { Die->addValue(Attribute, Form, Entry); return; } DIE *DieCU = Die->checkCompileUnit(); DIE *EntryCU = Entry->getEntry()->checkCompileUnit(); if (!DieCU || !EntryCU) { // Die or Entry is not added to an owner yet. insertDIEEntryWorklist(Die, Attribute, Entry); return; } Die->addValue(Attribute, EntryCU == DieCU ? dwarf::DW_FORM_ref4 : dwarf::DW_FORM_ref_addr, Entry); }