//===------------------------ CalcSpillWeights.cpp ------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "calcspillweights" #include "llvm/Function.h" #include "llvm/ADT/SmallSet.h" #include "llvm/CodeGen/CalcSpillWeights.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SlotIndexes.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" using namespace llvm; char CalculateSpillWeights::ID = 0; INITIALIZE_PASS(CalculateSpillWeights, "calcspillweights", "Calculate spill weights", false, false); void CalculateSpillWeights::getAnalysisUsage(AnalysisUsage &au) const { au.addRequired(); au.addRequired(); au.setPreservesAll(); MachineFunctionPass::getAnalysisUsage(au); } bool CalculateSpillWeights::runOnMachineFunction(MachineFunction &fn) { DEBUG(dbgs() << "********** Compute Spill Weights **********\n" << "********** Function: " << fn.getFunction()->getName() << '\n'); LiveIntervals &lis = getAnalysis(); VirtRegAuxInfo vrai(fn, lis, getAnalysis()); for (LiveIntervals::iterator I = lis.begin(), E = lis.end(); I != E; ++I) { LiveInterval &li = *I->second; if (TargetRegisterInfo::isVirtualRegister(li.reg)) vrai.CalculateWeightAndHint(li); } return false; } // Return the preferred allocation register for reg, given a COPY instruction. static unsigned copyHint(const MachineInstr *mi, unsigned reg, const TargetRegisterInfo &tri, const MachineRegisterInfo &mri) { unsigned sub, hreg, hsub; if (mi->getOperand(0).getReg() == reg) { sub = mi->getOperand(0).getSubReg(); hreg = mi->getOperand(1).getReg(); hsub = mi->getOperand(1).getSubReg(); } else { sub = mi->getOperand(1).getSubReg(); hreg = mi->getOperand(0).getReg(); hsub = mi->getOperand(0).getSubReg(); } if (!hreg) return 0; if (TargetRegisterInfo::isVirtualRegister(hreg)) return sub == hsub ? hreg : 0; const TargetRegisterClass *rc = mri.getRegClass(reg); // Only allow physreg hints in rc. if (sub == 0) return rc->contains(hreg) ? hreg : 0; // reg:sub should match the physreg hreg. return tri.getMatchingSuperReg(hreg, sub, rc); } void VirtRegAuxInfo::CalculateWeightAndHint(LiveInterval &li) { MachineRegisterInfo &mri = mf_.getRegInfo(); const TargetRegisterInfo &tri = *mf_.getTarget().getRegisterInfo(); MachineBasicBlock *mbb = 0; MachineLoop *loop = 0; unsigned loopDepth = 0; bool isExiting = false; float totalWeight = 0; SmallPtrSet visited; // Find the best physreg hist and the best virtreg hint. float bestPhys = 0, bestVirt = 0; unsigned hintPhys = 0, hintVirt = 0; // Don't recompute a target specific hint. bool noHint = mri.getRegAllocationHint(li.reg).first != 0; for (MachineRegisterInfo::reg_iterator I = mri.reg_begin(li.reg); MachineInstr *mi = I.skipInstruction();) { if (mi->isIdentityCopy() || mi->isImplicitDef() || mi->isDebugValue()) continue; if (!visited.insert(mi)) continue; // Get loop info for mi. if (mi->getParent() != mbb) { mbb = mi->getParent(); loop = loops_.getLoopFor(mbb); loopDepth = loop ? loop->getLoopDepth() : 0; isExiting = loop ? loop->isLoopExiting(mbb) : false; } // Calculate instr weight. bool reads, writes; tie(reads, writes) = mi->readsWritesVirtualRegister(li.reg); float weight = LiveIntervals::getSpillWeight(writes, reads, loopDepth); // Give extra weight to what looks like a loop induction variable update. if (writes && isExiting && lis_.isLiveOutOfMBB(li, mbb)) weight *= 3; totalWeight += weight; // Get allocation hints from copies. if (noHint || !mi->isCopy()) continue; unsigned hint = copyHint(mi, li.reg, tri, mri); if (!hint) continue; float hweight = hint_[hint] += weight; if (TargetRegisterInfo::isPhysicalRegister(hint)) { if (hweight > bestPhys && lis_.isAllocatable(hint)) bestPhys = hweight, hintPhys = hint; } else { if (hweight > bestVirt) bestVirt = hweight, hintVirt = hint; } } hint_.clear(); // Always prefer the physreg hint. if (unsigned hint = hintPhys ? hintPhys : hintVirt) { mri.setRegAllocationHint(li.reg, 0, hint); // Weakly boost the spill weifght of hinted registers. totalWeight *= 1.01F; } // Mark li as unspillable if all live ranges are tiny. if (li.isZeroLength()) { li.markNotSpillable(); return; } // If all of the definitions of the interval are re-materializable, // it is a preferred candidate for spilling. If none of the defs are // loads, then it's potentially very cheap to re-materialize. // FIXME: this gets much more complicated once we support non-trivial // re-materialization. bool isLoad = false; SmallVector spillIs; if (lis_.isReMaterializable(li, spillIs, isLoad)) { if (isLoad) totalWeight *= 0.9F; else totalWeight *= 0.5F; } li.weight = totalWeight; lis_.normalizeSpillWeight(li); } void VirtRegAuxInfo::CalculateRegClass(unsigned reg) { MachineRegisterInfo &mri = mf_.getRegInfo(); const TargetRegisterInfo *tri = mf_.getTarget().getRegisterInfo(); const TargetRegisterClass *orc = mri.getRegClass(reg); SmallPtrSet rcs; for (MachineRegisterInfo::reg_nodbg_iterator I = mri.reg_nodbg_begin(reg), E = mri.reg_nodbg_end(); I != E; ++I) { // The targets don't have accurate enough regclass descriptions that we can // handle subregs. We need something similar to // TRI::getMatchingSuperRegClass, but returning a super class instead of a // sub class. if (I.getOperand().getSubReg()) { DEBUG(dbgs() << "Cannot handle subregs: " << I.getOperand() << '\n'); return; } if (const TargetRegisterClass *rc = I->getDesc().getRegClass(I.getOperandNo(), tri)) rcs.insert(rc); } // If we found no regclass constraints, just leave reg as is. // In theory, we could inflate to the largest superclass of reg's existing // class, but that might not be legal for the current cpu setting. // This could happen if reg is only used by COPY instructions, so we may need // to improve on this. if (rcs.empty()) { DEBUG(dbgs() << "Not inflating unconstrained" << orc->getName() << ":%reg" << reg << ".\n"); return; } // Compute the intersection of all classes in rcs. // This ought to be independent of iteration order, but if the target register // classes don't form a proper algebra, it is possible to get different // results. The solution is to make sure the intersection of any two register // classes is also a register class or the null set. const TargetRegisterClass *rc = 0; for (SmallPtrSet::iterator I = rcs.begin(), E = rcs.end(); I != E; ++I) { rc = rc ? getCommonSubClass(rc, *I) : *I; assert(rc && "Incompatible regclass constraints found"); } if (rc == orc) return; DEBUG(dbgs() << "Inflating " << orc->getName() << ":%reg" << reg << " to " << rc->getName() <<".\n"); mri.setRegClass(reg, rc); }