//===---- LatencyPriorityQueue.cpp - A latency-oriented priority queue ----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LatencyPriorityQueue class, which is a // SchedulingPriorityQueue that schedules using latency information to // reduce the length of the critical path through the basic block. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "scheduler" #include "llvm/CodeGen/LatencyPriorityQueue.h" #include "llvm/Support/Debug.h" using namespace llvm; bool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const { unsigned LHSNum = LHS->NodeNum; unsigned RHSNum = RHS->NodeNum; // The most important heuristic is scheduling the critical path. unsigned LHSLatency = PQ->getLatency(LHSNum); unsigned RHSLatency = PQ->getLatency(RHSNum); if (LHSLatency < RHSLatency) return true; if (LHSLatency > RHSLatency) return false; // After that, if two nodes have identical latencies, look to see if one will // unblock more other nodes than the other. unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum); unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum); if (LHSBlocked < RHSBlocked) return true; if (LHSBlocked > RHSBlocked) return false; // Finally, just to provide a stable ordering, use the node number as a // deciding factor. return LHSNum < RHSNum; } /// CalcNodePriority - Calculate the maximal path from the node to the exit. /// void LatencyPriorityQueue::CalcLatency(const SUnit &SU) { int &Latency = Latencies[SU.NodeNum]; if (Latency != -1) return; std::vector WorkList; WorkList.push_back(&SU); while (!WorkList.empty()) { const SUnit *Cur = WorkList.back(); bool AllDone = true; unsigned MaxSuccLatency = 0; for (SUnit::const_succ_iterator I = Cur->Succs.begin(),E = Cur->Succs.end(); I != E; ++I) { int SuccLatency = Latencies[I->getSUnit()->NodeNum]; if (SuccLatency == -1) { AllDone = false; WorkList.push_back(I->getSUnit()); } else { unsigned NewLatency = SuccLatency + I->getLatency(); MaxSuccLatency = std::max(MaxSuccLatency, NewLatency); } } if (AllDone) { Latencies[Cur->NodeNum] = MaxSuccLatency; WorkList.pop_back(); } } } /// CalculatePriorities - Calculate priorities of all scheduling units. void LatencyPriorityQueue::CalculatePriorities() { Latencies.assign(SUnits->size(), -1); NumNodesSolelyBlocking.assign(SUnits->size(), 0); // For each node, calculate the maximal path from the node to the exit. for (unsigned i = 0, e = SUnits->size(); i != e; ++i) CalcLatency((*SUnits)[i]); } /// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor /// of SU, return it, otherwise return null. SUnit *LatencyPriorityQueue::getSingleUnscheduledPred(SUnit *SU) { SUnit *OnlyAvailablePred = 0; for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { SUnit &Pred = *I->getSUnit(); if (!Pred.isScheduled) { // We found an available, but not scheduled, predecessor. If it's the // only one we have found, keep track of it... otherwise give up. if (OnlyAvailablePred && OnlyAvailablePred != &Pred) return 0; OnlyAvailablePred = &Pred; } } return OnlyAvailablePred; } void LatencyPriorityQueue::push_impl(SUnit *SU) { // Look at all of the successors of this node. Count the number of nodes that // this node is the sole unscheduled node for. unsigned NumNodesBlocking = 0; for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) if (getSingleUnscheduledPred(I->getSUnit()) == SU) ++NumNodesBlocking; NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking; Queue.push(SU); } // ScheduledNode - As nodes are scheduled, we look to see if there are any // successor nodes that have a single unscheduled predecessor. If so, that // single predecessor has a higher priority, since scheduling it will make // the node available. void LatencyPriorityQueue::ScheduledNode(SUnit *SU) { for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) AdjustPriorityOfUnscheduledPreds(I->getSUnit()); } /// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just /// scheduled. If SU is not itself available, then there is at least one /// predecessor node that has not been scheduled yet. If SU has exactly ONE /// unscheduled predecessor, we want to increase its priority: it getting /// scheduled will make this node available, so it is better than some other /// node of the same priority that will not make a node available. void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) { if (SU->isAvailable) return; // All preds scheduled. SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU); if (OnlyAvailablePred == 0 || !OnlyAvailablePred->isAvailable) return; // Okay, we found a single predecessor that is available, but not scheduled. // Since it is available, it must be in the priority queue. First remove it. remove(OnlyAvailablePred); // Reinsert the node into the priority queue, which recomputes its // NumNodesSolelyBlocking value. push(OnlyAvailablePred); }