//===- LiveDebugVariables.cpp - Tracking debug info variables -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LiveDebugVariables analysis. // // Remove all DBG_VALUE instructions referencing virtual registers and replace // them with a data structure tracking where live user variables are kept - in a // virtual register or in a stack slot. // // Allow the data structure to be updated during register allocation when values // are moved between registers and stack slots. Finally emit new DBG_VALUE // instructions after register allocation is complete. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "livedebug" #include "LiveDebugVariables.h" #include "llvm/Constants.h" #include "llvm/Metadata.h" #include "llvm/Value.h" #include "llvm/ADT/IntervalMap.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" using namespace llvm; static cl::opt EnableLDV("live-debug-variables", cl::desc("Enable the live debug variables pass"), cl::Hidden); char LiveDebugVariables::ID = 0; INITIALIZE_PASS_BEGIN(LiveDebugVariables, "livedebugvars", "Debug Variable Analysis", false, false) INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) INITIALIZE_PASS_DEPENDENCY(LiveIntervals) INITIALIZE_PASS_END(LiveDebugVariables, "livedebugvars", "Debug Variable Analysis", false, false) void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addRequiredTransitive(); AU.setPreservesAll(); MachineFunctionPass::getAnalysisUsage(AU); } LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID), pImpl(0) { initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); } /// Location - All the different places a user value can reside. /// Note that this includes immediate values that technically aren't locations. namespace { struct Location { /// kind - What kind of location is this? enum Kind { locUndef = 0, locImm = 0x80000000, locFPImm }; /// Kind - One of the following: /// 1. locUndef /// 2. Register number (physical or virtual), data.SubIdx is the subreg index. /// 3. ~Frame index, data.Offset is the offset. /// 4. locImm, data.ImmVal is the constant integer value. /// 5. locFPImm, data.CFP points to the floating point constant. unsigned Kind; /// Data - Extra data about location. union { unsigned SubIdx; ///< For virtual registers. int64_t Offset; ///< For frame indices. int64_t ImmVal; ///< For locImm. const ConstantFP *CFP; ///< For locFPImm. } Data; Location(const MachineOperand &MO) { switch(MO.getType()) { case MachineOperand::MO_Register: Kind = MO.getReg(); Data.SubIdx = MO.getSubReg(); return; case MachineOperand::MO_Immediate: Kind = locImm; Data.ImmVal = MO.getImm(); return; case MachineOperand::MO_FPImmediate: Kind = locFPImm; Data.CFP = MO.getFPImm(); return; case MachineOperand::MO_FrameIndex: Kind = ~MO.getIndex(); // FIXME: MO_FrameIndex should support an offset. Data.Offset = 0; return; default: Kind = locUndef; return; } } bool operator==(const Location &RHS) const { if (Kind != RHS.Kind) return false; switch (Kind) { case locUndef: return true; case locImm: return Data.ImmVal == RHS.Data.ImmVal; case locFPImm: return Data.CFP == RHS.Data.CFP; default: if (isReg()) return Data.SubIdx == RHS.Data.SubIdx; else return Data.Offset == RHS.Data.Offset; } } /// isUndef - is this the singleton undef? bool isUndef() const { return Kind == locUndef; } /// isReg - is this a register location? bool isReg() const { return Kind && Kind < locImm; } void print(raw_ostream&, const TargetRegisterInfo*); }; } /// LocMap - Map of where a user value is live, and its location. typedef IntervalMap LocMap; /// UserValue - A user value is a part of a debug info user variable. /// /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register /// holds part of a user variable. The part is identified by a byte offset. /// /// UserValues are grouped into equivalence classes for easier searching. Two /// user values are related if they refer to the same variable, or if they are /// held by the same virtual register. The equivalence class is the transitive /// closure of that relation. namespace { class UserValue { const MDNode *variable; ///< The debug info variable we are part of. unsigned offset; ///< Byte offset into variable. UserValue *leader; ///< Equivalence class leader. UserValue *next; ///< Next value in equivalence class, or null. /// Numbered locations referenced by locmap. SmallVector locations; /// Map of slot indices where this value is live. LocMap locInts; public: /// UserValue - Create a new UserValue. UserValue(const MDNode *var, unsigned o, LocMap::Allocator &alloc) : variable(var), offset(o), leader(this), next(0), locInts(alloc) {} /// getLeader - Get the leader of this value's equivalence class. UserValue *getLeader() { UserValue *l = leader; while (l != l->leader) l = l->leader; return leader = l; } /// getNext - Return the next UserValue in the equivalence class. UserValue *getNext() const { return next; } /// match - Does this UserValue match the aprameters? bool match(const MDNode *Var, unsigned Offset) const { return Var == variable && Offset == offset; } /// merge - Merge equivalence classes. static UserValue *merge(UserValue *L1, UserValue *L2) { L2 = L2->getLeader(); if (!L1) return L2; L1 = L1->getLeader(); if (L1 == L2) return L1; // Splice L2 before L1's members. UserValue *End = L2; while (End->next) End->leader = L1, End = End->next; End->leader = L1; End->next = L1->next; L1->next = L2; return L1; } /// getLocationNo - Return the location number that matches Loc. unsigned getLocationNo(Location Loc) { if (Loc.isUndef()) return ~0u; unsigned n = std::find(locations.begin(), locations.end(), Loc) - locations.begin(); if (n == locations.size()) locations.push_back(Loc); return n; } /// addDef - Add a definition point to this value. void addDef(SlotIndex Idx, const MachineOperand &LocMO) { // Add a singular (Idx,Idx) -> Loc mapping. LocMap::iterator I = locInts.find(Idx); if (!I.valid() || I.start() != Idx) I.insert(Idx, Idx.getNextSlot(), getLocationNo(LocMO)); } /// extendDef - Extend the current definition as far as possible down the /// dominator tree. Stop when meeting an existing def or when leaving the live /// range of VNI. /// @param Idx Starting point for the definition. /// @param LocNo Location number to propagate. /// @param LI Restrict liveness to where LI has the value VNI. May be null. /// @param VNI When LI is not null, this is the value to restrict to. /// @param LIS Live intervals analysis. /// @param MDT Dominator tree. void extendDef(SlotIndex Idx, unsigned LocNo, LiveInterval *LI, const VNInfo *VNI, LiveIntervals &LIS, MachineDominatorTree &MDT); /// computeIntervals - Compute the live intervals of all locations after /// collecting all their def points. void computeIntervals(LiveIntervals &LIS, MachineDominatorTree &MDT); void print(raw_ostream&, const TargetRegisterInfo*); }; } // namespace /// LDVImpl - Implementation of the LiveDebugVariables pass. namespace { class LDVImpl { LiveDebugVariables &pass; LocMap::Allocator allocator; MachineFunction *MF; LiveIntervals *LIS; MachineDominatorTree *MDT; const TargetRegisterInfo *TRI; /// userValues - All allocated UserValue instances. SmallVector userValues; /// Map virtual register to eq class leader. typedef DenseMap VRMap; VRMap virtRegMap; /// Map user variable to eq class leader. typedef DenseMap UVMap; UVMap userVarMap; /// getUserValue - Find or create a UserValue. UserValue *getUserValue(const MDNode *Var, unsigned Offset); /// mapVirtReg - Map virtual register to an equivalence class. void mapVirtReg(unsigned VirtReg, UserValue *EC); /// handleDebugValue - Add DBG_VALUE instruction to our maps. /// @param MI DBG_VALUE instruction /// @param Idx Last valid SLotIndex before instruction. /// @return True if the DBG_VALUE instruction should be deleted. bool handleDebugValue(MachineInstr *MI, SlotIndex Idx); /// collectDebugValues - Collect and erase all DBG_VALUE instructions, adding /// a UserValue def for each instruction. /// @param mf MachineFunction to be scanned. /// @return True if any debug values were found. bool collectDebugValues(MachineFunction &mf); /// computeIntervals - Compute the live intervals of all user values after /// collecting all their def points. void computeIntervals(); public: LDVImpl(LiveDebugVariables *ps) : pass(*ps) {} bool runOnMachineFunction(MachineFunction &mf); /// clear - Relase all memory. void clear() { DeleteContainerPointers(userValues); userValues.clear(); virtRegMap.clear(); userVarMap.clear(); } void print(raw_ostream&); }; } // namespace void Location::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { switch (Kind) { case locUndef: OS << "undef"; return; case locImm: OS << "int:" << Data.ImmVal; return; case locFPImm: OS << "fp:" << Data.CFP->getValueAPF().convertToDouble(); return; default: if (isReg()) { if (TargetRegisterInfo::isVirtualRegister(Kind)) { OS << "%reg" << Kind; if (Data.SubIdx) OS << ':' << TRI->getSubRegIndexName(Data.SubIdx); } else OS << '%' << TRI->getName(Kind); } else { OS << "fi#" << ~Kind; if (Data.Offset) OS << '+' << Data.Offset; } return; } } void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { if (const MDString *MDS = dyn_cast(variable->getOperand(2))) OS << "!\"" << MDS->getString() << "\"\t"; if (offset) OS << '+' << offset; for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { OS << " [" << I.start() << ';' << I.stop() << "):"; if (I.value() == ~0u) OS << "undef"; else OS << I.value(); } for (unsigned i = 0, e = locations.size(); i != e; ++i) { OS << " Loc" << i << '='; locations[i].print(OS, TRI); } OS << '\n'; } void LDVImpl::print(raw_ostream &OS) { OS << "********** DEBUG VARIABLES **********\n"; for (unsigned i = 0, e = userValues.size(); i != e; ++i) userValues[i]->print(OS, TRI); } UserValue *LDVImpl::getUserValue(const MDNode *Var, unsigned Offset) { UserValue *&Leader = userVarMap[Var]; if (Leader) { UserValue *UV = Leader->getLeader(); Leader = UV; for (; UV; UV = UV->getNext()) if (UV->match(Var, Offset)) return UV; } UserValue *UV = new UserValue(Var, Offset, allocator); userValues.push_back(UV); Leader = UserValue::merge(Leader, UV); return UV; } void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) { assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Only map VirtRegs"); UserValue *&Leader = virtRegMap[VirtReg]; Leader = UserValue::merge(Leader, EC); } bool LDVImpl::handleDebugValue(MachineInstr *MI, SlotIndex Idx) { // DBG_VALUE loc, offset, variable if (MI->getNumOperands() != 3 || !MI->getOperand(1).isImm() || !MI->getOperand(2).isMetadata()) { DEBUG(dbgs() << "Can't handle " << *MI); return false; } // Get or create the UserValue for (variable,offset). unsigned Offset = MI->getOperand(1).getImm(); const MDNode *Var = MI->getOperand(2).getMetadata(); UserValue *UV = getUserValue(Var, Offset); // If the location is a virtual register, make sure it is mapped. if (MI->getOperand(0).isReg()) { unsigned Reg = MI->getOperand(0).getReg(); if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) mapVirtReg(Reg, UV); } UV->addDef(Idx, MI->getOperand(0)); return true; } bool LDVImpl::collectDebugValues(MachineFunction &mf) { bool Changed = false; for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE; ++MFI) { MachineBasicBlock *MBB = MFI; for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end(); MBBI != MBBE;) { if (!MBBI->isDebugValue()) { ++MBBI; continue; } // DBG_VALUE has no slot index, use the previous instruction instead. SlotIndex Idx = MBBI == MBB->begin() ? LIS->getMBBStartIdx(MBB) : LIS->getInstructionIndex(llvm::prior(MBBI)).getDefIndex(); // Handle consecutive DBG_VALUE instructions with the same slot index. do { if (handleDebugValue(MBBI, Idx)) { MBBI = MBB->erase(MBBI); Changed = true; } else ++MBBI; } while (MBBI != MBBE && MBBI->isDebugValue()); } } return Changed; } void UserValue::extendDef(SlotIndex Idx, unsigned LocNo, LiveInterval *LI, const VNInfo *VNI, LiveIntervals &LIS, MachineDominatorTree &MDT) { SmallVector Todo; Todo.push_back(Idx); do { SlotIndex Start = Todo.pop_back_val(); MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start); SlotIndex Stop = LIS.getMBBEndIdx(MBB); LocMap::iterator I = locInts.find(Idx); // Limit to VNI's live range. bool ToEnd = true; if (LI && VNI) { LiveRange *Range = LI->getLiveRangeContaining(Start); if (!Range || Range->valno != VNI) continue; if (Range->end < Stop) Stop = Range->end, ToEnd = false; } // There could already be a short def at Start. if (I.valid() && I.start() <= Start) { // Stop when meeting a different location or an already extended interval. Start = Start.getNextSlot(); if (I.value() != LocNo || I.stop() != Start) continue; // This is a one-slot placeholder. Just skip it. ++I; } // Limited by the next def. if (I.valid() && I.start() < Stop) Stop = I.start(), ToEnd = false; if (Start >= Stop) continue; I.insert(Start, Stop, LocNo); // If we extended to the MBB end, propagate down the dominator tree. if (!ToEnd) continue; const std::vector &Children = MDT.getNode(MBB)->getChildren(); for (unsigned i = 0, e = Children.size(); i != e; ++i) Todo.push_back(LIS.getMBBStartIdx(Children[i]->getBlock())); } while (!Todo.empty()); } void UserValue::computeIntervals(LiveIntervals &LIS, MachineDominatorTree &MDT) { SmallVector, 16> Defs; // Collect all defs to be extended (Skipping undefs). for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) if (I.value() != ~0u) Defs.push_back(std::make_pair(I.start(), I.value())); for (unsigned i = 0, e = Defs.size(); i != e; ++i) { SlotIndex Idx = Defs[i].first; unsigned LocNo = Defs[i].second; const Location &Loc = locations[LocNo]; // Register locations are constrained to where the register value is live. if (Loc.isReg() && LIS.hasInterval(Loc.Kind)) { LiveInterval *LI = &LIS.getInterval(Loc.Kind); const VNInfo *VNI = LI->getVNInfoAt(Idx); extendDef(Idx, LocNo, LI, VNI, LIS, MDT); } else extendDef(Idx, LocNo, 0, 0, LIS, MDT); } // Finally, erase all the undefs. for (LocMap::iterator I = locInts.begin(); I.valid();) if (I.value() == ~0u) I.erase(); else ++I; } void LDVImpl::computeIntervals() { for (unsigned i = 0, e = userValues.size(); i != e; ++i) userValues[i]->computeIntervals(*LIS, *MDT); } bool LDVImpl::runOnMachineFunction(MachineFunction &mf) { MF = &mf; LIS = &pass.getAnalysis(); MDT = &pass.getAnalysis(); TRI = mf.getTarget().getRegisterInfo(); clear(); DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: " << ((Value*)mf.getFunction())->getName() << " **********\n"); bool Changed = collectDebugValues(mf); computeIntervals(); DEBUG(print(dbgs())); return Changed; } bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) { if (!EnableLDV) return false; if (!pImpl) pImpl = new LDVImpl(this); return static_cast(pImpl)->runOnMachineFunction(mf); } void LiveDebugVariables::releaseMemory() { if (pImpl) static_cast(pImpl)->clear(); } LiveDebugVariables::~LiveDebugVariables() { if (pImpl) delete static_cast(pImpl); }