//===-- lib/Codegen/MachineRegisterInfo.cpp -------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Implementation of the MachineRegisterInfo class. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" using namespace llvm; MachineRegisterInfo::MachineRegisterInfo(const TargetRegisterInfo &TRI) : TRI(&TRI), IsSSA(true), TracksLiveness(true) { VRegInfo.reserve(256); RegAllocHints.reserve(256); UsedRegUnits.resize(TRI.getNumRegUnits()); UsedPhysRegMask.resize(TRI.getNumRegs()); // Create the physreg use/def lists. PhysRegUseDefLists = new MachineOperand*[TRI.getNumRegs()]; memset(PhysRegUseDefLists, 0, sizeof(MachineOperand*)*TRI.getNumRegs()); } MachineRegisterInfo::~MachineRegisterInfo() { delete [] PhysRegUseDefLists; } /// setRegClass - Set the register class of the specified virtual register. /// void MachineRegisterInfo::setRegClass(unsigned Reg, const TargetRegisterClass *RC) { VRegInfo[Reg].first = RC; } const TargetRegisterClass * MachineRegisterInfo::constrainRegClass(unsigned Reg, const TargetRegisterClass *RC, unsigned MinNumRegs) { const TargetRegisterClass *OldRC = getRegClass(Reg); if (OldRC == RC) return RC; const TargetRegisterClass *NewRC = TRI->getCommonSubClass(OldRC, RC); if (!NewRC || NewRC == OldRC) return NewRC; if (NewRC->getNumRegs() < MinNumRegs) return 0; setRegClass(Reg, NewRC); return NewRC; } bool MachineRegisterInfo::recomputeRegClass(unsigned Reg, const TargetMachine &TM) { const TargetInstrInfo *TII = TM.getInstrInfo(); const TargetRegisterClass *OldRC = getRegClass(Reg); const TargetRegisterClass *NewRC = TRI->getLargestLegalSuperClass(OldRC); // Stop early if there is no room to grow. if (NewRC == OldRC) return false; // Accumulate constraints from all uses. for (reg_nodbg_iterator I = reg_nodbg_begin(Reg), E = reg_nodbg_end(); I != E; ++I) { const TargetRegisterClass *OpRC = I->getRegClassConstraint(I.getOperandNo(), TII, TRI); if (unsigned SubIdx = I.getOperand().getSubReg()) { if (OpRC) NewRC = TRI->getMatchingSuperRegClass(NewRC, OpRC, SubIdx); else NewRC = TRI->getSubClassWithSubReg(NewRC, SubIdx); } else if (OpRC) NewRC = TRI->getCommonSubClass(NewRC, OpRC); if (!NewRC || NewRC == OldRC) return false; } setRegClass(Reg, NewRC); return true; } /// createVirtualRegister - Create and return a new virtual register in the /// function with the specified register class. /// unsigned MachineRegisterInfo::createVirtualRegister(const TargetRegisterClass *RegClass){ assert(RegClass && "Cannot create register without RegClass!"); assert(RegClass->isAllocatable() && "Virtual register RegClass must be allocatable."); // New virtual register number. unsigned Reg = TargetRegisterInfo::index2VirtReg(getNumVirtRegs()); VRegInfo.grow(Reg); VRegInfo[Reg].first = RegClass; RegAllocHints.grow(Reg); return Reg; } /// clearVirtRegs - Remove all virtual registers (after physreg assignment). void MachineRegisterInfo::clearVirtRegs() { #ifndef NDEBUG for (unsigned i = 0, e = getNumVirtRegs(); i != e; ++i) assert(VRegInfo[TargetRegisterInfo::index2VirtReg(i)].second == 0 && "Vreg use list non-empty still?"); #endif VRegInfo.clear(); } /// Add MO to the linked list of operands for its register. void MachineRegisterInfo::addRegOperandToUseList(MachineOperand *MO) { assert(!MO->isOnRegUseList() && "Already on list"); MachineOperand *&HeadRef = getRegUseDefListHead(MO->getReg()); MachineOperand *const Head = HeadRef; // Head points to the first list element. // Next is NULL on the last list element. // Prev pointers are circular, so Head->Prev == Last. // Head is NULL for an empty list. if (!Head) { MO->Contents.Reg.Prev = MO; MO->Contents.Reg.Next = 0; HeadRef = MO; return; } assert(MO->getReg() == Head->getReg() && "Different regs on the same list!"); // Insert MO between Last and Head in the circular Prev chain. MachineOperand *Last = Head->Contents.Reg.Prev; assert(Last && "Inconsistent use list"); assert(MO->getReg() == Last->getReg() && "Different regs on the same list!"); Head->Contents.Reg.Prev = MO; MO->Contents.Reg.Prev = Last; // Def operands always precede uses. This allows def_iterator to stop early. // Insert def operands at the front, and use operands at the back. if (MO->isDef()) { // Insert def at the front. MO->Contents.Reg.Next = Head; HeadRef = MO; } else { // Insert use at the end. MO->Contents.Reg.Next = 0; Last->Contents.Reg.Next = MO; } } /// Remove MO from its use-def list. void MachineRegisterInfo::removeRegOperandFromUseList(MachineOperand *MO) { assert(MO->isOnRegUseList() && "Operand not on use list"); MachineOperand *&HeadRef = getRegUseDefListHead(MO->getReg()); MachineOperand *const Head = HeadRef; assert(Head && "List already empty"); // Unlink this from the doubly linked list of operands. MachineOperand *Next = MO->Contents.Reg.Next; MachineOperand *Prev = MO->Contents.Reg.Prev; // Prev links are circular, next link is NULL instead of looping back to Head. if (MO == Head) HeadRef = Next; else Prev->Contents.Reg.Next = Next; (Next ? Next : Head)->Contents.Reg.Prev = Prev; MO->Contents.Reg.Prev = 0; MO->Contents.Reg.Next = 0; } /// Move NumOps operands from Src to Dst, updating use-def lists as needed. /// /// The Dst range is assumed to be uninitialized memory. (Or it may contain /// operands that won't be destroyed, which is OK because the MO destructor is /// trivial anyway). /// /// The Src and Dst ranges may overlap. void MachineRegisterInfo::moveOperands(MachineOperand *Dst, MachineOperand *Src, unsigned NumOps) { assert(Src != Dst && NumOps && "Noop moveOperands"); // Copy backwards if Dst is within the Src range. int Stride = 1; if (Dst >= Src && Dst < Src + NumOps) { Stride = -1; Dst += NumOps - 1; Src += NumOps - 1; } // Copy one operand at a time. do { new (Dst) MachineOperand(*Src); // Dst takes Src's place in the use-def chain. if (Src->isReg()) { MachineOperand *&Head = getRegUseDefListHead(Src->getReg()); MachineOperand *Prev = Src->Contents.Reg.Prev; MachineOperand *Next = Src->Contents.Reg.Next; assert(Head && "List empty, but operand is chained"); assert(Prev && "Operand was not on use-def list"); // Prev links are circular, next link is NULL instead of looping back to // Head. if (Src == Head) Head = Dst; else Prev->Contents.Reg.Next = Dst; // Update Prev pointer. This also works when Src was pointing to itself // in a 1-element list. In that case Head == Dst. (Next ? Next : Head)->Contents.Reg.Prev = Dst; } Dst += Stride; Src += Stride; } while (--NumOps); } /// replaceRegWith - Replace all instances of FromReg with ToReg in the /// machine function. This is like llvm-level X->replaceAllUsesWith(Y), /// except that it also changes any definitions of the register as well. void MachineRegisterInfo::replaceRegWith(unsigned FromReg, unsigned ToReg) { assert(FromReg != ToReg && "Cannot replace a reg with itself"); // TODO: This could be more efficient by bulk changing the operands. for (reg_iterator I = reg_begin(FromReg), E = reg_end(); I != E; ) { MachineOperand &O = I.getOperand(); ++I; O.setReg(ToReg); } } /// getVRegDef - Return the machine instr that defines the specified virtual /// register or null if none is found. This assumes that the code is in SSA /// form, so there should only be one definition. MachineInstr *MachineRegisterInfo::getVRegDef(unsigned Reg) const { // Since we are in SSA form, we can use the first definition. def_iterator I = def_begin(Reg); assert((I.atEnd() || llvm::next(I) == def_end()) && "getVRegDef assumes a single definition or no definition"); return !I.atEnd() ? &*I : 0; } /// getUniqueVRegDef - Return the unique machine instr that defines the /// specified virtual register or null if none is found. If there are /// multiple definitions or no definition, return null. MachineInstr *MachineRegisterInfo::getUniqueVRegDef(unsigned Reg) const { if (def_empty(Reg)) return 0; def_iterator I = def_begin(Reg); if (llvm::next(I) != def_end()) return 0; return &*I; } bool MachineRegisterInfo::hasOneNonDBGUse(unsigned RegNo) const { use_nodbg_iterator UI = use_nodbg_begin(RegNo); if (UI == use_nodbg_end()) return false; return ++UI == use_nodbg_end(); } /// clearKillFlags - Iterate over all the uses of the given register and /// clear the kill flag from the MachineOperand. This function is used by /// optimization passes which extend register lifetimes and need only /// preserve conservative kill flag information. void MachineRegisterInfo::clearKillFlags(unsigned Reg) const { for (use_iterator UI = use_begin(Reg), UE = use_end(); UI != UE; ++UI) UI.getOperand().setIsKill(false); } bool MachineRegisterInfo::isLiveIn(unsigned Reg) const { for (livein_iterator I = livein_begin(), E = livein_end(); I != E; ++I) if (I->first == Reg || I->second == Reg) return true; return false; } bool MachineRegisterInfo::isLiveOut(unsigned Reg) const { for (liveout_iterator I = liveout_begin(), E = liveout_end(); I != E; ++I) if (*I == Reg) return true; return false; } /// getLiveInPhysReg - If VReg is a live-in virtual register, return the /// corresponding live-in physical register. unsigned MachineRegisterInfo::getLiveInPhysReg(unsigned VReg) const { for (livein_iterator I = livein_begin(), E = livein_end(); I != E; ++I) if (I->second == VReg) return I->first; return 0; } /// getLiveInVirtReg - If PReg is a live-in physical register, return the /// corresponding live-in physical register. unsigned MachineRegisterInfo::getLiveInVirtReg(unsigned PReg) const { for (livein_iterator I = livein_begin(), E = livein_end(); I != E; ++I) if (I->first == PReg) return I->second; return 0; } /// EmitLiveInCopies - Emit copies to initialize livein virtual registers /// into the given entry block. void MachineRegisterInfo::EmitLiveInCopies(MachineBasicBlock *EntryMBB, const TargetRegisterInfo &TRI, const TargetInstrInfo &TII) { // Emit the copies into the top of the block. for (unsigned i = 0, e = LiveIns.size(); i != e; ++i) if (LiveIns[i].second) { if (use_empty(LiveIns[i].second)) { // The livein has no uses. Drop it. // // It would be preferable to have isel avoid creating live-in // records for unused arguments in the first place, but it's // complicated by the debug info code for arguments. LiveIns.erase(LiveIns.begin() + i); --i; --e; } else { // Emit a copy. BuildMI(*EntryMBB, EntryMBB->begin(), DebugLoc(), TII.get(TargetOpcode::COPY), LiveIns[i].second) .addReg(LiveIns[i].first); // Add the register to the entry block live-in set. EntryMBB->addLiveIn(LiveIns[i].first); } } else { // Add the register to the entry block live-in set. EntryMBB->addLiveIn(LiveIns[i].first); } } #ifndef NDEBUG void MachineRegisterInfo::dumpUses(unsigned Reg) const { for (use_iterator I = use_begin(Reg), E = use_end(); I != E; ++I) I.getOperand().getParent()->dump(); } #endif void MachineRegisterInfo::freezeReservedRegs(const MachineFunction &MF) { ReservedRegs = TRI->getReservedRegs(MF); assert(ReservedRegs.size() == TRI->getNumRegs() && "Invalid ReservedRegs vector from target"); } bool MachineRegisterInfo::isConstantPhysReg(unsigned PhysReg, const MachineFunction &MF) const { assert(TargetRegisterInfo::isPhysicalRegister(PhysReg)); // Check if any overlapping register is modified, or allocatable so it may be // used later. for (MCRegAliasIterator AI(PhysReg, TRI, true); AI.isValid(); ++AI) if (!def_empty(*AI) || isAllocatable(*AI)) return false; return true; }