//===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // MachineScheduler schedules machine instructions after phi elimination. It // preserves LiveIntervals so it can be invoked before register allocation. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "misched" #include "llvm/CodeGen/MachineScheduler.h" #include "llvm/ADT/OwningPtr.h" #include "llvm/ADT/PriorityQueue.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/RegisterClassInfo.h" #include "llvm/CodeGen/ScheduleDFS.h" #include "llvm/CodeGen/ScheduleHazardRecognizer.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; namespace llvm { cl::opt ForceTopDown("misched-topdown", cl::Hidden, cl::desc("Force top-down list scheduling")); cl::opt ForceBottomUp("misched-bottomup", cl::Hidden, cl::desc("Force bottom-up list scheduling")); } #ifndef NDEBUG static cl::opt ViewMISchedDAGs("view-misched-dags", cl::Hidden, cl::desc("Pop up a window to show MISched dags after they are processed")); static cl::opt MISchedCutoff("misched-cutoff", cl::Hidden, cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); #else static bool ViewMISchedDAGs = false; #endif // NDEBUG // Threshold to very roughly model an out-of-order processor's instruction // buffers. If the actual value of this threshold matters much in practice, then // it can be specified by the machine model. For now, it's an experimental // tuning knob to determine when and if it matters. static cl::opt ILPWindow("ilp-window", cl::Hidden, cl::desc("Allow expected latency to exceed the critical path by N cycles " "before attempting to balance ILP"), cl::init(10U)); // Experimental heuristics static cl::opt EnableLoadCluster("misched-cluster", cl::Hidden, cl::desc("Enable load clustering."), cl::init(true)); // Experimental heuristics static cl::opt EnableMacroFusion("misched-fusion", cl::Hidden, cl::desc("Enable scheduling for macro fusion."), cl::init(true)); //===----------------------------------------------------------------------===// // Machine Instruction Scheduling Pass and Registry //===----------------------------------------------------------------------===// MachineSchedContext::MachineSchedContext(): MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) { RegClassInfo = new RegisterClassInfo(); } MachineSchedContext::~MachineSchedContext() { delete RegClassInfo; } namespace { /// MachineScheduler runs after coalescing and before register allocation. class MachineScheduler : public MachineSchedContext, public MachineFunctionPass { public: MachineScheduler(); virtual void getAnalysisUsage(AnalysisUsage &AU) const; virtual void releaseMemory() {} virtual bool runOnMachineFunction(MachineFunction&); virtual void print(raw_ostream &O, const Module* = 0) const; static char ID; // Class identification, replacement for typeinfo }; } // namespace char MachineScheduler::ID = 0; char &llvm::MachineSchedulerID = MachineScheduler::ID; INITIALIZE_PASS_BEGIN(MachineScheduler, "misched", "Machine Instruction Scheduler", false, false) INITIALIZE_AG_DEPENDENCY(AliasAnalysis) INITIALIZE_PASS_DEPENDENCY(SlotIndexes) INITIALIZE_PASS_DEPENDENCY(LiveIntervals) INITIALIZE_PASS_END(MachineScheduler, "misched", "Machine Instruction Scheduler", false, false) MachineScheduler::MachineScheduler() : MachineFunctionPass(ID) { initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); } void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequiredID(MachineDominatorsID); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); MachineFunctionPass::getAnalysisUsage(AU); } MachinePassRegistry MachineSchedRegistry::Registry; /// A dummy default scheduler factory indicates whether the scheduler /// is overridden on the command line. static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { return 0; } /// MachineSchedOpt allows command line selection of the scheduler. static cl::opt > MachineSchedOpt("misched", cl::init(&useDefaultMachineSched), cl::Hidden, cl::desc("Machine instruction scheduler to use")); static MachineSchedRegistry DefaultSchedRegistry("default", "Use the target's default scheduler choice.", useDefaultMachineSched); /// Forward declare the standard machine scheduler. This will be used as the /// default scheduler if the target does not set a default. static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C); /// Decrement this iterator until reaching the top or a non-debug instr. static MachineBasicBlock::iterator priorNonDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Beg) { assert(I != Beg && "reached the top of the region, cannot decrement"); while (--I != Beg) { if (!I->isDebugValue()) break; } return I; } /// If this iterator is a debug value, increment until reaching the End or a /// non-debug instruction. static MachineBasicBlock::iterator nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) { for(; I != End; ++I) { if (!I->isDebugValue()) break; } return I; } /// Top-level MachineScheduler pass driver. /// /// Visit blocks in function order. Divide each block into scheduling regions /// and visit them bottom-up. Visiting regions bottom-up is not required, but is /// consistent with the DAG builder, which traverses the interior of the /// scheduling regions bottom-up. /// /// This design avoids exposing scheduling boundaries to the DAG builder, /// simplifying the DAG builder's support for "special" target instructions. /// At the same time the design allows target schedulers to operate across /// scheduling boundaries, for example to bundle the boudary instructions /// without reordering them. This creates complexity, because the target /// scheduler must update the RegionBegin and RegionEnd positions cached by /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler /// design would be to split blocks at scheduling boundaries, but LLVM has a /// general bias against block splitting purely for implementation simplicity. bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs())); // Initialize the context of the pass. MF = &mf; MLI = &getAnalysis(); MDT = &getAnalysis(); PassConfig = &getAnalysis(); AA = &getAnalysis(); LIS = &getAnalysis(); const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); RegClassInfo->runOnMachineFunction(*MF); // Select the scheduler, or set the default. MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; if (Ctor == useDefaultMachineSched) { // Get the default scheduler set by the target. Ctor = MachineSchedRegistry::getDefault(); if (!Ctor) { Ctor = createConvergingSched; MachineSchedRegistry::setDefault(Ctor); } } // Instantiate the selected scheduler. OwningPtr Scheduler(Ctor(this)); // Visit all machine basic blocks. // // TODO: Visit blocks in global postorder or postorder within the bottom-up // loop tree. Then we can optionally compute global RegPressure. for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); MBB != MBBEnd; ++MBB) { Scheduler->startBlock(MBB); // Break the block into scheduling regions [I, RegionEnd), and schedule each // region as soon as it is discovered. RegionEnd points the scheduling // boundary at the bottom of the region. The DAG does not include RegionEnd, // but the region does (i.e. the next RegionEnd is above the previous // RegionBegin). If the current block has no terminator then RegionEnd == // MBB->end() for the bottom region. // // The Scheduler may insert instructions during either schedule() or // exitRegion(), even for empty regions. So the local iterators 'I' and // 'RegionEnd' are invalid across these calls. unsigned RemainingInstrs = MBB->size(); for(MachineBasicBlock::iterator RegionEnd = MBB->end(); RegionEnd != MBB->begin(); RegionEnd = Scheduler->begin()) { // Avoid decrementing RegionEnd for blocks with no terminator. if (RegionEnd != MBB->end() || TII->isSchedulingBoundary(llvm::prior(RegionEnd), MBB, *MF)) { --RegionEnd; // Count the boundary instruction. --RemainingInstrs; } // The next region starts above the previous region. Look backward in the // instruction stream until we find the nearest boundary. MachineBasicBlock::iterator I = RegionEnd; for(;I != MBB->begin(); --I, --RemainingInstrs) { if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF)) break; } // Notify the scheduler of the region, even if we may skip scheduling // it. Perhaps it still needs to be bundled. Scheduler->enterRegion(MBB, I, RegionEnd, RemainingInstrs); // Skip empty scheduling regions (0 or 1 schedulable instructions). if (I == RegionEnd || I == llvm::prior(RegionEnd)) { // Close the current region. Bundle the terminator if needed. // This invalidates 'RegionEnd' and 'I'. Scheduler->exitRegion(); continue; } DEBUG(dbgs() << "********** MI Scheduling **********\n"); DEBUG(dbgs() << MF->getName() << ":BB#" << MBB->getNumber() << "\n From: " << *I << " To: "; if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; else dbgs() << "End"; dbgs() << " Remaining: " << RemainingInstrs << "\n"); // Schedule a region: possibly reorder instructions. // This invalidates 'RegionEnd' and 'I'. Scheduler->schedule(); // Close the current region. Scheduler->exitRegion(); // Scheduling has invalidated the current iterator 'I'. Ask the // scheduler for the top of it's scheduled region. RegionEnd = Scheduler->begin(); } assert(RemainingInstrs == 0 && "Instruction count mismatch!"); Scheduler->finishBlock(); } Scheduler->finalizeSchedule(); DEBUG(LIS->print(dbgs())); return true; } void MachineScheduler::print(raw_ostream &O, const Module* m) const { // unimplemented } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void ReadyQueue::dump() { dbgs() << Name << ": "; for (unsigned i = 0, e = Queue.size(); i < e; ++i) dbgs() << Queue[i]->NodeNum << " "; dbgs() << "\n"; } #endif //===----------------------------------------------------------------------===// // ScheduleDAGMI - Base class for MachineInstr scheduling with LiveIntervals // preservation. //===----------------------------------------------------------------------===// bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { if (SuccSU != &ExitSU) { // Do not use WillCreateCycle, it assumes SD scheduling. // If Pred is reachable from Succ, then the edge creates a cycle. if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) return false; Topo.AddPred(SuccSU, PredDep.getSUnit()); } SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); // Return true regardless of whether a new edge needed to be inserted. return true; } /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When /// NumPredsLeft reaches zero, release the successor node. /// /// FIXME: Adjust SuccSU height based on MinLatency. void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { SUnit *SuccSU = SuccEdge->getSUnit(); if (SuccEdge->isWeak()) { --SuccSU->WeakPredsLeft; if (SuccEdge->isCluster()) NextClusterSucc = SuccSU; return; } #ifndef NDEBUG if (SuccSU->NumPredsLeft == 0) { dbgs() << "*** Scheduling failed! ***\n"; SuccSU->dump(this); dbgs() << " has been released too many times!\n"; llvm_unreachable(0); } #endif --SuccSU->NumPredsLeft; if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) SchedImpl->releaseTopNode(SuccSU); } /// releaseSuccessors - Call releaseSucc on each of SU's successors. void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { releaseSucc(SU, &*I); } } /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When /// NumSuccsLeft reaches zero, release the predecessor node. /// /// FIXME: Adjust PredSU height based on MinLatency. void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { SUnit *PredSU = PredEdge->getSUnit(); if (PredEdge->isWeak()) { --PredSU->WeakSuccsLeft; if (PredEdge->isCluster()) NextClusterPred = PredSU; return; } #ifndef NDEBUG if (PredSU->NumSuccsLeft == 0) { dbgs() << "*** Scheduling failed! ***\n"; PredSU->dump(this); dbgs() << " has been released too many times!\n"; llvm_unreachable(0); } #endif --PredSU->NumSuccsLeft; if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) SchedImpl->releaseBottomNode(PredSU); } /// releasePredecessors - Call releasePred on each of SU's predecessors. void ScheduleDAGMI::releasePredecessors(SUnit *SU) { for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { releasePred(SU, &*I); } } void ScheduleDAGMI::moveInstruction(MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { // Advance RegionBegin if the first instruction moves down. if (&*RegionBegin == MI) ++RegionBegin; // Update the instruction stream. BB->splice(InsertPos, BB, MI); // Update LiveIntervals LIS->handleMove(MI, /*UpdateFlags=*/true); // Recede RegionBegin if an instruction moves above the first. if (RegionBegin == InsertPos) RegionBegin = MI; } bool ScheduleDAGMI::checkSchedLimit() { #ifndef NDEBUG if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { CurrentTop = CurrentBottom; return false; } ++NumInstrsScheduled; #endif return true; } /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after /// crossing a scheduling boundary. [begin, end) includes all instructions in /// the region, including the boundary itself and single-instruction regions /// that don't get scheduled. void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, MachineBasicBlock::iterator begin, MachineBasicBlock::iterator end, unsigned endcount) { ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount); // For convenience remember the end of the liveness region. LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd); } // Setup the register pressure trackers for the top scheduled top and bottom // scheduled regions. void ScheduleDAGMI::initRegPressure() { TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin); BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd); // Close the RPTracker to finalize live ins. RPTracker.closeRegion(); DEBUG(RPTracker.getPressure().dump(TRI)); // Initialize the live ins and live outs. TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); // Close one end of the tracker so we can call // getMaxUpward/DownwardPressureDelta before advancing across any // instructions. This converts currently live regs into live ins/outs. TopRPTracker.closeTop(); BotRPTracker.closeBottom(); // Account for liveness generated by the region boundary. if (LiveRegionEnd != RegionEnd) BotRPTracker.recede(); assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); // Cache the list of excess pressure sets in this region. This will also track // the max pressure in the scheduled code for these sets. RegionCriticalPSets.clear(); std::vector RegionPressure = RPTracker.getPressure().MaxSetPressure; for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { unsigned Limit = TRI->getRegPressureSetLimit(i); DEBUG(dbgs() << TRI->getRegPressureSetName(i) << "Limit " << Limit << " Actual " << RegionPressure[i] << "\n"); if (RegionPressure[i] > Limit) RegionCriticalPSets.push_back(PressureElement(i, 0)); } DEBUG(dbgs() << "Excess PSets: "; for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i) dbgs() << TRI->getRegPressureSetName( RegionCriticalPSets[i].PSetID) << " "; dbgs() << "\n"); } // FIXME: When the pressure tracker deals in pressure differences then we won't // iterate over all RegionCriticalPSets[i]. void ScheduleDAGMI:: updateScheduledPressure(std::vector NewMaxPressure) { for (unsigned i = 0, e = RegionCriticalPSets.size(); i < e; ++i) { unsigned ID = RegionCriticalPSets[i].PSetID; int &MaxUnits = RegionCriticalPSets[i].UnitIncrease; if ((int)NewMaxPressure[ID] > MaxUnits) MaxUnits = NewMaxPressure[ID]; } } /// schedule - Called back from MachineScheduler::runOnMachineFunction /// after setting up the current scheduling region. [RegionBegin, RegionEnd) /// only includes instructions that have DAG nodes, not scheduling boundaries. /// /// This is a skeletal driver, with all the functionality pushed into helpers, /// so that it can be easilly extended by experimental schedulers. Generally, /// implementing MachineSchedStrategy should be sufficient to implement a new /// scheduling algorithm. However, if a scheduler further subclasses /// ScheduleDAGMI then it will want to override this virtual method in order to /// update any specialized state. void ScheduleDAGMI::schedule() { buildDAGWithRegPressure(); Topo.InitDAGTopologicalSorting(); postprocessDAG(); DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) SUnits[su].dumpAll(this)); if (ViewMISchedDAGs) viewGraph(); initQueues(); bool IsTopNode = false; while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) { assert(!SU->isScheduled && "Node already scheduled"); if (!checkSchedLimit()) break; scheduleMI(SU, IsTopNode); updateQueues(SU, IsTopNode); } assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); placeDebugValues(); DEBUG({ unsigned BBNum = begin()->getParent()->getNumber(); dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; dumpSchedule(); dbgs() << '\n'; }); } /// Build the DAG and setup three register pressure trackers. void ScheduleDAGMI::buildDAGWithRegPressure() { // Initialize the register pressure tracker used by buildSchedGraph. RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd); // Account for liveness generate by the region boundary. if (LiveRegionEnd != RegionEnd) RPTracker.recede(); // Build the DAG, and compute current register pressure. buildSchedGraph(AA, &RPTracker); if (ViewMISchedDAGs) viewGraph(); // Initialize top/bottom trackers after computing region pressure. initRegPressure(); } /// Apply each ScheduleDAGMutation step in order. void ScheduleDAGMI::postprocessDAG() { for (unsigned i = 0, e = Mutations.size(); i < e; ++i) { Mutations[i]->apply(this); } } // Release all DAG roots for scheduling. // // Nodes with unreleased weak edges can still be roots. void ScheduleDAGMI::releaseRoots() { SmallVector BotRoots; for (std::vector::iterator I = SUnits.begin(), E = SUnits.end(); I != E; ++I) { SUnit *SU = &(*I); // A SUnit is ready to top schedule if it has no predecessors. if (!I->NumPredsLeft && SU != &EntrySU) SchedImpl->releaseTopNode(SU); // A SUnit is ready to bottom schedule if it has no successors. if (!I->NumSuccsLeft && SU != &ExitSU) BotRoots.push_back(SU); } // Release bottom roots in reverse order so the higher priority nodes appear // first. This is more natural and slightly more efficient. for (SmallVectorImpl::const_reverse_iterator I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) SchedImpl->releaseBottomNode(*I); } /// Identify DAG roots and setup scheduler queues. void ScheduleDAGMI::initQueues() { NextClusterSucc = NULL; NextClusterPred = NULL; // Initialize the strategy before modifying the DAG. SchedImpl->initialize(this); // Release all DAG roots for scheduling, not including EntrySU/ExitSU. releaseRoots(); releaseSuccessors(&EntrySU); releasePredecessors(&ExitSU); SchedImpl->registerRoots(); // Advance past initial DebugValues. assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); CurrentTop = nextIfDebug(RegionBegin, RegionEnd); TopRPTracker.setPos(CurrentTop); CurrentBottom = RegionEnd; } /// Move an instruction and update register pressure. void ScheduleDAGMI::scheduleMI(SUnit *SU, bool IsTopNode) { // Move the instruction to its new location in the instruction stream. MachineInstr *MI = SU->getInstr(); if (IsTopNode) { assert(SU->isTopReady() && "node still has unscheduled dependencies"); if (&*CurrentTop == MI) CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); else { moveInstruction(MI, CurrentTop); TopRPTracker.setPos(MI); } // Update top scheduled pressure. TopRPTracker.advance(); assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); updateScheduledPressure(TopRPTracker.getPressure().MaxSetPressure); } else { assert(SU->isBottomReady() && "node still has unscheduled dependencies"); MachineBasicBlock::iterator priorII = priorNonDebug(CurrentBottom, CurrentTop); if (&*priorII == MI) CurrentBottom = priorII; else { if (&*CurrentTop == MI) { CurrentTop = nextIfDebug(++CurrentTop, priorII); TopRPTracker.setPos(CurrentTop); } moveInstruction(MI, CurrentBottom); CurrentBottom = MI; } // Update bottom scheduled pressure. BotRPTracker.recede(); assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); updateScheduledPressure(BotRPTracker.getPressure().MaxSetPressure); } } /// Update scheduler queues after scheduling an instruction. void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { // Release dependent instructions for scheduling. if (IsTopNode) releaseSuccessors(SU); else releasePredecessors(SU); SU->isScheduled = true; // Notify the scheduling strategy after updating the DAG. SchedImpl->schedNode(SU, IsTopNode); } /// Reinsert any remaining debug_values, just like the PostRA scheduler. void ScheduleDAGMI::placeDebugValues() { // If first instruction was a DBG_VALUE then put it back. if (FirstDbgValue) { BB->splice(RegionBegin, BB, FirstDbgValue); RegionBegin = FirstDbgValue; } for (std::vector >::iterator DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { std::pair P = *prior(DI); MachineInstr *DbgValue = P.first; MachineBasicBlock::iterator OrigPrevMI = P.second; if (&*RegionBegin == DbgValue) ++RegionBegin; BB->splice(++OrigPrevMI, BB, DbgValue); if (OrigPrevMI == llvm::prior(RegionEnd)) RegionEnd = DbgValue; } DbgValues.clear(); FirstDbgValue = NULL; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void ScheduleDAGMI::dumpSchedule() const { for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { if (SUnit *SU = getSUnit(&(*MI))) SU->dump(this); else dbgs() << "Missing SUnit\n"; } } #endif //===----------------------------------------------------------------------===// // LoadClusterMutation - DAG post-processing to cluster loads. //===----------------------------------------------------------------------===// namespace { /// \brief Post-process the DAG to create cluster edges between neighboring /// loads. class LoadClusterMutation : public ScheduleDAGMutation { struct LoadInfo { SUnit *SU; unsigned BaseReg; unsigned Offset; LoadInfo(SUnit *su, unsigned reg, unsigned ofs) : SU(su), BaseReg(reg), Offset(ofs) {} }; static bool LoadInfoLess(const LoadClusterMutation::LoadInfo &LHS, const LoadClusterMutation::LoadInfo &RHS); const TargetInstrInfo *TII; const TargetRegisterInfo *TRI; public: LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri) : TII(tii), TRI(tri) {} virtual void apply(ScheduleDAGMI *DAG); protected: void clusterNeighboringLoads(ArrayRef Loads, ScheduleDAGMI *DAG); }; } // anonymous bool LoadClusterMutation::LoadInfoLess( const LoadClusterMutation::LoadInfo &LHS, const LoadClusterMutation::LoadInfo &RHS) { if (LHS.BaseReg != RHS.BaseReg) return LHS.BaseReg < RHS.BaseReg; return LHS.Offset < RHS.Offset; } void LoadClusterMutation::clusterNeighboringLoads(ArrayRef Loads, ScheduleDAGMI *DAG) { SmallVector LoadRecords; for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) { SUnit *SU = Loads[Idx]; unsigned BaseReg; unsigned Offset; if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI)) LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset)); } if (LoadRecords.size() < 2) return; std::sort(LoadRecords.begin(), LoadRecords.end(), LoadInfoLess); unsigned ClusterLength = 1; for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) { if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) { ClusterLength = 1; continue; } SUnit *SUa = LoadRecords[Idx].SU; SUnit *SUb = LoadRecords[Idx+1].SU; if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength) && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU(" << SUb->NodeNum << ")\n"); // Copy successor edges from SUa to SUb. Interleaving computation // dependent on SUa can prevent load combining due to register reuse. // Predecessor edges do not need to be copied from SUb to SUa since nearby // loads should have effectively the same inputs. for (SUnit::const_succ_iterator SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) { if (SI->getSUnit() == SUb) continue; DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n"); DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial)); } ++ClusterLength; } else ClusterLength = 1; } } /// \brief Callback from DAG postProcessing to create cluster edges for loads. void LoadClusterMutation::apply(ScheduleDAGMI *DAG) { // Map DAG NodeNum to store chain ID. DenseMap StoreChainIDs; // Map each store chain to a set of dependent loads. SmallVector, 32> StoreChainDependents; for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { SUnit *SU = &DAG->SUnits[Idx]; if (!SU->getInstr()->mayLoad()) continue; unsigned ChainPredID = DAG->SUnits.size(); for (SUnit::const_pred_iterator PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { if (PI->isCtrl()) { ChainPredID = PI->getSUnit()->NodeNum; break; } } // Check if this chain-like pred has been seen // before. ChainPredID==MaxNodeID for loads at the top of the schedule. unsigned NumChains = StoreChainDependents.size(); std::pair::iterator, bool> Result = StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); if (Result.second) StoreChainDependents.resize(NumChains + 1); StoreChainDependents[Result.first->second].push_back(SU); } // Iterate over the store chains. for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx) clusterNeighboringLoads(StoreChainDependents[Idx], DAG); } //===----------------------------------------------------------------------===// // MacroFusion - DAG post-processing to encourage fusion of macro ops. //===----------------------------------------------------------------------===// namespace { /// \brief Post-process the DAG to create cluster edges between instructions /// that may be fused by the processor into a single operation. class MacroFusion : public ScheduleDAGMutation { const TargetInstrInfo *TII; public: MacroFusion(const TargetInstrInfo *tii): TII(tii) {} virtual void apply(ScheduleDAGMI *DAG); }; } // anonymous /// \brief Callback from DAG postProcessing to create cluster edges to encourage /// fused operations. void MacroFusion::apply(ScheduleDAGMI *DAG) { // For now, assume targets can only fuse with the branch. MachineInstr *Branch = DAG->ExitSU.getInstr(); if (!Branch) return; for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) { SUnit *SU = &DAG->SUnits[--Idx]; if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch)) continue; // Create a single weak edge from SU to ExitSU. The only effect is to cause // bottom-up scheduling to heavily prioritize the clustered SU. There is no // need to copy predecessor edges from ExitSU to SU, since top-down // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling // of SU, we could create an artificial edge from the deepest root, but it // hasn't been needed yet. bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster)); (void)Success; assert(Success && "No DAG nodes should be reachable from ExitSU"); DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n"); break; } } //===----------------------------------------------------------------------===// // ConvergingScheduler - Implementation of the standard MachineSchedStrategy. //===----------------------------------------------------------------------===// namespace { /// ConvergingScheduler shrinks the unscheduled zone using heuristics to balance /// the schedule. class ConvergingScheduler : public MachineSchedStrategy { public: /// Represent the type of SchedCandidate found within a single queue. /// pickNodeBidirectional depends on these listed by decreasing priority. enum CandReason { NoCand, SingleExcess, SingleCritical, Cluster, ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce, TopDepthReduce, TopPathReduce, SingleMax, MultiPressure, NextDefUse, NodeOrder}; #ifndef NDEBUG static const char *getReasonStr(ConvergingScheduler::CandReason Reason); #endif /// Policy for scheduling the next instruction in the candidate's zone. struct CandPolicy { bool ReduceLatency; unsigned ReduceResIdx; unsigned DemandResIdx; CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {} }; /// Status of an instruction's critical resource consumption. struct SchedResourceDelta { // Count critical resources in the scheduled region required by SU. unsigned CritResources; // Count critical resources from another region consumed by SU. unsigned DemandedResources; SchedResourceDelta(): CritResources(0), DemandedResources(0) {} bool operator==(const SchedResourceDelta &RHS) const { return CritResources == RHS.CritResources && DemandedResources == RHS.DemandedResources; } bool operator!=(const SchedResourceDelta &RHS) const { return !operator==(RHS); } }; /// Store the state used by ConvergingScheduler heuristics, required for the /// lifetime of one invocation of pickNode(). struct SchedCandidate { CandPolicy Policy; // The best SUnit candidate. SUnit *SU; // The reason for this candidate. CandReason Reason; // Register pressure values for the best candidate. RegPressureDelta RPDelta; // Critical resource consumption of the best candidate. SchedResourceDelta ResDelta; SchedCandidate(const CandPolicy &policy) : Policy(policy), SU(NULL), Reason(NoCand) {} bool isValid() const { return SU; } // Copy the status of another candidate without changing policy. void setBest(SchedCandidate &Best) { assert(Best.Reason != NoCand && "uninitialized Sched candidate"); SU = Best.SU; Reason = Best.Reason; RPDelta = Best.RPDelta; ResDelta = Best.ResDelta; } void initResourceDelta(const ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel); }; /// Summarize the unscheduled region. struct SchedRemainder { // Critical path through the DAG in expected latency. unsigned CriticalPath; // Unscheduled resources SmallVector RemainingCounts; // Critical resource for the unscheduled zone. unsigned CritResIdx; // Number of micro-ops left to schedule. unsigned RemainingMicroOps; // Is the unscheduled zone resource limited. bool IsResourceLimited; unsigned MaxRemainingCount; void reset() { CriticalPath = 0; RemainingCounts.clear(); CritResIdx = 0; RemainingMicroOps = 0; IsResourceLimited = false; MaxRemainingCount = 0; } SchedRemainder() { reset(); } void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel); }; /// Each Scheduling boundary is associated with ready queues. It tracks the /// current cycle in the direction of movement, and maintains the state /// of "hazards" and other interlocks at the current cycle. struct SchedBoundary { ScheduleDAGMI *DAG; const TargetSchedModel *SchedModel; SchedRemainder *Rem; ReadyQueue Available; ReadyQueue Pending; bool CheckPending; // For heuristics, keep a list of the nodes that immediately depend on the // most recently scheduled node. SmallPtrSet NextSUs; ScheduleHazardRecognizer *HazardRec; unsigned CurrCycle; unsigned IssueCount; /// MinReadyCycle - Cycle of the soonest available instruction. unsigned MinReadyCycle; // The expected latency of the critical path in this scheduled zone. unsigned ExpectedLatency; // Resources used in the scheduled zone beyond this boundary. SmallVector ResourceCounts; // Cache the critical resources ID in this scheduled zone. unsigned CritResIdx; // Is the scheduled region resource limited vs. latency limited. bool IsResourceLimited; unsigned ExpectedCount; // Policy flag: attempt to find ILP until expected latency is covered. bool ShouldIncreaseILP; #ifndef NDEBUG // Remember the greatest min operand latency. unsigned MaxMinLatency; #endif void reset() { Available.clear(); Pending.clear(); CheckPending = false; NextSUs.clear(); HazardRec = 0; CurrCycle = 0; IssueCount = 0; MinReadyCycle = UINT_MAX; ExpectedLatency = 0; ResourceCounts.resize(1); assert(!ResourceCounts[0] && "nonzero count for bad resource"); CritResIdx = 0; IsResourceLimited = false; ExpectedCount = 0; ShouldIncreaseILP = false; #ifndef NDEBUG MaxMinLatency = 0; #endif // Reserve a zero-count for invalid CritResIdx. ResourceCounts.resize(1); } /// Pending queues extend the ready queues with the same ID and the /// PendingFlag set. SchedBoundary(unsigned ID, const Twine &Name): DAG(0), SchedModel(0), Rem(0), Available(ID, Name+".A"), Pending(ID << ConvergingScheduler::LogMaxQID, Name+".P") { reset(); } ~SchedBoundary() { delete HazardRec; } void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem); bool isTop() const { return Available.getID() == ConvergingScheduler::TopQID; } unsigned getUnscheduledLatency(SUnit *SU) const { if (isTop()) return SU->getHeight(); return SU->getDepth(); } unsigned getCriticalCount() const { return ResourceCounts[CritResIdx]; } bool checkHazard(SUnit *SU); void checkILPPolicy(); void releaseNode(SUnit *SU, unsigned ReadyCycle); void bumpCycle(); void countResource(unsigned PIdx, unsigned Cycles); void bumpNode(SUnit *SU); void releasePending(); void removeReady(SUnit *SU); SUnit *pickOnlyChoice(); }; private: ScheduleDAGMI *DAG; const TargetSchedModel *SchedModel; const TargetRegisterInfo *TRI; // State of the top and bottom scheduled instruction boundaries. SchedRemainder Rem; SchedBoundary Top; SchedBoundary Bot; public: /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both) enum { TopQID = 1, BotQID = 2, LogMaxQID = 2 }; ConvergingScheduler(): DAG(0), SchedModel(0), TRI(0), Top(TopQID, "TopQ"), Bot(BotQID, "BotQ") {} virtual void initialize(ScheduleDAGMI *dag); virtual SUnit *pickNode(bool &IsTopNode); virtual void schedNode(SUnit *SU, bool IsTopNode); virtual void releaseTopNode(SUnit *SU); virtual void releaseBottomNode(SUnit *SU); virtual void registerRoots(); protected: void balanceZones( ConvergingScheduler::SchedBoundary &CriticalZone, ConvergingScheduler::SchedCandidate &CriticalCand, ConvergingScheduler::SchedBoundary &OppositeZone, ConvergingScheduler::SchedCandidate &OppositeCand); void checkResourceLimits(ConvergingScheduler::SchedCandidate &TopCand, ConvergingScheduler::SchedCandidate &BotCand); void tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand, SchedBoundary &Zone, const RegPressureTracker &RPTracker, RegPressureTracker &TempTracker); SUnit *pickNodeBidirectional(bool &IsTopNode); void pickNodeFromQueue(SchedBoundary &Zone, const RegPressureTracker &RPTracker, SchedCandidate &Candidate); #ifndef NDEBUG void traceCandidate(const SchedCandidate &Cand, const SchedBoundary &Zone); #endif }; } // namespace void ConvergingScheduler::SchedRemainder:: init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { reset(); if (!SchedModel->hasInstrSchedModel()) return; RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); for (std::vector::iterator I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) { const MCSchedClassDesc *SC = DAG->getSchedClass(&*I); RemainingMicroOps += SchedModel->getNumMicroOps(I->getInstr(), SC); for (TargetSchedModel::ProcResIter PI = SchedModel->getWriteProcResBegin(SC), PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { unsigned PIdx = PI->ProcResourceIdx; unsigned Factor = SchedModel->getResourceFactor(PIdx); RemainingCounts[PIdx] += (Factor * PI->Cycles); } } } void ConvergingScheduler::SchedBoundary:: init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { reset(); DAG = dag; SchedModel = smodel; Rem = rem; if (SchedModel->hasInstrSchedModel()) ResourceCounts.resize(SchedModel->getNumProcResourceKinds()); } void ConvergingScheduler::initialize(ScheduleDAGMI *dag) { DAG = dag; SchedModel = DAG->getSchedModel(); TRI = DAG->TRI; Rem.init(DAG, SchedModel); Top.init(DAG, SchedModel, &Rem); Bot.init(DAG, SchedModel, &Rem); // Initialize resource counts. // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or // are disabled, then these HazardRecs will be disabled. const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); const TargetMachine &TM = DAG->MF.getTarget(); Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); assert((!ForceTopDown || !ForceBottomUp) && "-misched-topdown incompatible with -misched-bottomup"); } void ConvergingScheduler::releaseTopNode(SUnit *SU) { if (SU->isScheduled) return; for (SUnit::succ_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle; unsigned MinLatency = I->getMinLatency(); #ifndef NDEBUG Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency); #endif if (SU->TopReadyCycle < PredReadyCycle + MinLatency) SU->TopReadyCycle = PredReadyCycle + MinLatency; } Top.releaseNode(SU, SU->TopReadyCycle); } void ConvergingScheduler::releaseBottomNode(SUnit *SU) { if (SU->isScheduled) return; assert(SU->getInstr() && "Scheduled SUnit must have instr"); for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { if (I->isWeak()) continue; unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle; unsigned MinLatency = I->getMinLatency(); #ifndef NDEBUG Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency); #endif if (SU->BotReadyCycle < SuccReadyCycle + MinLatency) SU->BotReadyCycle = SuccReadyCycle + MinLatency; } Bot.releaseNode(SU, SU->BotReadyCycle); } void ConvergingScheduler::registerRoots() { Rem.CriticalPath = DAG->ExitSU.getDepth(); // Some roots may not feed into ExitSU. Check all of them in case. for (std::vector::const_iterator I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) { if ((*I)->getDepth() > Rem.CriticalPath) Rem.CriticalPath = (*I)->getDepth(); } DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n'); } /// Does this SU have a hazard within the current instruction group. /// /// The scheduler supports two modes of hazard recognition. The first is the /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that /// supports highly complicated in-order reservation tables /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. /// /// The second is a streamlined mechanism that checks for hazards based on /// simple counters that the scheduler itself maintains. It explicitly checks /// for instruction dispatch limitations, including the number of micro-ops that /// can dispatch per cycle. /// /// TODO: Also check whether the SU must start a new group. bool ConvergingScheduler::SchedBoundary::checkHazard(SUnit *SU) { if (HazardRec->isEnabled()) return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard; unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); if ((IssueCount > 0) && (IssueCount + uops > SchedModel->getIssueWidth())) { DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); return true; } return false; } /// If expected latency is covered, disable ILP policy. void ConvergingScheduler::SchedBoundary::checkILPPolicy() { if (ShouldIncreaseILP && (IsResourceLimited || ExpectedLatency <= CurrCycle)) { ShouldIncreaseILP = false; DEBUG(dbgs() << "Disable ILP: " << Available.getName() << '\n'); } } void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { if (ReadyCycle < MinReadyCycle) MinReadyCycle = ReadyCycle; // Check for interlocks first. For the purpose of other heuristics, an // instruction that cannot issue appears as if it's not in the ReadyQueue. if (ReadyCycle > CurrCycle || checkHazard(SU)) Pending.push(SU); else Available.push(SU); // Record this node as an immediate dependent of the scheduled node. NextSUs.insert(SU); // If CriticalPath has been computed, then check if the unscheduled nodes // exceed the ILP window. Before registerRoots, CriticalPath==0. if (Rem->CriticalPath && (ExpectedLatency + getUnscheduledLatency(SU) > Rem->CriticalPath + ILPWindow)) { ShouldIncreaseILP = true; DEBUG(dbgs() << "Increase ILP: " << Available.getName() << " " << ExpectedLatency << " + " << getUnscheduledLatency(SU) << '\n'); } } /// Move the boundary of scheduled code by one cycle. void ConvergingScheduler::SchedBoundary::bumpCycle() { unsigned Width = SchedModel->getIssueWidth(); IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width; unsigned NextCycle = CurrCycle + 1; assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); if (MinReadyCycle > NextCycle) { IssueCount = 0; NextCycle = MinReadyCycle; } if (!HazardRec->isEnabled()) { // Bypass HazardRec virtual calls. CurrCycle = NextCycle; } else { // Bypass getHazardType calls in case of long latency. for (; CurrCycle != NextCycle; ++CurrCycle) { if (isTop()) HazardRec->AdvanceCycle(); else HazardRec->RecedeCycle(); } } CheckPending = true; IsResourceLimited = getCriticalCount() > std::max(ExpectedLatency, CurrCycle); DEBUG(dbgs() << " *** " << Available.getName() << " cycle " << CurrCycle << '\n'); } /// Add the given processor resource to this scheduled zone. void ConvergingScheduler::SchedBoundary::countResource(unsigned PIdx, unsigned Cycles) { unsigned Factor = SchedModel->getResourceFactor(PIdx); DEBUG(dbgs() << " " << SchedModel->getProcResource(PIdx)->Name << " +(" << Cycles << "x" << Factor << ") / " << SchedModel->getLatencyFactor() << '\n'); unsigned Count = Factor * Cycles; ResourceCounts[PIdx] += Count; assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); Rem->RemainingCounts[PIdx] -= Count; // Reset MaxRemainingCount for sanity. Rem->MaxRemainingCount = 0; // Check if this resource exceeds the current critical resource by a full // cycle. If so, it becomes the critical resource. if ((int)(ResourceCounts[PIdx] - ResourceCounts[CritResIdx]) >= (int)SchedModel->getLatencyFactor()) { CritResIdx = PIdx; DEBUG(dbgs() << " *** Critical resource " << SchedModel->getProcResource(PIdx)->Name << " x" << ResourceCounts[PIdx] << '\n'); } } /// Move the boundary of scheduled code by one SUnit. void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) { // Update the reservation table. if (HazardRec->isEnabled()) { if (!isTop() && SU->isCall) { // Calls are scheduled with their preceding instructions. For bottom-up // scheduling, clear the pipeline state before emitting. HazardRec->Reset(); } HazardRec->EmitInstruction(SU); } // Update resource counts and critical resource. if (SchedModel->hasInstrSchedModel()) { const MCSchedClassDesc *SC = DAG->getSchedClass(SU); Rem->RemainingMicroOps -= SchedModel->getNumMicroOps(SU->getInstr(), SC); for (TargetSchedModel::ProcResIter PI = SchedModel->getWriteProcResBegin(SC), PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { countResource(PI->ProcResourceIdx, PI->Cycles); } } if (isTop()) { if (SU->getDepth() > ExpectedLatency) ExpectedLatency = SU->getDepth(); } else { if (SU->getHeight() > ExpectedLatency) ExpectedLatency = SU->getHeight(); } IsResourceLimited = getCriticalCount() > std::max(ExpectedLatency, CurrCycle); // Check the instruction group dispatch limit. // TODO: Check if this SU must end a dispatch group. IssueCount += SchedModel->getNumMicroOps(SU->getInstr()); // checkHazard prevents scheduling multiple instructions per cycle that exceed // issue width. However, we commonly reach the maximum. In this case // opportunistically bump the cycle to avoid uselessly checking everything in // the readyQ. Furthermore, a single instruction may produce more than one // cycle's worth of micro-ops. if (IssueCount >= SchedModel->getIssueWidth()) { DEBUG(dbgs() << " *** Max instrs at cycle " << CurrCycle << '\n'); bumpCycle(); } } /// Release pending ready nodes in to the available queue. This makes them /// visible to heuristics. void ConvergingScheduler::SchedBoundary::releasePending() { // If the available queue is empty, it is safe to reset MinReadyCycle. if (Available.empty()) MinReadyCycle = UINT_MAX; // Check to see if any of the pending instructions are ready to issue. If // so, add them to the available queue. for (unsigned i = 0, e = Pending.size(); i != e; ++i) { SUnit *SU = *(Pending.begin()+i); unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; if (ReadyCycle < MinReadyCycle) MinReadyCycle = ReadyCycle; if (ReadyCycle > CurrCycle) continue; if (checkHazard(SU)) continue; Available.push(SU); Pending.remove(Pending.begin()+i); --i; --e; } DEBUG(if (!Pending.empty()) Pending.dump()); CheckPending = false; } /// Remove SU from the ready set for this boundary. void ConvergingScheduler::SchedBoundary::removeReady(SUnit *SU) { if (Available.isInQueue(SU)) Available.remove(Available.find(SU)); else { assert(Pending.isInQueue(SU) && "bad ready count"); Pending.remove(Pending.find(SU)); } } /// If this queue only has one ready candidate, return it. As a side effect, /// defer any nodes that now hit a hazard, and advance the cycle until at least /// one node is ready. If multiple instructions are ready, return NULL. SUnit *ConvergingScheduler::SchedBoundary::pickOnlyChoice() { if (CheckPending) releasePending(); if (IssueCount > 0) { // Defer any ready instrs that now have a hazard. for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { if (checkHazard(*I)) { Pending.push(*I); I = Available.remove(I); continue; } ++I; } } for (unsigned i = 0; Available.empty(); ++i) { assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) && "permanent hazard"); (void)i; bumpCycle(); releasePending(); } if (Available.size() == 1) return *Available.begin(); return NULL; } /// Record the candidate policy for opposite zones with different critical /// resources. /// /// If the CriticalZone is latency limited, don't force a policy for the /// candidates here. Instead, When releasing each candidate, releaseNode /// compares the region's critical path to the candidate's height or depth and /// the scheduled zone's expected latency then sets ShouldIncreaseILP. void ConvergingScheduler::balanceZones( ConvergingScheduler::SchedBoundary &CriticalZone, ConvergingScheduler::SchedCandidate &CriticalCand, ConvergingScheduler::SchedBoundary &OppositeZone, ConvergingScheduler::SchedCandidate &OppositeCand) { if (!CriticalZone.IsResourceLimited) return; SchedRemainder *Rem = CriticalZone.Rem; // If the critical zone is overconsuming a resource relative to the // remainder, try to reduce it. unsigned RemainingCritCount = Rem->RemainingCounts[CriticalZone.CritResIdx]; if ((int)(Rem->MaxRemainingCount - RemainingCritCount) > (int)SchedModel->getLatencyFactor()) { CriticalCand.Policy.ReduceResIdx = CriticalZone.CritResIdx; DEBUG(dbgs() << "Balance " << CriticalZone.Available.getName() << " reduce " << SchedModel->getProcResource(CriticalZone.CritResIdx)->Name << '\n'); } // If the other zone is underconsuming a resource relative to the full zone, // try to increase it. unsigned OppositeCount = OppositeZone.ResourceCounts[CriticalZone.CritResIdx]; if ((int)(OppositeZone.ExpectedCount - OppositeCount) > (int)SchedModel->getLatencyFactor()) { OppositeCand.Policy.DemandResIdx = CriticalZone.CritResIdx; DEBUG(dbgs() << "Balance " << OppositeZone.Available.getName() << " demand " << SchedModel->getProcResource(OppositeZone.CritResIdx)->Name << '\n'); } } /// Determine if the scheduled zones exceed resource limits or critical path and /// set each candidate's ReduceHeight policy accordingly. void ConvergingScheduler::checkResourceLimits( ConvergingScheduler::SchedCandidate &TopCand, ConvergingScheduler::SchedCandidate &BotCand) { Bot.checkILPPolicy(); Top.checkILPPolicy(); if (Bot.ShouldIncreaseILP) BotCand.Policy.ReduceLatency = true; if (Top.ShouldIncreaseILP) TopCand.Policy.ReduceLatency = true; // Handle resource-limited regions. if (Top.IsResourceLimited && Bot.IsResourceLimited && Top.CritResIdx == Bot.CritResIdx) { // If the scheduled critical resource in both zones is no longer the // critical remaining resource, attempt to reduce resource height both ways. if (Top.CritResIdx != Rem.CritResIdx) { TopCand.Policy.ReduceResIdx = Top.CritResIdx; BotCand.Policy.ReduceResIdx = Bot.CritResIdx; DEBUG(dbgs() << "Reduce scheduled " << SchedModel->getProcResource(Top.CritResIdx)->Name << '\n'); } return; } // Handle latency-limited regions. if (!Top.IsResourceLimited && !Bot.IsResourceLimited) { // If the total scheduled expected latency exceeds the region's critical // path then reduce latency both ways. // // Just because a zone is not resource limited does not mean it is latency // limited. Unbuffered resource, such as max micro-ops may cause CurrCycle // to exceed expected latency. if ((Top.ExpectedLatency + Bot.ExpectedLatency >= Rem.CriticalPath) && (Rem.CriticalPath > Top.CurrCycle + Bot.CurrCycle)) { TopCand.Policy.ReduceLatency = true; BotCand.Policy.ReduceLatency = true; DEBUG(dbgs() << "Reduce scheduled latency " << Top.ExpectedLatency << " + " << Bot.ExpectedLatency << '\n'); } return; } // The critical resource is different in each zone, so request balancing. // Compute the cost of each zone. Rem.MaxRemainingCount = std::max( Rem.RemainingMicroOps * SchedModel->getMicroOpFactor(), Rem.RemainingCounts[Rem.CritResIdx]); Top.ExpectedCount = std::max(Top.ExpectedLatency, Top.CurrCycle); Top.ExpectedCount = std::max( Top.getCriticalCount(), Top.ExpectedCount * SchedModel->getLatencyFactor()); Bot.ExpectedCount = std::max(Bot.ExpectedLatency, Bot.CurrCycle); Bot.ExpectedCount = std::max( Bot.getCriticalCount(), Bot.ExpectedCount * SchedModel->getLatencyFactor()); balanceZones(Top, TopCand, Bot, BotCand); balanceZones(Bot, BotCand, Top, TopCand); } void ConvergingScheduler::SchedCandidate:: initResourceDelta(const ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { if (!Policy.ReduceResIdx && !Policy.DemandResIdx) return; const MCSchedClassDesc *SC = DAG->getSchedClass(SU); for (TargetSchedModel::ProcResIter PI = SchedModel->getWriteProcResBegin(SC), PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { if (PI->ProcResourceIdx == Policy.ReduceResIdx) ResDelta.CritResources += PI->Cycles; if (PI->ProcResourceIdx == Policy.DemandResIdx) ResDelta.DemandedResources += PI->Cycles; } } /// Return true if this heuristic determines order. static bool tryLess(unsigned TryVal, unsigned CandVal, ConvergingScheduler::SchedCandidate &TryCand, ConvergingScheduler::SchedCandidate &Cand, ConvergingScheduler::CandReason Reason) { if (TryVal < CandVal) { TryCand.Reason = Reason; return true; } if (TryVal > CandVal) { if (Cand.Reason > Reason) Cand.Reason = Reason; return true; } return false; } static bool tryGreater(unsigned TryVal, unsigned CandVal, ConvergingScheduler::SchedCandidate &TryCand, ConvergingScheduler::SchedCandidate &Cand, ConvergingScheduler::CandReason Reason) { if (TryVal > CandVal) { TryCand.Reason = Reason; return true; } if (TryVal < CandVal) { if (Cand.Reason > Reason) Cand.Reason = Reason; return true; } return false; } static unsigned getWeakLeft(const SUnit *SU, bool isTop) { return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; } /// Apply a set of heursitics to a new candidate. Heuristics are currently /// hierarchical. This may be more efficient than a graduated cost model because /// we don't need to evaluate all aspects of the model for each node in the /// queue. But it's really done to make the heuristics easier to debug and /// statistically analyze. /// /// \param Cand provides the policy and current best candidate. /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. /// \param Zone describes the scheduled zone that we are extending. /// \param RPTracker describes reg pressure within the scheduled zone. /// \param TempTracker is a scratch pressure tracker to reuse in queries. void ConvergingScheduler::tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand, SchedBoundary &Zone, const RegPressureTracker &RPTracker, RegPressureTracker &TempTracker) { // Always initialize TryCand's RPDelta. TempTracker.getMaxPressureDelta(TryCand.SU->getInstr(), TryCand.RPDelta, DAG->getRegionCriticalPSets(), DAG->getRegPressure().MaxSetPressure); // Initialize the candidate if needed. if (!Cand.isValid()) { TryCand.Reason = NodeOrder; return; } // Avoid exceeding the target's limit. if (tryLess(TryCand.RPDelta.Excess.UnitIncrease, Cand.RPDelta.Excess.UnitIncrease, TryCand, Cand, SingleExcess)) return; if (Cand.Reason == SingleExcess) Cand.Reason = MultiPressure; // Avoid increasing the max critical pressure in the scheduled region. if (tryLess(TryCand.RPDelta.CriticalMax.UnitIncrease, Cand.RPDelta.CriticalMax.UnitIncrease, TryCand, Cand, SingleCritical)) return; if (Cand.Reason == SingleCritical) Cand.Reason = MultiPressure; // Keep clustered nodes together to encourage downstream peephole // optimizations which may reduce resource requirements. // // This is a best effort to set things up for a post-RA pass. Optimizations // like generating loads of multiple registers should ideally be done within // the scheduler pass by combining the loads during DAG postprocessing. const SUnit *NextClusterSU = Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU, TryCand, Cand, Cluster)) return; // Currently, weak edges are for clustering, so we hard-code that reason. // However, deferring the current TryCand will not change Cand's reason. CandReason OrigReason = Cand.Reason; if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()), getWeakLeft(Cand.SU, Zone.isTop()), TryCand, Cand, Cluster)) { Cand.Reason = OrigReason; return; } // Avoid critical resource consumption and balance the schedule. TryCand.initResourceDelta(DAG, SchedModel); if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, TryCand, Cand, ResourceReduce)) return; if (tryGreater(TryCand.ResDelta.DemandedResources, Cand.ResDelta.DemandedResources, TryCand, Cand, ResourceDemand)) return; // Avoid serializing long latency dependence chains. if (Cand.Policy.ReduceLatency) { if (Zone.isTop()) { if (Cand.SU->getDepth() * SchedModel->getLatencyFactor() > Zone.ExpectedCount) { if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), TryCand, Cand, TopDepthReduce)) return; } if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), TryCand, Cand, TopPathReduce)) return; } else { if (Cand.SU->getHeight() * SchedModel->getLatencyFactor() > Zone.ExpectedCount) { if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), TryCand, Cand, BotHeightReduce)) return; } if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), TryCand, Cand, BotPathReduce)) return; } } // Avoid increasing the max pressure of the entire region. if (tryLess(TryCand.RPDelta.CurrentMax.UnitIncrease, Cand.RPDelta.CurrentMax.UnitIncrease, TryCand, Cand, SingleMax)) return; if (Cand.Reason == SingleMax) Cand.Reason = MultiPressure; // Prefer immediate defs/users of the last scheduled instruction. This is a // nice pressure avoidance strategy that also conserves the processor's // register renaming resources and keeps the machine code readable. if (tryGreater(Zone.NextSUs.count(TryCand.SU), Zone.NextSUs.count(Cand.SU), TryCand, Cand, NextDefUse)) return; // Fall through to original instruction order. if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { TryCand.Reason = NodeOrder; } } /// pickNodeFromQueue helper that returns true if the LHS reg pressure effect is /// more desirable than RHS from scheduling standpoint. static bool compareRPDelta(const RegPressureDelta &LHS, const RegPressureDelta &RHS) { // Compare each component of pressure in decreasing order of importance // without checking if any are valid. Invalid PressureElements are assumed to // have UnitIncrease==0, so are neutral. // Avoid increasing the max critical pressure in the scheduled region. if (LHS.Excess.UnitIncrease != RHS.Excess.UnitIncrease) { DEBUG(dbgs() << "RP excess top - bot: " << (LHS.Excess.UnitIncrease - RHS.Excess.UnitIncrease) << '\n'); return LHS.Excess.UnitIncrease < RHS.Excess.UnitIncrease; } // Avoid increasing the max critical pressure in the scheduled region. if (LHS.CriticalMax.UnitIncrease != RHS.CriticalMax.UnitIncrease) { DEBUG(dbgs() << "RP critical top - bot: " << (LHS.CriticalMax.UnitIncrease - RHS.CriticalMax.UnitIncrease) << '\n'); return LHS.CriticalMax.UnitIncrease < RHS.CriticalMax.UnitIncrease; } // Avoid increasing the max pressure of the entire region. if (LHS.CurrentMax.UnitIncrease != RHS.CurrentMax.UnitIncrease) { DEBUG(dbgs() << "RP current top - bot: " << (LHS.CurrentMax.UnitIncrease - RHS.CurrentMax.UnitIncrease) << '\n'); return LHS.CurrentMax.UnitIncrease < RHS.CurrentMax.UnitIncrease; } return false; } #ifndef NDEBUG const char *ConvergingScheduler::getReasonStr( ConvergingScheduler::CandReason Reason) { switch (Reason) { case NoCand: return "NOCAND "; case SingleExcess: return "REG-EXCESS"; case SingleCritical: return "REG-CRIT "; case Cluster: return "CLUSTER "; case SingleMax: return "REG-MAX "; case MultiPressure: return "REG-MULTI "; case ResourceReduce: return "RES-REDUCE"; case ResourceDemand: return "RES-DEMAND"; case TopDepthReduce: return "TOP-DEPTH "; case TopPathReduce: return "TOP-PATH "; case BotHeightReduce:return "BOT-HEIGHT"; case BotPathReduce: return "BOT-PATH "; case NextDefUse: return "DEF-USE "; case NodeOrder: return "ORDER "; }; llvm_unreachable("Unknown reason!"); } void ConvergingScheduler::traceCandidate(const SchedCandidate &Cand, const SchedBoundary &Zone) { const char *Label = getReasonStr(Cand.Reason); PressureElement P; unsigned ResIdx = 0; unsigned Latency = 0; switch (Cand.Reason) { default: break; case SingleExcess: P = Cand.RPDelta.Excess; break; case SingleCritical: P = Cand.RPDelta.CriticalMax; break; case SingleMax: P = Cand.RPDelta.CurrentMax; break; case ResourceReduce: ResIdx = Cand.Policy.ReduceResIdx; break; case ResourceDemand: ResIdx = Cand.Policy.DemandResIdx; break; case TopDepthReduce: Latency = Cand.SU->getDepth(); break; case TopPathReduce: Latency = Cand.SU->getHeight(); break; case BotHeightReduce: Latency = Cand.SU->getHeight(); break; case BotPathReduce: Latency = Cand.SU->getDepth(); break; } dbgs() << Label << " " << Zone.Available.getName() << " "; if (P.isValid()) dbgs() << TRI->getRegPressureSetName(P.PSetID) << ":" << P.UnitIncrease << " "; else dbgs() << " "; if (ResIdx) dbgs() << SchedModel->getProcResource(ResIdx)->Name << " "; else dbgs() << " "; if (Latency) dbgs() << Latency << " cycles "; else dbgs() << " "; Cand.SU->dump(DAG); } #endif /// Pick the best candidate from the top queue. /// /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during /// DAG building. To adjust for the current scheduling location we need to /// maintain the number of vreg uses remaining to be top-scheduled. void ConvergingScheduler::pickNodeFromQueue(SchedBoundary &Zone, const RegPressureTracker &RPTracker, SchedCandidate &Cand) { ReadyQueue &Q = Zone.Available; DEBUG(Q.dump()); // getMaxPressureDelta temporarily modifies the tracker. RegPressureTracker &TempTracker = const_cast(RPTracker); for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { SchedCandidate TryCand(Cand.Policy); TryCand.SU = *I; tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker); if (TryCand.Reason != NoCand) { // Initialize resource delta if needed in case future heuristics query it. if (TryCand.ResDelta == SchedResourceDelta()) TryCand.initResourceDelta(DAG, SchedModel); Cand.setBest(TryCand); DEBUG(traceCandidate(Cand, Zone)); } TryCand.SU = *I; } } static void tracePick(const ConvergingScheduler::SchedCandidate &Cand, bool IsTop) { DEBUG(dbgs() << "Pick " << (IsTop ? "top" : "bot") << " SU(" << Cand.SU->NodeNum << ") " << ConvergingScheduler::getReasonStr(Cand.Reason) << '\n'); } /// Pick the best candidate node from either the top or bottom queue. SUnit *ConvergingScheduler::pickNodeBidirectional(bool &IsTopNode) { // Schedule as far as possible in the direction of no choice. This is most // efficient, but also provides the best heuristics for CriticalPSets. if (SUnit *SU = Bot.pickOnlyChoice()) { IsTopNode = false; return SU; } if (SUnit *SU = Top.pickOnlyChoice()) { IsTopNode = true; return SU; } CandPolicy NoPolicy; SchedCandidate BotCand(NoPolicy); SchedCandidate TopCand(NoPolicy); checkResourceLimits(TopCand, BotCand); // Prefer bottom scheduling when heuristics are silent. pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); assert(BotCand.Reason != NoCand && "failed to find the first candidate"); // If either Q has a single candidate that provides the least increase in // Excess pressure, we can immediately schedule from that Q. // // RegionCriticalPSets summarizes the pressure within the scheduled region and // affects picking from either Q. If scheduling in one direction must // increase pressure for one of the excess PSets, then schedule in that // direction first to provide more freedom in the other direction. if (BotCand.Reason == SingleExcess || BotCand.Reason == SingleCritical) { IsTopNode = false; tracePick(BotCand, IsTopNode); return BotCand.SU; } // Check if the top Q has a better candidate. pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); assert(TopCand.Reason != NoCand && "failed to find the first candidate"); // If either Q has a single candidate that minimizes pressure above the // original region's pressure pick it. if (TopCand.Reason <= SingleMax || BotCand.Reason <= SingleMax) { if (TopCand.Reason < BotCand.Reason) { IsTopNode = true; tracePick(TopCand, IsTopNode); return TopCand.SU; } IsTopNode = false; tracePick(BotCand, IsTopNode); return BotCand.SU; } // Check for a salient pressure difference and pick the best from either side. if (compareRPDelta(TopCand.RPDelta, BotCand.RPDelta)) { IsTopNode = true; tracePick(TopCand, IsTopNode); return TopCand.SU; } // Otherwise prefer the bottom candidate, in node order if all else failed. if (TopCand.Reason < BotCand.Reason) { IsTopNode = true; tracePick(TopCand, IsTopNode); return TopCand.SU; } IsTopNode = false; tracePick(BotCand, IsTopNode); return BotCand.SU; } /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) { if (DAG->top() == DAG->bottom()) { assert(Top.Available.empty() && Top.Pending.empty() && Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); return NULL; } SUnit *SU; do { if (ForceTopDown) { SU = Top.pickOnlyChoice(); if (!SU) { CandPolicy NoPolicy; SchedCandidate TopCand(NoPolicy); pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); assert(TopCand.Reason != NoCand && "failed to find the first candidate"); SU = TopCand.SU; } IsTopNode = true; } else if (ForceBottomUp) { SU = Bot.pickOnlyChoice(); if (!SU) { CandPolicy NoPolicy; SchedCandidate BotCand(NoPolicy); pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); assert(BotCand.Reason != NoCand && "failed to find the first candidate"); SU = BotCand.SU; } IsTopNode = false; } else { SU = pickNodeBidirectional(IsTopNode); } } while (SU->isScheduled); if (SU->isTopReady()) Top.removeReady(SU); if (SU->isBottomReady()) Bot.removeReady(SU); DEBUG(dbgs() << "*** " << (IsTopNode ? "Top" : "Bottom") << " Scheduling Instruction in cycle " << (IsTopNode ? Top.CurrCycle : Bot.CurrCycle) << '\n'; SU->dump(DAG)); return SU; } /// Update the scheduler's state after scheduling a node. This is the same node /// that was just returned by pickNode(). However, ScheduleDAGMI needs to update /// it's state based on the current cycle before MachineSchedStrategy does. void ConvergingScheduler::schedNode(SUnit *SU, bool IsTopNode) { if (IsTopNode) { SU->TopReadyCycle = Top.CurrCycle; Top.bumpNode(SU); } else { SU->BotReadyCycle = Bot.CurrCycle; Bot.bumpNode(SU); } } /// Create the standard converging machine scheduler. This will be used as the /// default scheduler if the target does not set a default. static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) { assert((!ForceTopDown || !ForceBottomUp) && "-misched-topdown incompatible with -misched-bottomup"); ScheduleDAGMI *DAG = new ScheduleDAGMI(C, new ConvergingScheduler()); // Register DAG post-processors. if (EnableLoadCluster) DAG->addMutation(new LoadClusterMutation(DAG->TII, DAG->TRI)); if (EnableMacroFusion) DAG->addMutation(new MacroFusion(DAG->TII)); return DAG; } static MachineSchedRegistry ConvergingSchedRegistry("converge", "Standard converging scheduler.", createConvergingSched); //===----------------------------------------------------------------------===// // ILP Scheduler. Currently for experimental analysis of heuristics. //===----------------------------------------------------------------------===// namespace { /// \brief Order nodes by the ILP metric. struct ILPOrder { SchedDFSResult *DFSResult; BitVector *ScheduledTrees; bool MaximizeILP; ILPOrder(SchedDFSResult *dfs, BitVector *schedtrees, bool MaxILP) : DFSResult(dfs), ScheduledTrees(schedtrees), MaximizeILP(MaxILP) {} /// \brief Apply a less-than relation on node priority. /// /// (Return true if A comes after B in the Q.) bool operator()(const SUnit *A, const SUnit *B) const { unsigned SchedTreeA = DFSResult->getSubtreeID(A); unsigned SchedTreeB = DFSResult->getSubtreeID(B); if (SchedTreeA != SchedTreeB) { // Unscheduled trees have lower priority. if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) return ScheduledTrees->test(SchedTreeB); // Trees with shallower connections have have lower priority. if (DFSResult->getSubtreeLevel(SchedTreeA) != DFSResult->getSubtreeLevel(SchedTreeB)) { return DFSResult->getSubtreeLevel(SchedTreeA) < DFSResult->getSubtreeLevel(SchedTreeB); } } if (MaximizeILP) return DFSResult->getILP(A) < DFSResult->getILP(B); else return DFSResult->getILP(A) > DFSResult->getILP(B); } }; /// \brief Schedule based on the ILP metric. class ILPScheduler : public MachineSchedStrategy { /// In case all subtrees are eventually connected to a common root through /// data dependence (e.g. reduction), place an upper limit on their size. /// /// FIXME: A subtree limit is generally good, but in the situation commented /// above, where multiple similar subtrees feed a common root, we should /// only split at a point where the resulting subtrees will be balanced. /// (a motivating test case must be found). static const unsigned SubtreeLimit = 16; SchedDFSResult DFSResult; BitVector ScheduledTrees; ILPOrder Cmp; std::vector ReadyQ; public: ILPScheduler(bool MaximizeILP) : DFSResult(/*BottomUp=*/true, SubtreeLimit), Cmp(&DFSResult, &ScheduledTrees, MaximizeILP) {} virtual void initialize(ScheduleDAGMI *DAG) { ReadyQ.clear(); DFSResult.clear(); DFSResult.resize(DAG->SUnits.size()); ScheduledTrees.clear(); } virtual void registerRoots() { DFSResult.compute(ReadyQ); ScheduledTrees.resize(DFSResult.getNumSubtrees()); // Restore the heap in ReadyQ with the updated DFS results. std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); } /// Implement MachineSchedStrategy interface. /// ----------------------------------------- /// Callback to select the highest priority node from the ready Q. virtual SUnit *pickNode(bool &IsTopNode) { if (ReadyQ.empty()) return NULL; pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); SUnit *SU = ReadyQ.back(); ReadyQ.pop_back(); IsTopNode = false; DEBUG(dbgs() << "*** Scheduling " << "SU(" << SU->NodeNum << "): " << *SU->getInstr() << " ILP: " << DFSResult.getILP(SU) << " Tree: " << DFSResult.getSubtreeID(SU) << " @" << DFSResult.getSubtreeLevel(DFSResult.getSubtreeID(SU))<< '\n'); return SU; } /// Callback after a node is scheduled. Mark a newly scheduled tree, notify /// DFSResults, and resort the priority Q. virtual void schedNode(SUnit *SU, bool IsTopNode) { assert(!IsTopNode && "SchedDFSResult needs bottom-up"); if (!ScheduledTrees.test(DFSResult.getSubtreeID(SU))) { ScheduledTrees.set(DFSResult.getSubtreeID(SU)); DFSResult.scheduleTree(DFSResult.getSubtreeID(SU)); std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); } } virtual void releaseTopNode(SUnit *) { /*only called for top roots*/ } virtual void releaseBottomNode(SUnit *SU) { ReadyQ.push_back(SU); std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); } }; } // namespace static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { return new ScheduleDAGMI(C, new ILPScheduler(true)); } static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { return new ScheduleDAGMI(C, new ILPScheduler(false)); } static MachineSchedRegistry ILPMaxRegistry( "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); static MachineSchedRegistry ILPMinRegistry( "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); //===----------------------------------------------------------------------===// // Machine Instruction Shuffler for Correctness Testing //===----------------------------------------------------------------------===// #ifndef NDEBUG namespace { /// Apply a less-than relation on the node order, which corresponds to the /// instruction order prior to scheduling. IsReverse implements greater-than. template struct SUnitOrder { bool operator()(SUnit *A, SUnit *B) const { if (IsReverse) return A->NodeNum > B->NodeNum; else return A->NodeNum < B->NodeNum; } }; /// Reorder instructions as much as possible. class InstructionShuffler : public MachineSchedStrategy { bool IsAlternating; bool IsTopDown; // Using a less-than relation (SUnitOrder) for the TopQ priority // gives nodes with a higher number higher priority causing the latest // instructions to be scheduled first. PriorityQueue, SUnitOrder > TopQ; // When scheduling bottom-up, use greater-than as the queue priority. PriorityQueue, SUnitOrder > BottomQ; public: InstructionShuffler(bool alternate, bool topdown) : IsAlternating(alternate), IsTopDown(topdown) {} virtual void initialize(ScheduleDAGMI *) { TopQ.clear(); BottomQ.clear(); } /// Implement MachineSchedStrategy interface. /// ----------------------------------------- virtual SUnit *pickNode(bool &IsTopNode) { SUnit *SU; if (IsTopDown) { do { if (TopQ.empty()) return NULL; SU = TopQ.top(); TopQ.pop(); } while (SU->isScheduled); IsTopNode = true; } else { do { if (BottomQ.empty()) return NULL; SU = BottomQ.top(); BottomQ.pop(); } while (SU->isScheduled); IsTopNode = false; } if (IsAlternating) IsTopDown = !IsTopDown; return SU; } virtual void schedNode(SUnit *SU, bool IsTopNode) {} virtual void releaseTopNode(SUnit *SU) { TopQ.push(SU); } virtual void releaseBottomNode(SUnit *SU) { BottomQ.push(SU); } }; } // namespace static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { bool Alternate = !ForceTopDown && !ForceBottomUp; bool TopDown = !ForceBottomUp; assert((TopDown || !ForceTopDown) && "-misched-topdown incompatible with -misched-bottomup"); return new ScheduleDAGMI(C, new InstructionShuffler(Alternate, TopDown)); } static MachineSchedRegistry ShufflerRegistry( "shuffle", "Shuffle machine instructions alternating directions", createInstructionShuffler); #endif // !NDEBUG