//===-- PreAllocSplitting.cpp - Pre-allocation Interval Spltting Pass. ----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the machine instruction level pre-register allocation // live interval splitting pass. It finds live interval barriers, i.e. // instructions which will kill all physical registers in certain register // classes, and split all live intervals which cross the barrier. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "pre-alloc-split" #include "VirtRegMap.h" #include "llvm/CodeGen/CalcSpillWeights.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/LiveStackAnalysis.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/RegisterCoalescer.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" using namespace llvm; static cl::opt<int> PreSplitLimit("pre-split-limit", cl::init(-1), cl::Hidden); static cl::opt<int> DeadSplitLimit("dead-split-limit", cl::init(-1), cl::Hidden); static cl::opt<int> RestoreFoldLimit("restore-fold-limit", cl::init(-1), cl::Hidden); STATISTIC(NumSplits, "Number of intervals split"); STATISTIC(NumRemats, "Number of intervals split by rematerialization"); STATISTIC(NumFolds, "Number of intervals split with spill folding"); STATISTIC(NumRestoreFolds, "Number of intervals split with restore folding"); STATISTIC(NumRenumbers, "Number of intervals renumbered into new registers"); STATISTIC(NumDeadSpills, "Number of dead spills removed"); namespace { class PreAllocSplitting : public MachineFunctionPass { MachineFunction *CurrMF; const TargetMachine *TM; const TargetInstrInfo *TII; const TargetRegisterInfo* TRI; MachineFrameInfo *MFI; MachineRegisterInfo *MRI; SlotIndexes *SIs; LiveIntervals *LIs; LiveStacks *LSs; VirtRegMap *VRM; // Barrier - Current barrier being processed. MachineInstr *Barrier; // BarrierMBB - Basic block where the barrier resides in. MachineBasicBlock *BarrierMBB; // Barrier - Current barrier index. SlotIndex BarrierIdx; // CurrLI - Current live interval being split. LiveInterval *CurrLI; // CurrSLI - Current stack slot live interval. LiveInterval *CurrSLI; // CurrSValNo - Current val# for the stack slot live interval. VNInfo *CurrSValNo; // IntervalSSMap - A map from live interval to spill slots. DenseMap<unsigned, int> IntervalSSMap; // Def2SpillMap - A map from a def instruction index to spill index. DenseMap<SlotIndex, SlotIndex> Def2SpillMap; public: static char ID; PreAllocSplitting() : MachineFunctionPass(ID) { initializePreAllocSplittingPass(*PassRegistry::getPassRegistry()); } virtual bool runOnMachineFunction(MachineFunction &MF); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired<SlotIndexes>(); AU.addPreserved<SlotIndexes>(); AU.addRequired<LiveIntervals>(); AU.addPreserved<LiveIntervals>(); AU.addRequired<LiveStacks>(); AU.addPreserved<LiveStacks>(); AU.addPreserved<RegisterCoalescer>(); AU.addPreserved<CalculateSpillWeights>(); AU.addPreservedID(StrongPHIEliminationID); AU.addPreservedID(PHIEliminationID); AU.addRequired<MachineDominatorTree>(); AU.addRequired<MachineLoopInfo>(); AU.addRequired<VirtRegMap>(); AU.addPreserved<MachineDominatorTree>(); AU.addPreserved<MachineLoopInfo>(); AU.addPreserved<VirtRegMap>(); MachineFunctionPass::getAnalysisUsage(AU); } virtual void releaseMemory() { IntervalSSMap.clear(); Def2SpillMap.clear(); } virtual const char *getPassName() const { return "Pre-Register Allocaton Live Interval Splitting"; } /// print - Implement the dump method. virtual void print(raw_ostream &O, const Module* M = 0) const { LIs->print(O, M); } private: MachineBasicBlock::iterator findSpillPoint(MachineBasicBlock*, MachineInstr*, MachineInstr*, SmallPtrSet<MachineInstr*, 4>&); MachineBasicBlock::iterator findRestorePoint(MachineBasicBlock*, MachineInstr*, SlotIndex, SmallPtrSet<MachineInstr*, 4>&); int CreateSpillStackSlot(unsigned, const TargetRegisterClass *); bool IsAvailableInStack(MachineBasicBlock*, unsigned, SlotIndex, SlotIndex, SlotIndex&, int&) const; void UpdateSpillSlotInterval(VNInfo*, SlotIndex, SlotIndex); bool SplitRegLiveInterval(LiveInterval*); bool SplitRegLiveIntervals(const TargetRegisterClass **, SmallPtrSet<LiveInterval*, 8>&); bool createsNewJoin(LiveRange* LR, MachineBasicBlock* DefMBB, MachineBasicBlock* BarrierMBB); bool Rematerialize(unsigned vreg, VNInfo* ValNo, MachineInstr* DefMI, MachineBasicBlock::iterator RestorePt, SmallPtrSet<MachineInstr*, 4>& RefsInMBB); MachineInstr* FoldSpill(unsigned vreg, const TargetRegisterClass* RC, MachineInstr* DefMI, MachineInstr* Barrier, MachineBasicBlock* MBB, int& SS, SmallPtrSet<MachineInstr*, 4>& RefsInMBB); MachineInstr* FoldRestore(unsigned vreg, const TargetRegisterClass* RC, MachineInstr* Barrier, MachineBasicBlock* MBB, int SS, SmallPtrSet<MachineInstr*, 4>& RefsInMBB); void RenumberValno(VNInfo* VN); void ReconstructLiveInterval(LiveInterval* LI); bool removeDeadSpills(SmallPtrSet<LiveInterval*, 8>& split); unsigned getNumberOfNonSpills(SmallPtrSet<MachineInstr*, 4>& MIs, unsigned Reg, int FrameIndex, bool& TwoAddr); VNInfo* PerformPHIConstruction(MachineBasicBlock::iterator Use, MachineBasicBlock* MBB, LiveInterval* LI, SmallPtrSet<MachineInstr*, 4>& Visited, DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs, DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses, DenseMap<MachineInstr*, VNInfo*>& NewVNs, DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut, DenseMap<MachineBasicBlock*, VNInfo*>& Phis, bool IsTopLevel, bool IsIntraBlock); VNInfo* PerformPHIConstructionFallBack(MachineBasicBlock::iterator Use, MachineBasicBlock* MBB, LiveInterval* LI, SmallPtrSet<MachineInstr*, 4>& Visited, DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs, DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses, DenseMap<MachineInstr*, VNInfo*>& NewVNs, DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut, DenseMap<MachineBasicBlock*, VNInfo*>& Phis, bool IsTopLevel, bool IsIntraBlock); }; } // end anonymous namespace char PreAllocSplitting::ID = 0; INITIALIZE_PASS_BEGIN(PreAllocSplitting, "pre-alloc-splitting", "Pre-Register Allocation Live Interval Splitting", false, false) INITIALIZE_PASS_DEPENDENCY(SlotIndexes) INITIALIZE_PASS_DEPENDENCY(LiveIntervals) INITIALIZE_PASS_DEPENDENCY(LiveStacks) INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) INITIALIZE_PASS_DEPENDENCY(VirtRegMap) INITIALIZE_PASS_END(PreAllocSplitting, "pre-alloc-splitting", "Pre-Register Allocation Live Interval Splitting", false, false) char &llvm::PreAllocSplittingID = PreAllocSplitting::ID; /// findSpillPoint - Find a gap as far away from the given MI that's suitable /// for spilling the current live interval. The index must be before any /// defs and uses of the live interval register in the mbb. Return begin() if /// none is found. MachineBasicBlock::iterator PreAllocSplitting::findSpillPoint(MachineBasicBlock *MBB, MachineInstr *MI, MachineInstr *DefMI, SmallPtrSet<MachineInstr*, 4> &RefsInMBB) { MachineBasicBlock::iterator Pt = MBB->begin(); MachineBasicBlock::iterator MII = MI; MachineBasicBlock::iterator EndPt = DefMI ? MachineBasicBlock::iterator(DefMI) : MBB->begin(); while (MII != EndPt && !RefsInMBB.count(MII) && MII->getOpcode() != TRI->getCallFrameSetupOpcode()) --MII; if (MII == EndPt || RefsInMBB.count(MII)) return Pt; while (MII != EndPt && !RefsInMBB.count(MII)) { // We can't insert the spill between the barrier (a call), and its // corresponding call frame setup. if (MII->getOpcode() == TRI->getCallFrameDestroyOpcode()) { while (MII->getOpcode() != TRI->getCallFrameSetupOpcode()) { --MII; if (MII == EndPt) { return Pt; } } continue; } else { Pt = MII; } if (RefsInMBB.count(MII)) return Pt; --MII; } return Pt; } /// findRestorePoint - Find a gap in the instruction index map that's suitable /// for restoring the current live interval value. The index must be before any /// uses of the live interval register in the mbb. Return end() if none is /// found. MachineBasicBlock::iterator PreAllocSplitting::findRestorePoint(MachineBasicBlock *MBB, MachineInstr *MI, SlotIndex LastIdx, SmallPtrSet<MachineInstr*, 4> &RefsInMBB) { // FIXME: Allow spill to be inserted to the beginning of the mbb. Update mbb // begin index accordingly. MachineBasicBlock::iterator Pt = MBB->end(); MachineBasicBlock::iterator EndPt = MBB->getFirstTerminator(); // We start at the call, so walk forward until we find the call frame teardown // since we can't insert restores before that. Bail if we encounter a use // during this time. MachineBasicBlock::iterator MII = MI; if (MII == EndPt) return Pt; while (MII != EndPt && !RefsInMBB.count(MII) && MII->getOpcode() != TRI->getCallFrameDestroyOpcode()) ++MII; if (MII == EndPt || RefsInMBB.count(MII)) return Pt; ++MII; // FIXME: Limit the number of instructions to examine to reduce // compile time? while (MII != EndPt) { SlotIndex Index = LIs->getInstructionIndex(MII); if (Index > LastIdx) break; // We can't insert a restore between the barrier (a call) and its // corresponding call frame teardown. if (MII->getOpcode() == TRI->getCallFrameSetupOpcode()) { do { if (MII == EndPt || RefsInMBB.count(MII)) return Pt; ++MII; } while (MII->getOpcode() != TRI->getCallFrameDestroyOpcode()); } else { Pt = MII; } if (RefsInMBB.count(MII)) return Pt; ++MII; } return Pt; } /// CreateSpillStackSlot - Create a stack slot for the live interval being /// split. If the live interval was previously split, just reuse the same /// slot. int PreAllocSplitting::CreateSpillStackSlot(unsigned Reg, const TargetRegisterClass *RC) { int SS; DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(Reg); if (I != IntervalSSMap.end()) { SS = I->second; } else { SS = MFI->CreateSpillStackObject(RC->getSize(), RC->getAlignment()); IntervalSSMap[Reg] = SS; } // Create live interval for stack slot. CurrSLI = &LSs->getOrCreateInterval(SS, RC); if (CurrSLI->hasAtLeastOneValue()) CurrSValNo = CurrSLI->getValNumInfo(0); else CurrSValNo = CurrSLI->getNextValue(SlotIndex(), 0, LSs->getVNInfoAllocator()); return SS; } /// IsAvailableInStack - Return true if register is available in a split stack /// slot at the specified index. bool PreAllocSplitting::IsAvailableInStack(MachineBasicBlock *DefMBB, unsigned Reg, SlotIndex DefIndex, SlotIndex RestoreIndex, SlotIndex &SpillIndex, int& SS) const { if (!DefMBB) return false; DenseMap<unsigned, int>::const_iterator I = IntervalSSMap.find(Reg); if (I == IntervalSSMap.end()) return false; DenseMap<SlotIndex, SlotIndex>::const_iterator II = Def2SpillMap.find(DefIndex); if (II == Def2SpillMap.end()) return false; // If last spill of def is in the same mbb as barrier mbb (where restore will // be), make sure it's not below the intended restore index. // FIXME: Undo the previous spill? assert(LIs->getMBBFromIndex(II->second) == DefMBB); if (DefMBB == BarrierMBB && II->second >= RestoreIndex) return false; SS = I->second; SpillIndex = II->second; return true; } /// UpdateSpillSlotInterval - Given the specified val# of the register live /// interval being split, and the spill and restore indicies, update the live /// interval of the spill stack slot. void PreAllocSplitting::UpdateSpillSlotInterval(VNInfo *ValNo, SlotIndex SpillIndex, SlotIndex RestoreIndex) { assert(LIs->getMBBFromIndex(RestoreIndex) == BarrierMBB && "Expect restore in the barrier mbb"); MachineBasicBlock *MBB = LIs->getMBBFromIndex(SpillIndex); if (MBB == BarrierMBB) { // Intra-block spill + restore. We are done. LiveRange SLR(SpillIndex, RestoreIndex, CurrSValNo); CurrSLI->addRange(SLR); return; } SmallPtrSet<MachineBasicBlock*, 4> Processed; SlotIndex EndIdx = LIs->getMBBEndIdx(MBB); LiveRange SLR(SpillIndex, EndIdx, CurrSValNo); CurrSLI->addRange(SLR); Processed.insert(MBB); // Start from the spill mbb, figure out the extend of the spill slot's // live interval. SmallVector<MachineBasicBlock*, 4> WorkList; const LiveRange *LR = CurrLI->getLiveRangeContaining(SpillIndex); if (LR->end > EndIdx) // If live range extend beyond end of mbb, add successors to work list. for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) WorkList.push_back(*SI); while (!WorkList.empty()) { MachineBasicBlock *MBB = WorkList.back(); WorkList.pop_back(); if (Processed.count(MBB)) continue; SlotIndex Idx = LIs->getMBBStartIdx(MBB); LR = CurrLI->getLiveRangeContaining(Idx); if (LR && LR->valno == ValNo) { EndIdx = LIs->getMBBEndIdx(MBB); if (Idx <= RestoreIndex && RestoreIndex < EndIdx) { // Spill slot live interval stops at the restore. LiveRange SLR(Idx, RestoreIndex, CurrSValNo); CurrSLI->addRange(SLR); } else if (LR->end > EndIdx) { // Live range extends beyond end of mbb, process successors. LiveRange SLR(Idx, EndIdx.getNextIndex(), CurrSValNo); CurrSLI->addRange(SLR); for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) WorkList.push_back(*SI); } else { LiveRange SLR(Idx, LR->end, CurrSValNo); CurrSLI->addRange(SLR); } Processed.insert(MBB); } } } /// PerformPHIConstruction - From properly set up use and def lists, use a PHI /// construction algorithm to compute the ranges and valnos for an interval. VNInfo* PreAllocSplitting::PerformPHIConstruction(MachineBasicBlock::iterator UseI, MachineBasicBlock* MBB, LiveInterval* LI, SmallPtrSet<MachineInstr*, 4>& Visited, DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs, DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses, DenseMap<MachineInstr*, VNInfo*>& NewVNs, DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut, DenseMap<MachineBasicBlock*, VNInfo*>& Phis, bool IsTopLevel, bool IsIntraBlock) { // Return memoized result if it's available. if (IsTopLevel && Visited.count(UseI) && NewVNs.count(UseI)) return NewVNs[UseI]; else if (!IsTopLevel && IsIntraBlock && NewVNs.count(UseI)) return NewVNs[UseI]; else if (!IsIntraBlock && LiveOut.count(MBB)) return LiveOut[MBB]; // Check if our block contains any uses or defs. bool ContainsDefs = Defs.count(MBB); bool ContainsUses = Uses.count(MBB); VNInfo* RetVNI = 0; // Enumerate the cases of use/def contaning blocks. if (!ContainsDefs && !ContainsUses) { return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs, Uses, NewVNs, LiveOut, Phis, IsTopLevel, IsIntraBlock); } else if (ContainsDefs && !ContainsUses) { SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB]; // Search for the def in this block. If we don't find it before the // instruction we care about, go to the fallback case. Note that that // should never happen: this cannot be intrablock, so use should // always be an end() iterator. assert(UseI == MBB->end() && "No use marked in intrablock"); MachineBasicBlock::iterator Walker = UseI; --Walker; while (Walker != MBB->begin()) { if (BlockDefs.count(Walker)) break; --Walker; } // Once we've found it, extend its VNInfo to our instruction. SlotIndex DefIndex = LIs->getInstructionIndex(Walker); DefIndex = DefIndex.getDefIndex(); SlotIndex EndIndex = LIs->getMBBEndIdx(MBB); RetVNI = NewVNs[Walker]; LI->addRange(LiveRange(DefIndex, EndIndex, RetVNI)); } else if (!ContainsDefs && ContainsUses) { SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB]; // Search for the use in this block that precedes the instruction we care // about, going to the fallback case if we don't find it. MachineBasicBlock::iterator Walker = UseI; bool found = false; while (Walker != MBB->begin()) { --Walker; if (BlockUses.count(Walker)) { found = true; break; } } if (!found) return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs, Uses, NewVNs, LiveOut, Phis, IsTopLevel, IsIntraBlock); SlotIndex UseIndex = LIs->getInstructionIndex(Walker); UseIndex = UseIndex.getUseIndex(); SlotIndex EndIndex; if (IsIntraBlock) { EndIndex = LIs->getInstructionIndex(UseI).getDefIndex(); } else EndIndex = LIs->getMBBEndIdx(MBB); // Now, recursively phi construct the VNInfo for the use we found, // and then extend it to include the instruction we care about RetVNI = PerformPHIConstruction(Walker, MBB, LI, Visited, Defs, Uses, NewVNs, LiveOut, Phis, false, true); LI->addRange(LiveRange(UseIndex, EndIndex, RetVNI)); // FIXME: Need to set kills properly for inter-block stuff. } else if (ContainsDefs && ContainsUses) { SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB]; SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB]; // This case is basically a merging of the two preceding case, with the // special note that checking for defs must take precedence over checking // for uses, because of two-address instructions. MachineBasicBlock::iterator Walker = UseI; bool foundDef = false; bool foundUse = false; while (Walker != MBB->begin()) { --Walker; if (BlockDefs.count(Walker)) { foundDef = true; break; } else if (BlockUses.count(Walker)) { foundUse = true; break; } } if (!foundDef && !foundUse) return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs, Uses, NewVNs, LiveOut, Phis, IsTopLevel, IsIntraBlock); SlotIndex StartIndex = LIs->getInstructionIndex(Walker); StartIndex = foundDef ? StartIndex.getDefIndex() : StartIndex.getUseIndex(); SlotIndex EndIndex; if (IsIntraBlock) { EndIndex = LIs->getInstructionIndex(UseI).getDefIndex(); } else EndIndex = LIs->getMBBEndIdx(MBB); if (foundDef) RetVNI = NewVNs[Walker]; else RetVNI = PerformPHIConstruction(Walker, MBB, LI, Visited, Defs, Uses, NewVNs, LiveOut, Phis, false, true); LI->addRange(LiveRange(StartIndex, EndIndex, RetVNI)); } // Memoize results so we don't have to recompute them. if (!IsIntraBlock) LiveOut[MBB] = RetVNI; else { if (!NewVNs.count(UseI)) NewVNs[UseI] = RetVNI; Visited.insert(UseI); } return RetVNI; } /// PerformPHIConstructionFallBack - PerformPHIConstruction fall back path. /// VNInfo* PreAllocSplitting::PerformPHIConstructionFallBack(MachineBasicBlock::iterator UseI, MachineBasicBlock* MBB, LiveInterval* LI, SmallPtrSet<MachineInstr*, 4>& Visited, DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs, DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses, DenseMap<MachineInstr*, VNInfo*>& NewVNs, DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut, DenseMap<MachineBasicBlock*, VNInfo*>& Phis, bool IsTopLevel, bool IsIntraBlock) { // NOTE: Because this is the fallback case from other cases, we do NOT // assume that we are not intrablock here. if (Phis.count(MBB)) return Phis[MBB]; SlotIndex StartIndex = LIs->getMBBStartIdx(MBB); VNInfo *RetVNI = Phis[MBB] = LI->getNextValue(SlotIndex(), /*FIXME*/ 0, LIs->getVNInfoAllocator()); if (!IsIntraBlock) LiveOut[MBB] = RetVNI; // If there are no uses or defs between our starting point and the // beginning of the block, then recursive perform phi construction // on our predecessors. DenseMap<MachineBasicBlock*, VNInfo*> IncomingVNs; for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), PE = MBB->pred_end(); PI != PE; ++PI) { VNInfo* Incoming = PerformPHIConstruction((*PI)->end(), *PI, LI, Visited, Defs, Uses, NewVNs, LiveOut, Phis, false, false); if (Incoming != 0) IncomingVNs[*PI] = Incoming; } if (MBB->pred_size() == 1 && !RetVNI->hasPHIKill()) { VNInfo* OldVN = RetVNI; VNInfo* NewVN = IncomingVNs.begin()->second; VNInfo* MergedVN = LI->MergeValueNumberInto(OldVN, NewVN); if (MergedVN == OldVN) std::swap(OldVN, NewVN); for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator LOI = LiveOut.begin(), LOE = LiveOut.end(); LOI != LOE; ++LOI) if (LOI->second == OldVN) LOI->second = MergedVN; for (DenseMap<MachineInstr*, VNInfo*>::iterator NVI = NewVNs.begin(), NVE = NewVNs.end(); NVI != NVE; ++NVI) if (NVI->second == OldVN) NVI->second = MergedVN; for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator PI = Phis.begin(), PE = Phis.end(); PI != PE; ++PI) if (PI->second == OldVN) PI->second = MergedVN; RetVNI = MergedVN; } else { // Otherwise, merge the incoming VNInfos with a phi join. Create a new // VNInfo to represent the joined value. for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator I = IncomingVNs.begin(), E = IncomingVNs.end(); I != E; ++I) { I->second->setHasPHIKill(true); } } SlotIndex EndIndex; if (IsIntraBlock) { EndIndex = LIs->getInstructionIndex(UseI).getDefIndex(); } else EndIndex = LIs->getMBBEndIdx(MBB); LI->addRange(LiveRange(StartIndex, EndIndex, RetVNI)); // Memoize results so we don't have to recompute them. if (!IsIntraBlock) LiveOut[MBB] = RetVNI; else { if (!NewVNs.count(UseI)) NewVNs[UseI] = RetVNI; Visited.insert(UseI); } return RetVNI; } /// ReconstructLiveInterval - Recompute a live interval from scratch. void PreAllocSplitting::ReconstructLiveInterval(LiveInterval* LI) { VNInfo::Allocator& Alloc = LIs->getVNInfoAllocator(); // Clear the old ranges and valnos; LI->clear(); // Cache the uses and defs of the register typedef DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> > RegMap; RegMap Defs, Uses; // Keep track of the new VNs we're creating. DenseMap<MachineInstr*, VNInfo*> NewVNs; SmallPtrSet<VNInfo*, 2> PhiVNs; // Cache defs, and create a new VNInfo for each def. for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg), DE = MRI->def_end(); DI != DE; ++DI) { Defs[(*DI).getParent()].insert(&*DI); SlotIndex DefIdx = LIs->getInstructionIndex(&*DI); DefIdx = DefIdx.getDefIndex(); assert(!DI->isPHI() && "PHI instr in code during pre-alloc splitting."); VNInfo* NewVN = LI->getNextValue(DefIdx, 0, Alloc); // If the def is a move, set the copy field. if (DI->isCopyLike() && DI->getOperand(0).getReg() == LI->reg) NewVN->setCopy(&*DI); NewVNs[&*DI] = NewVN; } // Cache uses as a separate pass from actually processing them. for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(LI->reg), UE = MRI->use_end(); UI != UE; ++UI) Uses[(*UI).getParent()].insert(&*UI); // Now, actually process every use and use a phi construction algorithm // to walk from it to its reaching definitions, building VNInfos along // the way. DenseMap<MachineBasicBlock*, VNInfo*> LiveOut; DenseMap<MachineBasicBlock*, VNInfo*> Phis; SmallPtrSet<MachineInstr*, 4> Visited; for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(LI->reg), UE = MRI->use_end(); UI != UE; ++UI) { PerformPHIConstruction(&*UI, UI->getParent(), LI, Visited, Defs, Uses, NewVNs, LiveOut, Phis, true, true); } // Add ranges for dead defs for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg), DE = MRI->def_end(); DI != DE; ++DI) { SlotIndex DefIdx = LIs->getInstructionIndex(&*DI); DefIdx = DefIdx.getDefIndex(); if (LI->liveAt(DefIdx)) continue; VNInfo* DeadVN = NewVNs[&*DI]; LI->addRange(LiveRange(DefIdx, DefIdx.getNextSlot(), DeadVN)); } } /// RenumberValno - Split the given valno out into a new vreg, allowing it to /// be allocated to a different register. This function creates a new vreg, /// copies the valno and its live ranges over to the new vreg's interval, /// removes them from the old interval, and rewrites all uses and defs of /// the original reg to the new vreg within those ranges. void PreAllocSplitting::RenumberValno(VNInfo* VN) { SmallVector<VNInfo*, 4> Stack; SmallVector<VNInfo*, 4> VNsToCopy; Stack.push_back(VN); // Walk through and copy the valno we care about, and any other valnos // that are two-address redefinitions of the one we care about. These // will need to be rewritten as well. We also check for safety of the // renumbering here, by making sure that none of the valno involved has // phi kills. while (!Stack.empty()) { VNInfo* OldVN = Stack.back(); Stack.pop_back(); // Bail out if we ever encounter a valno that has a PHI kill. We can't // renumber these. if (OldVN->hasPHIKill()) return; VNsToCopy.push_back(OldVN); // Locate two-address redefinitions for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(CurrLI->reg), DE = MRI->def_end(); DI != DE; ++DI) { if (!DI->isRegTiedToUseOperand(DI.getOperandNo())) continue; SlotIndex DefIdx = LIs->getInstructionIndex(&*DI).getDefIndex(); VNInfo* NextVN = CurrLI->findDefinedVNInfoForRegInt(DefIdx); if (std::find(VNsToCopy.begin(), VNsToCopy.end(), NextVN) != VNsToCopy.end()) Stack.push_back(NextVN); } } // Create the new vreg unsigned NewVReg = MRI->createVirtualRegister(MRI->getRegClass(CurrLI->reg)); // Create the new live interval LiveInterval& NewLI = LIs->getOrCreateInterval(NewVReg); for (SmallVector<VNInfo*, 4>::iterator OI = VNsToCopy.begin(), OE = VNsToCopy.end(); OI != OE; ++OI) { VNInfo* OldVN = *OI; // Copy the valno over VNInfo* NewVN = NewLI.createValueCopy(OldVN, LIs->getVNInfoAllocator()); NewLI.MergeValueInAsValue(*CurrLI, OldVN, NewVN); // Remove the valno from the old interval CurrLI->removeValNo(OldVN); } // Rewrite defs and uses. This is done in two stages to avoid invalidating // the reg_iterator. SmallVector<std::pair<MachineInstr*, unsigned>, 8> OpsToChange; for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg), E = MRI->reg_end(); I != E; ++I) { MachineOperand& MO = I.getOperand(); SlotIndex InstrIdx = LIs->getInstructionIndex(&*I); if ((MO.isUse() && NewLI.liveAt(InstrIdx.getUseIndex())) || (MO.isDef() && NewLI.liveAt(InstrIdx.getDefIndex()))) OpsToChange.push_back(std::make_pair(&*I, I.getOperandNo())); } for (SmallVector<std::pair<MachineInstr*, unsigned>, 8>::iterator I = OpsToChange.begin(), E = OpsToChange.end(); I != E; ++I) { MachineInstr* Inst = I->first; unsigned OpIdx = I->second; MachineOperand& MO = Inst->getOperand(OpIdx); MO.setReg(NewVReg); } // Grow the VirtRegMap, since we've created a new vreg. VRM->grow(); // The renumbered vreg shares a stack slot with the old register. if (IntervalSSMap.count(CurrLI->reg)) IntervalSSMap[NewVReg] = IntervalSSMap[CurrLI->reg]; ++NumRenumbers; } bool PreAllocSplitting::Rematerialize(unsigned VReg, VNInfo* ValNo, MachineInstr* DefMI, MachineBasicBlock::iterator RestorePt, SmallPtrSet<MachineInstr*, 4>& RefsInMBB) { MachineBasicBlock& MBB = *RestorePt->getParent(); MachineBasicBlock::iterator KillPt = BarrierMBB->end(); if (!DefMI || DefMI->getParent() == BarrierMBB) KillPt = findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB); else KillPt = llvm::next(MachineBasicBlock::iterator(DefMI)); if (KillPt == DefMI->getParent()->end()) return false; TII->reMaterialize(MBB, RestorePt, VReg, 0, DefMI, *TRI); SlotIndex RematIdx = LIs->InsertMachineInstrInMaps(prior(RestorePt)); ReconstructLiveInterval(CurrLI); RematIdx = RematIdx.getDefIndex(); RenumberValno(CurrLI->findDefinedVNInfoForRegInt(RematIdx)); ++NumSplits; ++NumRemats; return true; } MachineInstr* PreAllocSplitting::FoldSpill(unsigned vreg, const TargetRegisterClass* RC, MachineInstr* DefMI, MachineInstr* Barrier, MachineBasicBlock* MBB, int& SS, SmallPtrSet<MachineInstr*, 4>& RefsInMBB) { // Go top down if RefsInMBB is empty. if (RefsInMBB.empty()) return 0; MachineBasicBlock::iterator FoldPt = Barrier; while (&*FoldPt != DefMI && FoldPt != MBB->begin() && !RefsInMBB.count(FoldPt)) --FoldPt; int OpIdx = FoldPt->findRegisterDefOperandIdx(vreg); if (OpIdx == -1) return 0; SmallVector<unsigned, 1> Ops; Ops.push_back(OpIdx); if (!TII->canFoldMemoryOperand(FoldPt, Ops)) return 0; DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(vreg); if (I != IntervalSSMap.end()) { SS = I->second; } else { SS = MFI->CreateSpillStackObject(RC->getSize(), RC->getAlignment()); } MachineInstr* FMI = TII->foldMemoryOperand(FoldPt, Ops, SS); if (FMI) { LIs->ReplaceMachineInstrInMaps(FoldPt, FMI); FoldPt->eraseFromParent(); ++NumFolds; IntervalSSMap[vreg] = SS; CurrSLI = &LSs->getOrCreateInterval(SS, RC); if (CurrSLI->hasAtLeastOneValue()) CurrSValNo = CurrSLI->getValNumInfo(0); else CurrSValNo = CurrSLI->getNextValue(SlotIndex(), 0, LSs->getVNInfoAllocator()); } return FMI; } MachineInstr* PreAllocSplitting::FoldRestore(unsigned vreg, const TargetRegisterClass* RC, MachineInstr* Barrier, MachineBasicBlock* MBB, int SS, SmallPtrSet<MachineInstr*, 4>& RefsInMBB) { if ((int)RestoreFoldLimit != -1 && RestoreFoldLimit == (int)NumRestoreFolds) return 0; // Go top down if RefsInMBB is empty. if (RefsInMBB.empty()) return 0; // Can't fold a restore between a call stack setup and teardown. MachineBasicBlock::iterator FoldPt = Barrier; // Advance from barrier to call frame teardown. while (FoldPt != MBB->getFirstTerminator() && FoldPt->getOpcode() != TRI->getCallFrameDestroyOpcode()) { if (RefsInMBB.count(FoldPt)) return 0; ++FoldPt; } if (FoldPt == MBB->getFirstTerminator()) return 0; else ++FoldPt; // Now find the restore point. while (FoldPt != MBB->getFirstTerminator() && !RefsInMBB.count(FoldPt)) { if (FoldPt->getOpcode() == TRI->getCallFrameSetupOpcode()) { while (FoldPt != MBB->getFirstTerminator() && FoldPt->getOpcode() != TRI->getCallFrameDestroyOpcode()) { if (RefsInMBB.count(FoldPt)) return 0; ++FoldPt; } if (FoldPt == MBB->getFirstTerminator()) return 0; } ++FoldPt; } if (FoldPt == MBB->getFirstTerminator()) return 0; int OpIdx = FoldPt->findRegisterUseOperandIdx(vreg, true); if (OpIdx == -1) return 0; SmallVector<unsigned, 1> Ops; Ops.push_back(OpIdx); if (!TII->canFoldMemoryOperand(FoldPt, Ops)) return 0; MachineInstr* FMI = TII->foldMemoryOperand(FoldPt, Ops, SS); if (FMI) { LIs->ReplaceMachineInstrInMaps(FoldPt, FMI); FoldPt->eraseFromParent(); ++NumRestoreFolds; } return FMI; } /// SplitRegLiveInterval - Split (spill and restore) the given live interval /// so it would not cross the barrier that's being processed. Shrink wrap /// (minimize) the live interval to the last uses. bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) { DEBUG(dbgs() << "Pre-alloc splitting " << LI->reg << " for " << *Barrier << " result: "); CurrLI = LI; // Find live range where current interval cross the barrier. LiveInterval::iterator LR = CurrLI->FindLiveRangeContaining(BarrierIdx.getUseIndex()); VNInfo *ValNo = LR->valno; assert(!ValNo->isUnused() && "Val# is defined by a dead def?"); MachineInstr *DefMI = LIs->getInstructionFromIndex(ValNo->def); // If this would create a new join point, do not split. if (DefMI && createsNewJoin(LR, DefMI->getParent(), Barrier->getParent())) { DEBUG(dbgs() << "FAILED (would create a new join point).\n"); return false; } // Find all references in the barrier mbb. SmallPtrSet<MachineInstr*, 4> RefsInMBB; for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg), E = MRI->reg_end(); I != E; ++I) { MachineInstr *RefMI = &*I; if (RefMI->getParent() == BarrierMBB) RefsInMBB.insert(RefMI); } // Find a point to restore the value after the barrier. MachineBasicBlock::iterator RestorePt = findRestorePoint(BarrierMBB, Barrier, LR->end, RefsInMBB); if (RestorePt == BarrierMBB->end()) { DEBUG(dbgs() << "FAILED (could not find a suitable restore point).\n"); return false; } if (DefMI && LIs->isReMaterializable(*LI, ValNo, DefMI)) if (Rematerialize(LI->reg, ValNo, DefMI, RestorePt, RefsInMBB)) { DEBUG(dbgs() << "success (remat).\n"); return true; } // Add a spill either before the barrier or after the definition. MachineBasicBlock *DefMBB = DefMI ? DefMI->getParent() : NULL; const TargetRegisterClass *RC = MRI->getRegClass(CurrLI->reg); SlotIndex SpillIndex; MachineInstr *SpillMI = NULL; int SS = -1; if (!DefMI) { // If we don't know where the def is we must split just before the barrier. if ((SpillMI = FoldSpill(LI->reg, RC, 0, Barrier, BarrierMBB, SS, RefsInMBB))) { SpillIndex = LIs->getInstructionIndex(SpillMI); } else { MachineBasicBlock::iterator SpillPt = findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB); if (SpillPt == BarrierMBB->begin()) { DEBUG(dbgs() << "FAILED (could not find a suitable spill point).\n"); return false; // No gap to insert spill. } // Add spill. SS = CreateSpillStackSlot(CurrLI->reg, RC); TII->storeRegToStackSlot(*BarrierMBB, SpillPt, CurrLI->reg, true, SS, RC, TRI); SpillMI = prior(SpillPt); SpillIndex = LIs->InsertMachineInstrInMaps(SpillMI); } } else if (!IsAvailableInStack(DefMBB, CurrLI->reg, ValNo->def, LIs->getZeroIndex(), SpillIndex, SS)) { // If it's already split, just restore the value. There is no need to spill // the def again. if (!DefMI) { DEBUG(dbgs() << "FAILED (def is dead).\n"); return false; // Def is dead. Do nothing. } if ((SpillMI = FoldSpill(LI->reg, RC, DefMI, Barrier, BarrierMBB, SS, RefsInMBB))) { SpillIndex = LIs->getInstructionIndex(SpillMI); } else { // Check if it's possible to insert a spill after the def MI. MachineBasicBlock::iterator SpillPt; if (DefMBB == BarrierMBB) { // Add spill after the def and the last use before the barrier. SpillPt = findSpillPoint(BarrierMBB, Barrier, DefMI, RefsInMBB); if (SpillPt == DefMBB->begin()) { DEBUG(dbgs() << "FAILED (could not find a suitable spill point).\n"); return false; // No gap to insert spill. } } else { SpillPt = llvm::next(MachineBasicBlock::iterator(DefMI)); if (SpillPt == DefMBB->end()) { DEBUG(dbgs() << "FAILED (could not find a suitable spill point).\n"); return false; // No gap to insert spill. } } // Add spill. SS = CreateSpillStackSlot(CurrLI->reg, RC); TII->storeRegToStackSlot(*DefMBB, SpillPt, CurrLI->reg, false, SS, RC, TRI); SpillMI = prior(SpillPt); SpillIndex = LIs->InsertMachineInstrInMaps(SpillMI); } } // Remember def instruction index to spill index mapping. if (DefMI && SpillMI) Def2SpillMap[ValNo->def] = SpillIndex; // Add restore. bool FoldedRestore = false; SlotIndex RestoreIndex; if (MachineInstr* LMI = FoldRestore(CurrLI->reg, RC, Barrier, BarrierMBB, SS, RefsInMBB)) { RestorePt = LMI; RestoreIndex = LIs->getInstructionIndex(RestorePt); FoldedRestore = true; } else { TII->loadRegFromStackSlot(*BarrierMBB, RestorePt, CurrLI->reg, SS, RC, TRI); MachineInstr *LoadMI = prior(RestorePt); RestoreIndex = LIs->InsertMachineInstrInMaps(LoadMI); } // Update spill stack slot live interval. UpdateSpillSlotInterval(ValNo, SpillIndex.getUseIndex().getNextSlot(), RestoreIndex.getDefIndex()); ReconstructLiveInterval(CurrLI); if (!FoldedRestore) { SlotIndex RestoreIdx = LIs->getInstructionIndex(prior(RestorePt)); RestoreIdx = RestoreIdx.getDefIndex(); RenumberValno(CurrLI->findDefinedVNInfoForRegInt(RestoreIdx)); } ++NumSplits; DEBUG(dbgs() << "success.\n"); return true; } /// SplitRegLiveIntervals - Split all register live intervals that cross the /// barrier that's being processed. bool PreAllocSplitting::SplitRegLiveIntervals(const TargetRegisterClass **RCs, SmallPtrSet<LiveInterval*, 8>& Split) { // First find all the virtual registers whose live intervals are intercepted // by the current barrier. SmallVector<LiveInterval*, 8> Intervals; for (const TargetRegisterClass **RC = RCs; *RC; ++RC) { // FIXME: If it's not safe to move any instruction that defines the barrier // register class, then it means there are some special dependencies which // codegen is not modelling. Ignore these barriers for now. if (!TII->isSafeToMoveRegClassDefs(*RC)) continue; const std::vector<unsigned> &VRs = MRI->getRegClassVirtRegs(*RC); for (unsigned i = 0, e = VRs.size(); i != e; ++i) { unsigned Reg = VRs[i]; if (!LIs->hasInterval(Reg)) continue; LiveInterval *LI = &LIs->getInterval(Reg); if (LI->liveAt(BarrierIdx) && !Barrier->readsRegister(Reg)) // Virtual register live interval is intercepted by the barrier. We // should split and shrink wrap its interval if possible. Intervals.push_back(LI); } } // Process the affected live intervals. bool Change = false; while (!Intervals.empty()) { if (PreSplitLimit != -1 && (int)NumSplits == PreSplitLimit) break; LiveInterval *LI = Intervals.back(); Intervals.pop_back(); bool result = SplitRegLiveInterval(LI); if (result) Split.insert(LI); Change |= result; } return Change; } unsigned PreAllocSplitting::getNumberOfNonSpills( SmallPtrSet<MachineInstr*, 4>& MIs, unsigned Reg, int FrameIndex, bool& FeedsTwoAddr) { unsigned NonSpills = 0; for (SmallPtrSet<MachineInstr*, 4>::iterator UI = MIs.begin(), UE = MIs.end(); UI != UE; ++UI) { int StoreFrameIndex; unsigned StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex); if (StoreVReg != Reg || StoreFrameIndex != FrameIndex) ++NonSpills; int DefIdx = (*UI)->findRegisterDefOperandIdx(Reg); if (DefIdx != -1 && (*UI)->isRegTiedToUseOperand(DefIdx)) FeedsTwoAddr = true; } return NonSpills; } /// removeDeadSpills - After doing splitting, filter through all intervals we've /// split, and see if any of the spills are unnecessary. If so, remove them. bool PreAllocSplitting::removeDeadSpills(SmallPtrSet<LiveInterval*, 8>& split) { bool changed = false; // Walk over all of the live intervals that were touched by the splitter, // and see if we can do any DCE and/or folding. for (SmallPtrSet<LiveInterval*, 8>::iterator LI = split.begin(), LE = split.end(); LI != LE; ++LI) { DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> > VNUseCount; // First, collect all the uses of the vreg, and sort them by their // reaching definition (VNInfo). for (MachineRegisterInfo::use_iterator UI = MRI->use_begin((*LI)->reg), UE = MRI->use_end(); UI != UE; ++UI) { SlotIndex index = LIs->getInstructionIndex(&*UI); index = index.getUseIndex(); const LiveRange* LR = (*LI)->getLiveRangeContaining(index); VNUseCount[LR->valno].insert(&*UI); } // Now, take the definitions (VNInfo's) one at a time and try to DCE // and/or fold them away. for (LiveInterval::vni_iterator VI = (*LI)->vni_begin(), VE = (*LI)->vni_end(); VI != VE; ++VI) { if (DeadSplitLimit != -1 && (int)NumDeadSpills == DeadSplitLimit) return changed; VNInfo* CurrVN = *VI; // We don't currently try to handle definitions with PHI kills, because // it would involve processing more than one VNInfo at once. if (CurrVN->hasPHIKill()) continue; // We also don't try to handle the results of PHI joins, since there's // no defining instruction to analyze. MachineInstr* DefMI = LIs->getInstructionFromIndex(CurrVN->def); if (!DefMI || CurrVN->isUnused()) continue; // We're only interested in eliminating cruft introduced by the splitter, // is of the form load-use or load-use-store. First, check that the // definition is a load, and remember what stack slot we loaded it from. int FrameIndex; if (!TII->isLoadFromStackSlot(DefMI, FrameIndex)) continue; // If the definition has no uses at all, just DCE it. if (VNUseCount[CurrVN].size() == 0) { LIs->RemoveMachineInstrFromMaps(DefMI); (*LI)->removeValNo(CurrVN); DefMI->eraseFromParent(); VNUseCount.erase(CurrVN); ++NumDeadSpills; changed = true; continue; } // Second, get the number of non-store uses of the definition, as well as // a flag indicating whether it feeds into a later two-address definition. bool FeedsTwoAddr = false; unsigned NonSpillCount = getNumberOfNonSpills(VNUseCount[CurrVN], (*LI)->reg, FrameIndex, FeedsTwoAddr); // If there's one non-store use and it doesn't feed a two-addr, then // this is a load-use-store case that we can try to fold. if (NonSpillCount == 1 && !FeedsTwoAddr) { // Start by finding the non-store use MachineInstr. SmallPtrSet<MachineInstr*, 4>::iterator UI = VNUseCount[CurrVN].begin(); int StoreFrameIndex; unsigned StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex); while (UI != VNUseCount[CurrVN].end() && (StoreVReg == (*LI)->reg && StoreFrameIndex == FrameIndex)) { ++UI; if (UI != VNUseCount[CurrVN].end()) StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex); } if (UI == VNUseCount[CurrVN].end()) continue; MachineInstr* use = *UI; // Attempt to fold it away! int OpIdx = use->findRegisterUseOperandIdx((*LI)->reg, false); if (OpIdx == -1) continue; SmallVector<unsigned, 1> Ops; Ops.push_back(OpIdx); if (!TII->canFoldMemoryOperand(use, Ops)) continue; MachineInstr* NewMI = TII->foldMemoryOperand(use, Ops, FrameIndex); if (!NewMI) continue; // Update relevant analyses. LIs->RemoveMachineInstrFromMaps(DefMI); LIs->ReplaceMachineInstrInMaps(use, NewMI); (*LI)->removeValNo(CurrVN); DefMI->eraseFromParent(); use->eraseFromParent(); VNUseCount[CurrVN].erase(use); // Remove deleted instructions. Note that we need to remove them from // the VNInfo->use map as well, just to be safe. for (SmallPtrSet<MachineInstr*, 4>::iterator II = VNUseCount[CurrVN].begin(), IE = VNUseCount[CurrVN].end(); II != IE; ++II) { for (DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> >::iterator VNI = VNUseCount.begin(), VNE = VNUseCount.end(); VNI != VNE; ++VNI) if (VNI->first != CurrVN) VNI->second.erase(*II); LIs->RemoveMachineInstrFromMaps(*II); (*II)->eraseFromParent(); } VNUseCount.erase(CurrVN); for (DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> >::iterator VI = VNUseCount.begin(), VE = VNUseCount.end(); VI != VE; ++VI) if (VI->second.erase(use)) VI->second.insert(NewMI); ++NumDeadSpills; changed = true; continue; } // If there's more than one non-store instruction, we can't profitably // fold it, so bail. if (NonSpillCount) continue; // Otherwise, this is a load-store case, so DCE them. for (SmallPtrSet<MachineInstr*, 4>::iterator UI = VNUseCount[CurrVN].begin(), UE = VNUseCount[CurrVN].end(); UI != UE; ++UI) { LIs->RemoveMachineInstrFromMaps(*UI); (*UI)->eraseFromParent(); } VNUseCount.erase(CurrVN); LIs->RemoveMachineInstrFromMaps(DefMI); (*LI)->removeValNo(CurrVN); DefMI->eraseFromParent(); ++NumDeadSpills; changed = true; } } return changed; } bool PreAllocSplitting::createsNewJoin(LiveRange* LR, MachineBasicBlock* DefMBB, MachineBasicBlock* BarrierMBB) { if (DefMBB == BarrierMBB) return false; if (LR->valno->hasPHIKill()) return false; SlotIndex MBBEnd = LIs->getMBBEndIdx(BarrierMBB); if (LR->end < MBBEnd) return false; MachineLoopInfo& MLI = getAnalysis<MachineLoopInfo>(); if (MLI.getLoopFor(DefMBB) != MLI.getLoopFor(BarrierMBB)) return true; MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>(); SmallPtrSet<MachineBasicBlock*, 4> Visited; typedef std::pair<MachineBasicBlock*, MachineBasicBlock::succ_iterator> ItPair; SmallVector<ItPair, 4> Stack; Stack.push_back(std::make_pair(BarrierMBB, BarrierMBB->succ_begin())); while (!Stack.empty()) { ItPair P = Stack.back(); Stack.pop_back(); MachineBasicBlock* PredMBB = P.first; MachineBasicBlock::succ_iterator S = P.second; if (S == PredMBB->succ_end()) continue; else if (Visited.count(*S)) { Stack.push_back(std::make_pair(PredMBB, ++S)); continue; } else Stack.push_back(std::make_pair(PredMBB, S+1)); MachineBasicBlock* MBB = *S; Visited.insert(MBB); if (MBB == BarrierMBB) return true; MachineDomTreeNode* DefMDTN = MDT.getNode(DefMBB); MachineDomTreeNode* BarrierMDTN = MDT.getNode(BarrierMBB); MachineDomTreeNode* MDTN = MDT.getNode(MBB)->getIDom(); while (MDTN) { if (MDTN == DefMDTN) return true; else if (MDTN == BarrierMDTN) break; MDTN = MDTN->getIDom(); } MBBEnd = LIs->getMBBEndIdx(MBB); if (LR->end > MBBEnd) Stack.push_back(std::make_pair(MBB, MBB->succ_begin())); } return false; } bool PreAllocSplitting::runOnMachineFunction(MachineFunction &MF) { CurrMF = &MF; TM = &MF.getTarget(); TRI = TM->getRegisterInfo(); TII = TM->getInstrInfo(); MFI = MF.getFrameInfo(); MRI = &MF.getRegInfo(); SIs = &getAnalysis<SlotIndexes>(); LIs = &getAnalysis<LiveIntervals>(); LSs = &getAnalysis<LiveStacks>(); VRM = &getAnalysis<VirtRegMap>(); bool MadeChange = false; // Make sure blocks are numbered in order. MF.RenumberBlocks(); MachineBasicBlock *Entry = MF.begin(); SmallPtrSet<MachineBasicBlock*,16> Visited; SmallPtrSet<LiveInterval*, 8> Split; for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> > DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited); DFI != E; ++DFI) { BarrierMBB = *DFI; for (MachineBasicBlock::iterator I = BarrierMBB->begin(), E = BarrierMBB->end(); I != E; ++I) { Barrier = &*I; const TargetRegisterClass **BarrierRCs = Barrier->getDesc().getRegClassBarriers(); if (!BarrierRCs) continue; BarrierIdx = LIs->getInstructionIndex(Barrier); MadeChange |= SplitRegLiveIntervals(BarrierRCs, Split); } } MadeChange |= removeDeadSpills(Split); return MadeChange; }