//===-- RegAllocBase.cpp - Register Allocator Base Class ------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the RegAllocBase class which provides comon functionality // for LiveIntervalUnion-based register allocators. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "regalloc" #include "RegAllocBase.h" #include "Spiller.h" #include "VirtRegMap.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/LiveRangeEdit.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" #ifndef NDEBUG #include "llvm/ADT/SparseBitVector.h" #endif #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/Timer.h" using namespace llvm; STATISTIC(NumAssigned , "Number of registers assigned"); STATISTIC(NumUnassigned , "Number of registers unassigned"); STATISTIC(NumNewQueued , "Number of new live ranges queued"); // Temporary verification option until we can put verification inside // MachineVerifier. static cl::opt VerifyRegAlloc("verify-regalloc", cl::location(RegAllocBase::VerifyEnabled), cl::desc("Verify during register allocation")); const char *RegAllocBase::TimerGroupName = "Register Allocation"; bool RegAllocBase::VerifyEnabled = false; #ifndef NDEBUG // Verify each LiveIntervalUnion. void RegAllocBase::verify() { LiveVirtRegBitSet VisitedVRegs; OwningArrayPtr unionVRegs(new LiveVirtRegBitSet[PhysReg2LiveUnion.numRegs()]); // Verify disjoint unions. for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) { DEBUG(PhysReg2LiveUnion[PhysReg].print(dbgs(), TRI)); LiveVirtRegBitSet &VRegs = unionVRegs[PhysReg]; PhysReg2LiveUnion[PhysReg].verify(VRegs); // Union + intersection test could be done efficiently in one pass, but // don't add a method to SparseBitVector unless we really need it. assert(!VisitedVRegs.intersects(VRegs) && "vreg in multiple unions"); VisitedVRegs |= VRegs; } // Verify vreg coverage. for (LiveIntervals::iterator liItr = LIS->begin(), liEnd = LIS->end(); liItr != liEnd; ++liItr) { unsigned reg = liItr->first; LiveInterval* li = liItr->second; if (TargetRegisterInfo::isPhysicalRegister(reg)) continue; if (!VRM->hasPhys(reg)) continue; // spilled? if (li->empty()) continue; // unionVRegs will only be filled if li is // non-empty unsigned PhysReg = VRM->getPhys(reg); if (!unionVRegs[PhysReg].test(reg)) { dbgs() << "LiveVirtReg " << PrintReg(reg, TRI) << " not in union " << TRI->getName(PhysReg) << "\n"; llvm_unreachable("unallocated live vreg"); } } // FIXME: I'm not sure how to verify spilled intervals. } #endif //!NDEBUG //===----------------------------------------------------------------------===// // RegAllocBase Implementation //===----------------------------------------------------------------------===// // Instantiate a LiveIntervalUnion for each physical register. void RegAllocBase::LiveUnionArray::init(LiveIntervalUnion::Allocator &allocator, unsigned NRegs) { NumRegs = NRegs; Array = static_cast(malloc(sizeof(LiveIntervalUnion)*NRegs)); for (unsigned r = 0; r != NRegs; ++r) new(Array + r) LiveIntervalUnion(r, allocator); } void RegAllocBase::init(VirtRegMap &vrm, LiveIntervals &lis) { NamedRegionTimer T("Initialize", TimerGroupName, TimePassesIsEnabled); TRI = &vrm.getTargetRegInfo(); MRI = &vrm.getRegInfo(); VRM = &vrm; LIS = &lis; MRI->freezeReservedRegs(vrm.getMachineFunction()); RegClassInfo.runOnMachineFunction(vrm.getMachineFunction()); const unsigned NumRegs = TRI->getNumRegs(); if (NumRegs != PhysReg2LiveUnion.numRegs()) { PhysReg2LiveUnion.init(UnionAllocator, NumRegs); // Cache an interferece query for each physical reg Queries.reset(new LiveIntervalUnion::Query[PhysReg2LiveUnion.numRegs()]); } } void RegAllocBase::LiveUnionArray::clear() { if (!Array) return; for (unsigned r = 0; r != NumRegs; ++r) Array[r].~LiveIntervalUnion(); free(Array); NumRegs = 0; Array = 0; } void RegAllocBase::releaseMemory() { for (unsigned r = 0, e = PhysReg2LiveUnion.numRegs(); r != e; ++r) PhysReg2LiveUnion[r].clear(); } // Visit all the live registers. If they are already assigned to a physical // register, unify them with the corresponding LiveIntervalUnion, otherwise push // them on the priority queue for later assignment. void RegAllocBase::seedLiveRegs() { NamedRegionTimer T("Seed Live Regs", TimerGroupName, TimePassesIsEnabled); for (LiveIntervals::iterator I = LIS->begin(), E = LIS->end(); I != E; ++I) { unsigned RegNum = I->first; LiveInterval &VirtReg = *I->second; if (TargetRegisterInfo::isPhysicalRegister(RegNum)) PhysReg2LiveUnion[RegNum].unify(VirtReg); else enqueue(&VirtReg); } } void RegAllocBase::assign(LiveInterval &VirtReg, unsigned PhysReg) { DEBUG(dbgs() << "assigning " << PrintReg(VirtReg.reg, TRI) << " to " << PrintReg(PhysReg, TRI) << '\n'); assert(!VRM->hasPhys(VirtReg.reg) && "Duplicate VirtReg assignment"); VRM->assignVirt2Phys(VirtReg.reg, PhysReg); MRI->setPhysRegUsed(PhysReg); PhysReg2LiveUnion[PhysReg].unify(VirtReg); ++NumAssigned; } void RegAllocBase::unassign(LiveInterval &VirtReg, unsigned PhysReg) { DEBUG(dbgs() << "unassigning " << PrintReg(VirtReg.reg, TRI) << " from " << PrintReg(PhysReg, TRI) << '\n'); assert(VRM->getPhys(VirtReg.reg) == PhysReg && "Inconsistent unassign"); PhysReg2LiveUnion[PhysReg].extract(VirtReg); VRM->clearVirt(VirtReg.reg); ++NumUnassigned; } // Top-level driver to manage the queue of unassigned VirtRegs and call the // selectOrSplit implementation. void RegAllocBase::allocatePhysRegs() { seedLiveRegs(); // Continue assigning vregs one at a time to available physical registers. while (LiveInterval *VirtReg = dequeue()) { assert(!VRM->hasPhys(VirtReg->reg) && "Register already assigned"); // Unused registers can appear when the spiller coalesces snippets. if (MRI->reg_nodbg_empty(VirtReg->reg)) { DEBUG(dbgs() << "Dropping unused " << *VirtReg << '\n'); LIS->removeInterval(VirtReg->reg); continue; } // Invalidate all interference queries, live ranges could have changed. invalidateVirtRegs(); // selectOrSplit requests the allocator to return an available physical // register if possible and populate a list of new live intervals that // result from splitting. DEBUG(dbgs() << "\nselectOrSplit " << MRI->getRegClass(VirtReg->reg)->getName() << ':' << *VirtReg << '\n'); typedef SmallVector VirtRegVec; VirtRegVec SplitVRegs; unsigned AvailablePhysReg = selectOrSplit(*VirtReg, SplitVRegs); if (AvailablePhysReg == ~0u) { // selectOrSplit failed to find a register! const char *Msg = "ran out of registers during register allocation"; // Probably caused by an inline asm. MachineInstr *MI; for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(VirtReg->reg); (MI = I.skipInstruction());) if (MI->isInlineAsm()) break; if (MI) MI->emitError(Msg); else report_fatal_error(Msg); // Keep going after reporting the error. VRM->assignVirt2Phys(VirtReg->reg, RegClassInfo.getOrder(MRI->getRegClass(VirtReg->reg)).front()); continue; } if (AvailablePhysReg) assign(*VirtReg, AvailablePhysReg); for (VirtRegVec::iterator I = SplitVRegs.begin(), E = SplitVRegs.end(); I != E; ++I) { LiveInterval *SplitVirtReg = *I; assert(!VRM->hasPhys(SplitVirtReg->reg) && "Register already assigned"); if (MRI->reg_nodbg_empty(SplitVirtReg->reg)) { DEBUG(dbgs() << "not queueing unused " << *SplitVirtReg << '\n'); LIS->removeInterval(SplitVirtReg->reg); continue; } DEBUG(dbgs() << "queuing new interval: " << *SplitVirtReg << "\n"); assert(TargetRegisterInfo::isVirtualRegister(SplitVirtReg->reg) && "expect split value in virtual register"); enqueue(SplitVirtReg); ++NumNewQueued; } } } // Check if this live virtual register interferes with a physical register. If // not, then check for interference on each register that aliases with the // physical register. Return the interfering register. unsigned RegAllocBase::checkPhysRegInterference(LiveInterval &VirtReg, unsigned PhysReg) { for (MCRegAliasIterator AI(PhysReg, TRI, true); AI.isValid(); ++AI) if (query(VirtReg, *AI).checkInterference()) return *AI; return 0; } // Add newly allocated physical registers to the MBB live in sets. void RegAllocBase::addMBBLiveIns(MachineFunction *MF) { NamedRegionTimer T("MBB Live Ins", TimerGroupName, TimePassesIsEnabled); SlotIndexes *Indexes = LIS->getSlotIndexes(); if (MF->size() <= 1) return; LiveIntervalUnion::SegmentIter SI; for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) { LiveIntervalUnion &LiveUnion = PhysReg2LiveUnion[PhysReg]; if (LiveUnion.empty()) continue; DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " live-in:"); MachineFunction::iterator MBB = llvm::next(MF->begin()); MachineFunction::iterator MFE = MF->end(); SlotIndex Start, Stop; tie(Start, Stop) = Indexes->getMBBRange(MBB); SI.setMap(LiveUnion.getMap()); SI.find(Start); while (SI.valid()) { if (SI.start() <= Start) { if (!MBB->isLiveIn(PhysReg)) MBB->addLiveIn(PhysReg); DEBUG(dbgs() << "\tBB#" << MBB->getNumber() << ':' << PrintReg(SI.value()->reg, TRI)); } else if (SI.start() > Stop) MBB = Indexes->getMBBFromIndex(SI.start().getPrevIndex()); if (++MBB == MFE) break; tie(Start, Stop) = Indexes->getMBBRange(MBB); SI.advanceTo(Start); } DEBUG(dbgs() << '\n'); } }