//===-- RegAllocGreedy.cpp - greedy register allocator --------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the RAGreedy function pass for register allocation in // optimized builds. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "regalloc" #include "AllocationOrder.h" #include "LiveIntervalUnion.h" #include "LiveRangeEdit.h" #include "RegAllocBase.h" #include "Spiller.h" #include "SpillPlacement.h" #include "SplitKit.h" #include "VirtRegMap.h" #include "VirtRegRewriter.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Function.h" #include "llvm/PassAnalysisSupport.h" #include "llvm/CodeGen/CalcSpillWeights.h" #include "llvm/CodeGen/EdgeBundles.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/LiveStackAnalysis.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineLoopRanges.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/RegAllocRegistry.h" #include "llvm/CodeGen/RegisterCoalescer.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/Timer.h" using namespace llvm; static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", createGreedyRegisterAllocator); namespace { class RAGreedy : public MachineFunctionPass, public RegAllocBase { // context MachineFunction *MF; BitVector ReservedRegs; // analyses SlotIndexes *Indexes; LiveStacks *LS; MachineDominatorTree *DomTree; MachineLoopInfo *Loops; MachineLoopRanges *LoopRanges; EdgeBundles *Bundles; SpillPlacement *SpillPlacer; // state std::auto_ptr SpillerInstance; std::auto_ptr SA; // splitting state. /// All basic blocks where the current register is live. SmallVector SpillConstraints; /// Additional information about basic blocks where the current variable is /// live. Such a block will look like one of these templates: /// /// 1. | o---x | Internal to block. Variable is only live in this block. /// 2. |---x | Live-in, kill. /// 3. | o---| Def, live-out. /// 4. |---x o---| Live-in, kill, def, live-out. /// 5. |---o---o---| Live-through with uses or defs. /// 6. |-----------| Live-through without uses. Transparent. /// struct BlockInfo { MachineBasicBlock *MBB; SlotIndex FirstUse; ///< First instr using current reg. SlotIndex LastUse; ///< Last instr using current reg. SlotIndex Kill; ///< Interval end point inside block. SlotIndex Def; ///< Interval start point inside block. bool Uses; ///< Current reg has uses or defs in block. bool LiveThrough; ///< Live in whole block (Templ 5. or 6. above). bool LiveIn; ///< Current reg is live in. bool LiveOut; ///< Current reg is live out. // Per-interference pattern scratch data. bool OverlapEntry; ///< Interference overlaps entering interval. bool OverlapExit; ///< Interference overlaps exiting interval. }; /// Basic blocks where var is live. This array is parallel to /// SpillConstraints. SmallVector LiveBlocks; public: RAGreedy(); /// Return the pass name. virtual const char* getPassName() const { return "Greedy Register Allocator"; } /// RAGreedy analysis usage. virtual void getAnalysisUsage(AnalysisUsage &AU) const; virtual void releaseMemory(); virtual Spiller &spiller() { return *SpillerInstance; } virtual float getPriority(LiveInterval *LI); virtual unsigned selectOrSplit(LiveInterval&, SmallVectorImpl&); /// Perform register allocation. virtual bool runOnMachineFunction(MachineFunction &mf); static char ID; private: bool checkUncachedInterference(LiveInterval&, unsigned); LiveInterval *getSingleInterference(LiveInterval&, unsigned); bool reassignVReg(LiveInterval &InterferingVReg, unsigned OldPhysReg); bool reassignInterferences(LiveInterval &VirtReg, unsigned PhysReg); float calcInterferenceWeight(LiveInterval&, unsigned); void calcLiveBlockInfo(LiveInterval&); float calcInterferenceInfo(LiveInterval&, unsigned); float calcGlobalSplitCost(const BitVector&); void splitAroundRegion(LiveInterval&, unsigned, const BitVector&, SmallVectorImpl&); unsigned tryReassign(LiveInterval&, AllocationOrder&); unsigned tryRegionSplit(LiveInterval&, AllocationOrder&, SmallVectorImpl&); unsigned trySplit(LiveInterval&, AllocationOrder&, SmallVectorImpl&); unsigned trySpillInterferences(LiveInterval&, AllocationOrder&, SmallVectorImpl&); }; } // end anonymous namespace char RAGreedy::ID = 0; FunctionPass* llvm::createGreedyRegisterAllocator() { return new RAGreedy(); } RAGreedy::RAGreedy(): MachineFunctionPass(ID) { initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry()); initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry()); initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry()); initializeLiveStacksPass(*PassRegistry::getPassRegistry()); initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry()); initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry()); initializeMachineLoopRangesPass(*PassRegistry::getPassRegistry()); initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); initializeEdgeBundlesPass(*PassRegistry::getPassRegistry()); initializeSpillPlacementPass(*PassRegistry::getPassRegistry()); } void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); if (StrongPHIElim) AU.addRequiredID(StrongPHIEliminationID); AU.addRequiredTransitive(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } void RAGreedy::releaseMemory() { SpillerInstance.reset(0); RegAllocBase::releaseMemory(); } float RAGreedy::getPriority(LiveInterval *LI) { float Priority = LI->weight; // Prioritize hinted registers so they are allocated first. std::pair Hint; if (Hint.first || Hint.second) { // The hint can be target specific, a virtual register, or a physreg. Priority *= 2; // Prefer physreg hints above anything else. if (Hint.first == 0 && TargetRegisterInfo::isPhysicalRegister(Hint.second)) Priority *= 2; } return Priority; } //===----------------------------------------------------------------------===// // Register Reassignment //===----------------------------------------------------------------------===// // Check interference without using the cache. bool RAGreedy::checkUncachedInterference(LiveInterval &VirtReg, unsigned PhysReg) { for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) { LiveIntervalUnion::Query subQ(&VirtReg, &PhysReg2LiveUnion[*AliasI]); if (subQ.checkInterference()) return true; } return false; } /// getSingleInterference - Return the single interfering virtual register /// assigned to PhysReg. Return 0 if more than one virtual register is /// interfering. LiveInterval *RAGreedy::getSingleInterference(LiveInterval &VirtReg, unsigned PhysReg) { // Check physreg and aliases. LiveInterval *Interference = 0; for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) { LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI); if (Q.checkInterference()) { if (Interference) return 0; Q.collectInterferingVRegs(1); if (!Q.seenAllInterferences()) return 0; Interference = Q.interferingVRegs().front(); } } return Interference; } // Attempt to reassign this virtual register to a different physical register. // // FIXME: we are not yet caching these "second-level" interferences discovered // in the sub-queries. These interferences can change with each call to // selectOrSplit. However, we could implement a "may-interfere" cache that // could be conservatively dirtied when we reassign or split. // // FIXME: This may result in a lot of alias queries. We could summarize alias // live intervals in their parent register's live union, but it's messy. bool RAGreedy::reassignVReg(LiveInterval &InterferingVReg, unsigned WantedPhysReg) { assert(TargetRegisterInfo::isVirtualRegister(InterferingVReg.reg) && "Can only reassign virtual registers"); assert(TRI->regsOverlap(WantedPhysReg, VRM->getPhys(InterferingVReg.reg)) && "inconsistent phys reg assigment"); AllocationOrder Order(InterferingVReg.reg, *VRM, ReservedRegs); while (unsigned PhysReg = Order.next()) { // Don't reassign to a WantedPhysReg alias. if (TRI->regsOverlap(PhysReg, WantedPhysReg)) continue; if (checkUncachedInterference(InterferingVReg, PhysReg)) continue; // Reassign the interfering virtual reg to this physical reg. unsigned OldAssign = VRM->getPhys(InterferingVReg.reg); DEBUG(dbgs() << "reassigning: " << InterferingVReg << " from " << TRI->getName(OldAssign) << " to " << TRI->getName(PhysReg) << '\n'); PhysReg2LiveUnion[OldAssign].extract(InterferingVReg); VRM->clearVirt(InterferingVReg.reg); VRM->assignVirt2Phys(InterferingVReg.reg, PhysReg); PhysReg2LiveUnion[PhysReg].unify(InterferingVReg); return true; } return false; } /// reassignInterferences - Reassign all interferences to different physical /// registers such that Virtreg can be assigned to PhysReg. /// Currently this only works with a single interference. /// @param VirtReg Currently unassigned virtual register. /// @param PhysReg Physical register to be cleared. /// @return True on success, false if nothing was changed. bool RAGreedy::reassignInterferences(LiveInterval &VirtReg, unsigned PhysReg) { LiveInterval *InterferingVReg = getSingleInterference(VirtReg, PhysReg); if (!InterferingVReg) return false; if (TargetRegisterInfo::isPhysicalRegister(InterferingVReg->reg)) return false; return reassignVReg(*InterferingVReg, PhysReg); } /// tryReassign - Try to reassign interferences to different physregs. /// @param VirtReg Currently unassigned virtual register. /// @param Order Physregs to try. /// @return Physreg to assign VirtReg, or 0. unsigned RAGreedy::tryReassign(LiveInterval &VirtReg, AllocationOrder &Order) { NamedRegionTimer T("Reassign", TimerGroupName, TimePassesIsEnabled); Order.rewind(); while (unsigned PhysReg = Order.next()) if (reassignInterferences(VirtReg, PhysReg)) return PhysReg; return 0; } //===----------------------------------------------------------------------===// // Region Splitting //===----------------------------------------------------------------------===// /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks /// where VirtReg is live. /// The SpillConstraints array is minimally initialized with MBB->getNumber(). void RAGreedy::calcLiveBlockInfo(LiveInterval &VirtReg) { LiveBlocks.clear(); SpillConstraints.clear(); assert(!VirtReg.empty() && "Cannot allocate an empty interval"); LiveInterval::const_iterator LVI = VirtReg.begin(); LiveInterval::const_iterator LVE = VirtReg.end(); SmallVectorImpl::const_iterator UseI, UseE; UseI = SA->UseSlots.begin(); UseE = SA->UseSlots.end(); // Loop over basic blocks where VirtReg is live. MachineFunction::iterator MFI = Indexes->getMBBFromIndex(LVI->start); for (;;) { // Block constraints depend on the interference pattern. // Just allocate them here, don't compute anything. SpillPlacement::BlockConstraint BC; BC.Number = MFI->getNumber(); SpillConstraints.push_back(BC); BlockInfo BI; BI.MBB = MFI; SlotIndex Start, Stop; tie(Start, Stop) = Indexes->getMBBRange(BI.MBB); // LVI is the first live segment overlapping MBB. BI.LiveIn = LVI->start <= Start; if (!BI.LiveIn) BI.Def = LVI->start; // Find the first and last uses in the block. BI.Uses = SA->hasUses(MFI); if (BI.Uses && UseI != UseE) { BI.FirstUse = *UseI; assert(BI.FirstUse >= Start); do ++UseI; while (UseI != UseE && *UseI < Stop); BI.LastUse = UseI[-1]; assert(BI.LastUse < Stop); } // Look for gaps in the live range. bool hasGap = false; BI.LiveOut = true; while (LVI->end < Stop) { SlotIndex LastStop = LVI->end; if (++LVI == LVE || LVI->start >= Stop) { BI.Kill = LastStop; BI.LiveOut = false; break; } if (LastStop < LVI->start) { hasGap = true; BI.Kill = LastStop; BI.Def = LVI->start; } } // Don't set LiveThrough when the block has a gap. BI.LiveThrough = !hasGap && BI.LiveIn && BI.LiveOut; LiveBlocks.push_back(BI); // LVI is now at LVE or LVI->end >= Stop. if (LVI == LVE) break; // Live segment ends exactly at Stop. Move to the next segment. if (LVI->end == Stop && ++LVI == LVE) break; // Pick the next basic block. if (LVI->start < Stop) ++MFI; else MFI = Indexes->getMBBFromIndex(LVI->start); } } /// calcInterferenceInfo - Compute per-block outgoing and ingoing constraints /// when considering interference from PhysReg. Also compute an optimistic local /// cost of this interference pattern. /// /// The final cost of a split is the local cost + global cost of preferences /// broken by SpillPlacement. /// float RAGreedy::calcInterferenceInfo(LiveInterval &VirtReg, unsigned PhysReg) { // Reset interference dependent info. for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) { BlockInfo &BI = LiveBlocks[i]; SpillPlacement::BlockConstraint &BC = SpillConstraints[i]; BC.Entry = (BI.Uses && BI.LiveIn) ? SpillPlacement::PrefReg : SpillPlacement::DontCare; BC.Exit = (BI.Uses && BI.LiveOut) ? SpillPlacement::PrefReg : SpillPlacement::DontCare; BI.OverlapEntry = BI.OverlapExit = false; } // Add interference info from each PhysReg alias. for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) { if (!query(VirtReg, *AI).checkInterference()) continue; DEBUG(PhysReg2LiveUnion[*AI].print(dbgs(), TRI)); LiveIntervalUnion::SegmentIter IntI = PhysReg2LiveUnion[*AI].find(VirtReg.beginIndex()); if (!IntI.valid()) continue; for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) { BlockInfo &BI = LiveBlocks[i]; SpillPlacement::BlockConstraint &BC = SpillConstraints[i]; SlotIndex Start, Stop; tie(Start, Stop) = Indexes->getMBBRange(BI.MBB); // Skip interference-free blocks. if (IntI.start() >= Stop) continue; // Handle transparent blocks with interference separately. // Transparent blocks never incur any fixed cost. if (BI.LiveThrough && !BI.Uses) { // Check if interference is live-in - force spill. if (BC.Entry != SpillPlacement::MustSpill) { BC.Entry = SpillPlacement::PrefSpill; IntI.advanceTo(Start); if (IntI.valid() && IntI.start() <= Start) BC.Entry = SpillPlacement::MustSpill; } // Check if interference is live-out - force spill. if (BC.Exit != SpillPlacement::MustSpill) { BC.Exit = SpillPlacement::PrefSpill; IntI.advanceTo(Stop); if (IntI.valid() && IntI.start() < Stop) BC.Exit = SpillPlacement::MustSpill; } // Nothing more to do for this transparent block. if (!IntI.valid()) break; continue; } // Now we only have blocks with uses left. // Check if the interference overlaps the uses. assert(BI.Uses && "Non-transparent block without any uses"); // Check interference on entry. if (BI.LiveIn && BC.Entry != SpillPlacement::MustSpill) { IntI.advanceTo(Start); if (!IntI.valid()) break; // Interference is live-in - force spill. if (IntI.start() <= Start) BC.Entry = SpillPlacement::MustSpill; // Not live in, but before the first use. else if (IntI.start() < BI.FirstUse) BC.Entry = SpillPlacement::PrefSpill; } // Does interference overlap the uses in the entry segment // [FirstUse;Kill)? if (BI.LiveIn && !BI.OverlapEntry) { IntI.advanceTo(BI.FirstUse); if (!IntI.valid()) break; // A live-through interval has no kill. // Check [FirstUse;LastUse) instead. if (IntI.start() < (BI.LiveThrough ? BI.LastUse : BI.Kill)) BI.OverlapEntry = true; } // Does interference overlap the uses in the exit segment [Def;LastUse)? if (BI.LiveOut && !BI.LiveThrough && !BI.OverlapExit) { IntI.advanceTo(BI.Def); if (!IntI.valid()) break; if (IntI.start() < BI.LastUse) BI.OverlapExit = true; } // Check interference on exit. if (BI.LiveOut && BC.Exit != SpillPlacement::MustSpill) { // Check interference between LastUse and Stop. if (BC.Exit != SpillPlacement::PrefSpill) { IntI.advanceTo(BI.LastUse); if (!IntI.valid()) break; if (IntI.start() < Stop) BC.Exit = SpillPlacement::PrefSpill; } // Is the interference live-out? IntI.advanceTo(Stop); if (!IntI.valid()) break; if (IntI.start() < Stop) BC.Exit = SpillPlacement::MustSpill; } } } // Accumulate a local cost of this interference pattern. float LocalCost = 0; for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) { BlockInfo &BI = LiveBlocks[i]; if (!BI.Uses) continue; SpillPlacement::BlockConstraint &BC = SpillConstraints[i]; unsigned Inserts = 0; // Do we need spill code for the entry segment? if (BI.LiveIn) Inserts += BI.OverlapEntry || BC.Entry != SpillPlacement::PrefReg; // For the exit segment? if (BI.LiveOut) Inserts += BI.OverlapExit || BC.Exit != SpillPlacement::PrefReg; // The local cost of spill code in this block is the block frequency times // the number of spill instructions inserted. if (Inserts) LocalCost += Inserts * SpillPlacer->getBlockFrequency(BI.MBB); } DEBUG(dbgs() << "Local cost of " << PrintReg(PhysReg, TRI) << " = " << LocalCost << '\n'); return LocalCost; } /// calcGlobalSplitCost - Return the global split cost of following the split /// pattern in LiveBundles. This cost should be added to the local cost of the /// interference pattern in SpillConstraints. /// float RAGreedy::calcGlobalSplitCost(const BitVector &LiveBundles) { float GlobalCost = 0; for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) { SpillPlacement::BlockConstraint &BC = SpillConstraints[i]; unsigned Inserts = 0; // Broken entry preference? Inserts += LiveBundles[Bundles->getBundle(BC.Number, 0)] != (BC.Entry == SpillPlacement::PrefReg); // Broken exit preference? Inserts += LiveBundles[Bundles->getBundle(BC.Number, 1)] != (BC.Exit == SpillPlacement::PrefReg); if (Inserts) GlobalCost += Inserts * SpillPlacer->getBlockFrequency(LiveBlocks[i].MBB); } DEBUG(dbgs() << "Global cost = " << GlobalCost << '\n'); return GlobalCost; } /// splitAroundRegion - Split VirtReg around the region determined by /// LiveBundles. Make an effort to avoid interference from PhysReg. /// /// The 'register' interval is going to contain as many uses as possible while /// avoiding interference. The 'stack' interval is the complement constructed by /// SplitEditor. It will contain the rest. /// void RAGreedy::splitAroundRegion(LiveInterval &VirtReg, unsigned PhysReg, const BitVector &LiveBundles, SmallVectorImpl &NewVRegs) { DEBUG({ dbgs() << "Splitting around region for " << PrintReg(PhysReg, TRI) << " with bundles"; for (int i = LiveBundles.find_first(); i>=0; i = LiveBundles.find_next(i)) dbgs() << " EB#" << i; dbgs() << ".\n"; }); // First compute interference ranges in the live blocks. typedef std::pair IndexPair; SmallVector InterferenceRanges; InterferenceRanges.resize(LiveBlocks.size()); for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) { if (!query(VirtReg, *AI).checkInterference()) continue; LiveIntervalUnion::SegmentIter IntI = PhysReg2LiveUnion[*AI].find(VirtReg.beginIndex()); if (!IntI.valid()) continue; for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) { BlockInfo &BI = LiveBlocks[i]; if (!BI.Uses) continue; IndexPair &IP = InterferenceRanges[i]; SlotIndex Start, Stop; tie(Start, Stop) = Indexes->getMBBRange(BI.MBB); // Skip interference-free blocks. if (IntI.start() >= Stop) continue; // First interference in block. if (BI.LiveIn) { IntI.advanceTo(Start); if (!IntI.valid()) break; if (!IP.first.isValid() || IntI.start() < IP.first) IP.first = IntI.start(); } // Last interference in block. if (BI.LiveOut) { IntI.advanceTo(Stop); if (!IntI.valid() || IntI.start() >= Stop) --IntI; if (!IP.second.isValid() || IntI.stop() > IP.second) IP.second = IntI.stop(); } } } SmallVector SpillRegs; LiveRangeEdit LREdit(VirtReg, NewVRegs, SpillRegs); SplitEditor SE(*SA, *LIS, *VRM, *DomTree, LREdit); // Ranges to add to the register interval after all defs are in place. SmallVector UseRanges; // Create the main cross-block interval. SE.openIntv(); // First add all defs that are live out of a block. for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) { BlockInfo &BI = LiveBlocks[i]; bool RegIn = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)]; bool RegOut = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)]; // Should the register be live out? if (!BI.LiveOut || !RegOut) continue; IndexPair &IP = InterferenceRanges[i]; SlotIndex Start, Stop; tie(Start, Stop) = Indexes->getMBBRange(BI.MBB); DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " -> EB#" << Bundles->getBundle(BI.MBB->getNumber(), 1)); // Check interference leaving the block. if (!IP.second.isValid() || IP.second < Start) { // Block is interference-free. DEBUG(dbgs() << ", no interference"); if (!BI.Uses) { assert(BI.LiveThrough && "No uses, but not live through block?"); // Block is live-through without interference. DEBUG(dbgs() << ", no uses" << (RegIn ? ", live-through.\n" : ", stack in.\n")); if (!RegIn) SE.enterIntvAtEnd(*BI.MBB); continue; } if (!BI.LiveThrough) { DEBUG(dbgs() << ", not live-through.\n"); SE.enterIntvBefore(BI.Def); UseRanges.push_back(IndexPair(BI.Def, Stop)); continue; } if (!RegIn) { // Block is live-through, but entry bundle is on the stack. // Reload just before the first use. DEBUG(dbgs() << ", not live-in, enter before first use.\n"); SE.enterIntvBefore(BI.FirstUse); UseRanges.push_back(IndexPair(BI.FirstUse, Stop)); continue; } DEBUG(dbgs() << ", live-through.\n"); continue; } // Block has interference. DEBUG(dbgs() << ", interference to " << IP.second); if (!BI.Uses) { // No uses in block, avoid interference by reloading as late as possible. DEBUG(dbgs() << ", no uses.\n"); SE.enterIntvAtEnd(*BI.MBB); continue; } if (IP.second < BI.LastUse) { // There are interference-free uses at the end of the block. // Find the first use that can get the live-out register. SmallVectorImpl::const_iterator UI = std::lower_bound(SA->UseSlots.begin(), SA->UseSlots.end(), IP.second); assert(UI != SA->UseSlots.end() && "Couldn't find last use"); SlotIndex Use = *UI; DEBUG(dbgs() << ", free use at " << Use << ".\n"); assert(Use <= BI.LastUse && "Couldn't find last use"); SE.enterIntvBefore(Use); UseRanges.push_back(IndexPair(Use, Stop)); continue; } // Interference is after the last use. DEBUG(dbgs() << " after last use.\n"); SE.enterIntvAtEnd(*BI.MBB); } // Add the live-out ranges following the defs. // We must wait until all defs have been inserted, otherwise SplitKit gets // confused about the value mapping. for (unsigned i = 0, e = UseRanges.size(); i != e; ++i) SE.useIntv(UseRanges[i].first, UseRanges[i].second); // Now all defs leading to live bundles are handled, do everything else. for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) { BlockInfo &BI = LiveBlocks[i]; bool RegIn = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)]; bool RegOut = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)]; // Is the register live-in? if (!BI.LiveIn || !RegIn) continue; // We have an incoming register. Check for interference. IndexPair &IP = InterferenceRanges[i]; SlotIndex Start, Stop; tie(Start, Stop) = Indexes->getMBBRange(BI.MBB); DEBUG(dbgs() << "EB#" << Bundles->getBundle(BI.MBB->getNumber(), 0) << " -> BB#" << BI.MBB->getNumber()); // Check interference entering the block. if (!IP.first.isValid() || IP.first > Stop) { // Block is interference-free. DEBUG(dbgs() << ", no interference"); if (!BI.Uses) { assert(BI.LiveThrough && "No uses, but not live through block?"); // Block is live-through without interference. if (RegOut) { DEBUG(dbgs() << ", no uses, live-through.\n"); SE.useIntv(Start, Stop); } else { DEBUG(dbgs() << ", no uses, stack-out.\n"); SE.leaveIntvAtTop(*BI.MBB); } continue; } if (!BI.LiveThrough) { DEBUG(dbgs() << ", killed in block.\n"); SE.useIntv(Start, BI.Kill.getBoundaryIndex()); SE.leaveIntvAfter(BI.Kill); continue; } if (!RegOut) { // Block is live-through, but exit bundle is on the stack. // Spill immediately after the last use. DEBUG(dbgs() << ", uses, stack-out.\n"); SE.useIntv(Start, BI.LastUse.getBoundaryIndex()); SE.leaveIntvAfter(BI.LastUse); continue; } // Register is live-through. DEBUG(dbgs() << ", uses, live-through.\n"); SE.useIntv(Start, Stop); continue; } // Block has interference. DEBUG(dbgs() << ", interference from " << IP.first); if (!BI.Uses) { // No uses in block, avoid interference by spilling as soon as possible. DEBUG(dbgs() << ", no uses.\n"); SE.leaveIntvAtTop(*BI.MBB); continue; } if (IP.first > BI.FirstUse) { // There are interference-free uses at the beginning of the block. // Find the last use that can get the register. SmallVectorImpl::const_iterator UI = std::lower_bound(SA->UseSlots.begin(), SA->UseSlots.end(), IP.first); assert(UI != SA->UseSlots.begin() && "Couldn't find first use"); SlotIndex Use = (--UI)->getBoundaryIndex(); DEBUG(dbgs() << ", free use at " << *UI << ".\n"); assert(Use >= BI.FirstUse && Use < IP.first); SE.useIntv(Start, Use); SE.leaveIntvAfter(Use); continue; } // Interference is before the first use. DEBUG(dbgs() << " before first use.\n"); SE.leaveIntvAtTop(*BI.MBB); } SE.closeIntv(); // FIXME: Should we be more aggressive about splitting the stack region into // per-block segments? The current approach allows the stack region to // separate into connected components. Some components may be allocatable. SE.finish(); if (VerifyEnabled) MF->verify(this, "After splitting live range around region"); } unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order, SmallVectorImpl &NewVRegs) { calcLiveBlockInfo(VirtReg); BitVector LiveBundles, BestBundles; float BestCost = 0; unsigned BestReg = 0; Order.rewind(); while (unsigned PhysReg = Order.next()) { float Cost = calcInterferenceInfo(VirtReg, PhysReg); if (BestReg && Cost >= BestCost) continue; SpillPlacer->placeSpills(SpillConstraints, LiveBundles); // No live bundles, defer to splitSingleBlocks(). if (!LiveBundles.any()) continue; Cost += calcGlobalSplitCost(LiveBundles); if (!BestReg || Cost < BestCost) { BestReg = PhysReg; BestCost = Cost; BestBundles.swap(LiveBundles); } } if (!BestReg) return 0; splitAroundRegion(VirtReg, BestReg, BestBundles, NewVRegs); return 0; } //===----------------------------------------------------------------------===// // Live Range Splitting //===----------------------------------------------------------------------===// /// trySplit - Try to split VirtReg or one of its interferences, making it /// assignable. /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, SmallVectorImpl&NewVRegs) { NamedRegionTimer T("Splitter", TimerGroupName, TimePassesIsEnabled); SA->analyze(&VirtReg); // Don't attempt splitting on local intervals for now. TBD. if (LIS->intervalIsInOneMBB(VirtReg)) return 0; // First try to split around a region spanning multiple blocks. unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); if (PhysReg || !NewVRegs.empty()) return PhysReg; // Then isolate blocks with multiple uses. SplitAnalysis::BlockPtrSet Blocks; if (SA->getMultiUseBlocks(Blocks)) { SmallVector SpillRegs; LiveRangeEdit LREdit(VirtReg, NewVRegs, SpillRegs); SplitEditor(*SA, *LIS, *VRM, *DomTree, LREdit).splitSingleBlocks(Blocks); } // Don't assign any physregs. return 0; } //===----------------------------------------------------------------------===// // Spilling //===----------------------------------------------------------------------===// /// calcInterferenceWeight - Calculate the combined spill weight of /// interferences when assigning VirtReg to PhysReg. float RAGreedy::calcInterferenceWeight(LiveInterval &VirtReg, unsigned PhysReg){ float Sum = 0; for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) { LiveIntervalUnion::Query &Q = query(VirtReg, *AI); Q.collectInterferingVRegs(); if (Q.seenUnspillableVReg()) return HUGE_VALF; for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) Sum += Q.interferingVRegs()[i]->weight; } return Sum; } /// trySpillInterferences - Try to spill interfering registers instead of the /// current one. Only do it if the accumulated spill weight is smaller than the /// current spill weight. unsigned RAGreedy::trySpillInterferences(LiveInterval &VirtReg, AllocationOrder &Order, SmallVectorImpl &NewVRegs) { NamedRegionTimer T("Spill Interference", TimerGroupName, TimePassesIsEnabled); unsigned BestPhys = 0; float BestWeight = 0; Order.rewind(); while (unsigned PhysReg = Order.next()) { float Weight = calcInterferenceWeight(VirtReg, PhysReg); if (Weight == HUGE_VALF || Weight >= VirtReg.weight) continue; if (!BestPhys || Weight < BestWeight) BestPhys = PhysReg, BestWeight = Weight; } // No candidates found. if (!BestPhys) return 0; // Collect all interfering registers. SmallVector Spills; for (const unsigned *AI = TRI->getOverlaps(BestPhys); *AI; ++AI) { LiveIntervalUnion::Query &Q = query(VirtReg, *AI); Spills.append(Q.interferingVRegs().begin(), Q.interferingVRegs().end()); for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) { LiveInterval *VReg = Q.interferingVRegs()[i]; PhysReg2LiveUnion[*AI].extract(*VReg); VRM->clearVirt(VReg->reg); } } // Spill them all. DEBUG(dbgs() << "spilling " << Spills.size() << " interferences with weight " << BestWeight << '\n'); for (unsigned i = 0, e = Spills.size(); i != e; ++i) spiller().spill(Spills[i], NewVRegs, Spills); return BestPhys; } //===----------------------------------------------------------------------===// // Main Entry Point //===----------------------------------------------------------------------===// unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg, SmallVectorImpl &NewVRegs) { // First try assigning a free register. AllocationOrder Order(VirtReg.reg, *VRM, ReservedRegs); while (unsigned PhysReg = Order.next()) { if (!checkPhysRegInterference(VirtReg, PhysReg)) return PhysReg; } // Try to reassign interferences. if (unsigned PhysReg = tryReassign(VirtReg, Order)) return PhysReg; assert(NewVRegs.empty() && "Cannot append to existing NewVRegs"); // Try splitting VirtReg or interferences. unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs); if (PhysReg || !NewVRegs.empty()) return PhysReg; // Try to spill another interfering reg with less spill weight. PhysReg = trySpillInterferences(VirtReg, Order, NewVRegs); if (PhysReg) return PhysReg; // Finally spill VirtReg itself. NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled); SmallVector pendingSpills; spiller().spill(&VirtReg, NewVRegs, pendingSpills); // The live virtual register requesting allocation was spilled, so tell // the caller not to allocate anything during this round. return 0; } bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" << "********** Function: " << ((Value*)mf.getFunction())->getName() << '\n'); MF = &mf; if (VerifyEnabled) MF->verify(this, "Before greedy register allocator"); RegAllocBase::init(getAnalysis(), getAnalysis()); Indexes = &getAnalysis(); DomTree = &getAnalysis(); ReservedRegs = TRI->getReservedRegs(*MF); SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM)); Loops = &getAnalysis(); LoopRanges = &getAnalysis(); Bundles = &getAnalysis(); SpillPlacer = &getAnalysis(); SA.reset(new SplitAnalysis(*MF, *LIS, *Loops)); allocatePhysRegs(); addMBBLiveIns(MF); // Run rewriter { NamedRegionTimer T("Rewriter", TimerGroupName, TimePassesIsEnabled); std::auto_ptr rewriter(createVirtRegRewriter()); rewriter->runOnMachineFunction(*MF, *VRM, LIS); } // The pass output is in VirtRegMap. Release all the transient data. releaseMemory(); return true; }