//===-- RegAllocLocal.cpp - A BasicBlock generic register allocator -------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This register allocator allocates registers to a basic block at a time, // attempting to keep values in registers and reusing registers as appropriate. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "regalloc" #include "llvm/BasicBlock.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/RegAllocRegistry.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/IndexedMap.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include using namespace llvm; STATISTIC(NumStores, "Number of stores added"); STATISTIC(NumLoads , "Number of loads added"); static RegisterRegAlloc localRegAlloc("local", "local register allocator", createLocalRegisterAllocator); namespace { class RALocal : public MachineFunctionPass { public: static char ID; RALocal() : MachineFunctionPass(&ID), StackSlotForVirtReg(-1) {} private: const TargetMachine *TM; MachineFunction *MF; const TargetRegisterInfo *TRI; const TargetInstrInfo *TII; // StackSlotForVirtReg - Maps virtual regs to the frame index where these // values are spilled. IndexedMap StackSlotForVirtReg; // Virt2PhysRegMap - This map contains entries for each virtual register // that is currently available in a physical register. IndexedMap Virt2PhysRegMap; unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg) { return Virt2PhysRegMap[VirtReg]; } // PhysRegsUsed - This array is effectively a map, containing entries for // each physical register that currently has a value (ie, it is in // Virt2PhysRegMap). The value mapped to is the virtual register // corresponding to the physical register (the inverse of the // Virt2PhysRegMap), or 0. The value is set to 0 if this register is pinned // because it is used by a future instruction, and to -2 if it is not // allocatable. If the entry for a physical register is -1, then the // physical register is "not in the map". // std::vector PhysRegsUsed; // PhysRegsUseOrder - This contains a list of the physical registers that // currently have a virtual register value in them. This list provides an // ordering of registers, imposing a reallocation order. This list is only // used if all registers are allocated and we have to spill one, in which // case we spill the least recently used register. Entries at the front of // the list are the least recently used registers, entries at the back are // the most recently used. // std::vector PhysRegsUseOrder; // Virt2LastUseMap - This maps each virtual register to its last use // (MachineInstr*, operand index pair). IndexedMap, VirtReg2IndexFunctor> Virt2LastUseMap; std::pair& getVirtRegLastUse(unsigned Reg) { assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!"); return Virt2LastUseMap[Reg]; } // VirtRegModified - This bitset contains information about which virtual // registers need to be spilled back to memory when their registers are // scavenged. If a virtual register has simply been rematerialized, there // is no reason to spill it to memory when we need the register back. // BitVector VirtRegModified; // UsedInMultipleBlocks - Tracks whether a particular register is used in // more than one block. BitVector UsedInMultipleBlocks; void markVirtRegModified(unsigned Reg, bool Val = true) { assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!"); Reg -= TargetRegisterInfo::FirstVirtualRegister; if (Val) VirtRegModified.set(Reg); else VirtRegModified.reset(Reg); } bool isVirtRegModified(unsigned Reg) const { assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!"); assert(Reg - TargetRegisterInfo::FirstVirtualRegister < VirtRegModified.size() && "Illegal virtual register!"); return VirtRegModified[Reg - TargetRegisterInfo::FirstVirtualRegister]; } void AddToPhysRegsUseOrder(unsigned Reg) { std::vector::iterator It = std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), Reg); if (It != PhysRegsUseOrder.end()) PhysRegsUseOrder.erase(It); PhysRegsUseOrder.push_back(Reg); } void MarkPhysRegRecentlyUsed(unsigned Reg) { if (PhysRegsUseOrder.empty() || PhysRegsUseOrder.back() == Reg) return; // Already most recently used for (unsigned i = PhysRegsUseOrder.size(); i != 0; --i) if (areRegsEqual(Reg, PhysRegsUseOrder[i-1])) { unsigned RegMatch = PhysRegsUseOrder[i-1]; // remove from middle PhysRegsUseOrder.erase(PhysRegsUseOrder.begin()+i-1); // Add it to the end of the list PhysRegsUseOrder.push_back(RegMatch); if (RegMatch == Reg) return; // Found an exact match, exit early } } public: virtual const char *getPassName() const { return "Local Register Allocator"; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequiredID(PHIEliminationID); AU.addRequiredID(TwoAddressInstructionPassID); MachineFunctionPass::getAnalysisUsage(AU); } private: /// runOnMachineFunction - Register allocate the whole function bool runOnMachineFunction(MachineFunction &Fn); /// AllocateBasicBlock - Register allocate the specified basic block. void AllocateBasicBlock(MachineBasicBlock &MBB); /// areRegsEqual - This method returns true if the specified registers are /// related to each other. To do this, it checks to see if they are equal /// or if the first register is in the alias set of the second register. /// bool areRegsEqual(unsigned R1, unsigned R2) const { if (R1 == R2) return true; for (const unsigned *AliasSet = TRI->getAliasSet(R2); *AliasSet; ++AliasSet) { if (*AliasSet == R1) return true; } return false; } /// getStackSpaceFor - This returns the frame index of the specified virtual /// register on the stack, allocating space if necessary. int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC); /// removePhysReg - This method marks the specified physical register as no /// longer being in use. /// void removePhysReg(unsigned PhysReg); /// spillVirtReg - This method spills the value specified by PhysReg into /// the virtual register slot specified by VirtReg. It then updates the RA /// data structures to indicate the fact that PhysReg is now available. /// void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned VirtReg, unsigned PhysReg); /// spillPhysReg - This method spills the specified physical register into /// the virtual register slot associated with it. If OnlyVirtRegs is set to /// true, then the request is ignored if the physical register does not /// contain a virtual register. /// void spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I, unsigned PhysReg, bool OnlyVirtRegs = false); /// assignVirtToPhysReg - This method updates local state so that we know /// that PhysReg is the proper container for VirtReg now. The physical /// register must not be used for anything else when this is called. /// void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg); /// isPhysRegAvailable - Return true if the specified physical register is /// free and available for use. This also includes checking to see if /// aliased registers are all free... /// bool isPhysRegAvailable(unsigned PhysReg) const; /// getFreeReg - Look to see if there is a free register available in the /// specified register class. If not, return 0. /// unsigned getFreeReg(const TargetRegisterClass *RC); /// getReg - Find a physical register to hold the specified virtual /// register. If all compatible physical registers are used, this method /// spills the last used virtual register to the stack, and uses that /// register. If NoFree is true, that means the caller knows there isn't /// a free register, do not call getFreeReg(). unsigned getReg(MachineBasicBlock &MBB, MachineInstr *MI, unsigned VirtReg, bool NoFree = false); /// reloadVirtReg - This method transforms the specified virtual /// register use to refer to a physical register. This method may do this /// in one of several ways: if the register is available in a physical /// register already, it uses that physical register. If the value is not /// in a physical register, and if there are physical registers available, /// it loads it into a register: PhysReg if that is an available physical /// register, otherwise any physical register of the right class. /// If register pressure is high, and it is possible, it tries to fold the /// load of the virtual register into the instruction itself. It avoids /// doing this if register pressure is low to improve the chance that /// subsequent instructions can use the reloaded value. This method /// returns the modified instruction. /// MachineInstr *reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI, unsigned OpNum, SmallSet &RRegs, unsigned PhysReg); /// ComputeLocalLiveness - Computes liveness of registers within a basic /// block, setting the killed/dead flags as appropriate. void ComputeLocalLiveness(MachineBasicBlock& MBB); void reloadPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I, unsigned PhysReg); }; char RALocal::ID = 0; } /// getStackSpaceFor - This allocates space for the specified virtual register /// to be held on the stack. int RALocal::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) { // Find the location Reg would belong... int SS = StackSlotForVirtReg[VirtReg]; if (SS != -1) return SS; // Already has space allocated? // Allocate a new stack object for this spill location... int FrameIdx = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(), RC->getAlignment()); // Assign the slot... StackSlotForVirtReg[VirtReg] = FrameIdx; return FrameIdx; } /// removePhysReg - This method marks the specified physical register as no /// longer being in use. /// void RALocal::removePhysReg(unsigned PhysReg) { PhysRegsUsed[PhysReg] = -1; // PhyReg no longer used std::vector::iterator It = std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), PhysReg); if (It != PhysRegsUseOrder.end()) PhysRegsUseOrder.erase(It); } /// spillVirtReg - This method spills the value specified by PhysReg into the /// virtual register slot specified by VirtReg. It then updates the RA data /// structures to indicate the fact that PhysReg is now available. /// void RALocal::spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned VirtReg, unsigned PhysReg) { assert(VirtReg && "Spilling a physical register is illegal!" " Must not have appropriate kill for the register or use exists beyond" " the intended one."); DEBUG(dbgs() << " Spilling register " << TRI->getName(PhysReg) << " containing %reg" << VirtReg); if (!isVirtRegModified(VirtReg)) { DEBUG(dbgs() << " which has not been modified, so no store necessary!"); std::pair &LastUse = getVirtRegLastUse(VirtReg); if (LastUse.first) LastUse.first->getOperand(LastUse.second).setIsKill(); } else { // Otherwise, there is a virtual register corresponding to this physical // register. We only need to spill it into its stack slot if it has been // modified. const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg); int FrameIndex = getStackSpaceFor(VirtReg, RC); DEBUG(dbgs() << " to stack slot #" << FrameIndex); // If the instruction reads the register that's spilled, (e.g. this can // happen if it is a move to a physical register), then the spill // instruction is not a kill. bool isKill = !(I != MBB.end() && I->readsRegister(PhysReg)); TII->storeRegToStackSlot(MBB, I, PhysReg, isKill, FrameIndex, RC); ++NumStores; // Update statistics } getVirt2PhysRegMapSlot(VirtReg) = 0; // VirtReg no longer available DEBUG(dbgs() << '\n'); removePhysReg(PhysReg); } /// spillPhysReg - This method spills the specified physical register into the /// virtual register slot associated with it. If OnlyVirtRegs is set to true, /// then the request is ignored if the physical register does not contain a /// virtual register. /// void RALocal::spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I, unsigned PhysReg, bool OnlyVirtRegs) { if (PhysRegsUsed[PhysReg] != -1) { // Only spill it if it's used! assert(PhysRegsUsed[PhysReg] != -2 && "Non allocable reg used!"); if (PhysRegsUsed[PhysReg] || !OnlyVirtRegs) spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg); } else { // If the selected register aliases any other registers, we must make // sure that one of the aliases isn't alive. for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg); *AliasSet; ++AliasSet) if (PhysRegsUsed[*AliasSet] != -1 && // Spill aliased register. PhysRegsUsed[*AliasSet] != -2) // If allocatable. if (PhysRegsUsed[*AliasSet]) spillVirtReg(MBB, I, PhysRegsUsed[*AliasSet], *AliasSet); } } /// assignVirtToPhysReg - This method updates local state so that we know /// that PhysReg is the proper container for VirtReg now. The physical /// register must not be used for anything else when this is called. /// void RALocal::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) { assert(PhysRegsUsed[PhysReg] == -1 && "Phys reg already assigned!"); // Update information to note the fact that this register was just used, and // it holds VirtReg. PhysRegsUsed[PhysReg] = VirtReg; getVirt2PhysRegMapSlot(VirtReg) = PhysReg; AddToPhysRegsUseOrder(PhysReg); // New use of PhysReg } /// isPhysRegAvailable - Return true if the specified physical register is free /// and available for use. This also includes checking to see if aliased /// registers are all free... /// bool RALocal::isPhysRegAvailable(unsigned PhysReg) const { if (PhysRegsUsed[PhysReg] != -1) return false; // If the selected register aliases any other allocated registers, it is // not free! for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg); *AliasSet; ++AliasSet) if (PhysRegsUsed[*AliasSet] >= 0) // Aliased register in use? return false; // Can't use this reg then. return true; } /// getFreeReg - Look to see if there is a free register available in the /// specified register class. If not, return 0. /// unsigned RALocal::getFreeReg(const TargetRegisterClass *RC) { // Get iterators defining the range of registers that are valid to allocate in // this class, which also specifies the preferred allocation order. TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF); TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF); for (; RI != RE; ++RI) if (isPhysRegAvailable(*RI)) { // Is reg unused? assert(*RI != 0 && "Cannot use register!"); return *RI; // Found an unused register! } return 0; } /// getReg - Find a physical register to hold the specified virtual /// register. If all compatible physical registers are used, this method spills /// the last used virtual register to the stack, and uses that register. /// unsigned RALocal::getReg(MachineBasicBlock &MBB, MachineInstr *I, unsigned VirtReg, bool NoFree) { const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg); // First check to see if we have a free register of the requested type... unsigned PhysReg = NoFree ? 0 : getFreeReg(RC); // If we didn't find an unused register, scavenge one now! if (PhysReg == 0) { assert(!PhysRegsUseOrder.empty() && "No allocated registers??"); // Loop over all of the preallocated registers from the least recently used // to the most recently used. When we find one that is capable of holding // our register, use it. for (unsigned i = 0; PhysReg == 0; ++i) { assert(i != PhysRegsUseOrder.size() && "Couldn't find a register of the appropriate class!"); unsigned R = PhysRegsUseOrder[i]; // We can only use this register if it holds a virtual register (ie, it // can be spilled). Do not use it if it is an explicitly allocated // physical register! assert(PhysRegsUsed[R] != -1 && "PhysReg in PhysRegsUseOrder, but is not allocated?"); if (PhysRegsUsed[R] && PhysRegsUsed[R] != -2) { // If the current register is compatible, use it. if (RC->contains(R)) { PhysReg = R; break; } else { // If one of the registers aliased to the current register is // compatible, use it. for (const unsigned *AliasIt = TRI->getAliasSet(R); *AliasIt; ++AliasIt) { if (RC->contains(*AliasIt) && // If this is pinned down for some reason, don't use it. For // example, if CL is pinned, and we run across CH, don't use // CH as justification for using scavenging ECX (which will // fail). PhysRegsUsed[*AliasIt] != 0 && // Make sure the register is allocatable. Don't allocate SIL on // x86-32. PhysRegsUsed[*AliasIt] != -2) { PhysReg = *AliasIt; // Take an aliased register break; } } } } } assert(PhysReg && "Physical register not assigned!?!?"); // At this point PhysRegsUseOrder[i] is the least recently used register of // compatible register class. Spill it to memory and reap its remains. spillPhysReg(MBB, I, PhysReg); } // Now that we know which register we need to assign this to, do it now! assignVirtToPhysReg(VirtReg, PhysReg); return PhysReg; } /// reloadVirtReg - This method transforms the specified virtual /// register use to refer to a physical register. This method may do this in /// one of several ways: if the register is available in a physical register /// already, it uses that physical register. If the value is not in a physical /// register, and if there are physical registers available, it loads it into a /// register: PhysReg if that is an available physical register, otherwise any /// register. If register pressure is high, and it is possible, it tries to /// fold the load of the virtual register into the instruction itself. It /// avoids doing this if register pressure is low to improve the chance that /// subsequent instructions can use the reloaded value. This method returns /// the modified instruction. /// MachineInstr *RALocal::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI, unsigned OpNum, SmallSet &ReloadedRegs, unsigned PhysReg) { unsigned VirtReg = MI->getOperand(OpNum).getReg(); // If the virtual register is already available, just update the instruction // and return. if (unsigned PR = getVirt2PhysRegMapSlot(VirtReg)) { MarkPhysRegRecentlyUsed(PR); // Already have this value available! MI->getOperand(OpNum).setReg(PR); // Assign the input register getVirtRegLastUse(VirtReg) = std::make_pair(MI, OpNum); return MI; } // Otherwise, we need to fold it into the current instruction, or reload it. // If we have registers available to hold the value, use them. const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg); // If we already have a PhysReg (this happens when the instruction is a // reg-to-reg copy with a PhysReg destination) use that. if (!PhysReg || !TargetRegisterInfo::isPhysicalRegister(PhysReg) || !isPhysRegAvailable(PhysReg)) PhysReg = getFreeReg(RC); int FrameIndex = getStackSpaceFor(VirtReg, RC); if (PhysReg) { // Register is available, allocate it! assignVirtToPhysReg(VirtReg, PhysReg); } else { // No registers available. // Force some poor hapless value out of the register file to // make room for the new register, and reload it. PhysReg = getReg(MBB, MI, VirtReg, true); } markVirtRegModified(VirtReg, false); // Note that this reg was just reloaded DEBUG(dbgs() << " Reloading %reg" << VirtReg << " into " << TRI->getName(PhysReg) << "\n"); // Add move instruction(s) TII->loadRegFromStackSlot(MBB, MI, PhysReg, FrameIndex, RC); ++NumLoads; // Update statistics MF->getRegInfo().setPhysRegUsed(PhysReg); MI->getOperand(OpNum).setReg(PhysReg); // Assign the input register getVirtRegLastUse(VirtReg) = std::make_pair(MI, OpNum); if (!ReloadedRegs.insert(PhysReg)) { std::string msg; raw_string_ostream Msg(msg); Msg << "Ran out of registers during register allocation!"; if (MI->isInlineAsm()) { Msg << "\nPlease check your inline asm statement for invalid " << "constraints:\n"; MI->print(Msg, TM); } llvm_report_error(Msg.str()); } for (const unsigned *SubRegs = TRI->getSubRegisters(PhysReg); *SubRegs; ++SubRegs) { if (!ReloadedRegs.insert(*SubRegs)) { std::string msg; raw_string_ostream Msg(msg); Msg << "Ran out of registers during register allocation!"; if (MI->isInlineAsm()) { Msg << "\nPlease check your inline asm statement for invalid " << "constraints:\n"; MI->print(Msg, TM); } llvm_report_error(Msg.str()); } } return MI; } /// isReadModWriteImplicitKill - True if this is an implicit kill for a /// read/mod/write register, i.e. update partial register. static bool isReadModWriteImplicitKill(MachineInstr *MI, unsigned Reg) { for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand& MO = MI->getOperand(i); if (MO.isReg() && MO.getReg() == Reg && MO.isImplicit() && MO.isDef() && !MO.isDead()) return true; } return false; } /// isReadModWriteImplicitDef - True if this is an implicit def for a /// read/mod/write register, i.e. update partial register. static bool isReadModWriteImplicitDef(MachineInstr *MI, unsigned Reg) { for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand& MO = MI->getOperand(i); if (MO.isReg() && MO.getReg() == Reg && MO.isImplicit() && !MO.isDef() && MO.isKill()) return true; } return false; } // precedes - Helper function to determine with MachineInstr A // precedes MachineInstr B within the same MBB. static bool precedes(MachineBasicBlock::iterator A, MachineBasicBlock::iterator B) { if (A == B) return false; MachineBasicBlock::iterator I = A->getParent()->begin(); while (I != A->getParent()->end()) { if (I == A) return true; else if (I == B) return false; ++I; } return false; } /// ComputeLocalLiveness - Computes liveness of registers within a basic /// block, setting the killed/dead flags as appropriate. void RALocal::ComputeLocalLiveness(MachineBasicBlock& MBB) { MachineRegisterInfo& MRI = MBB.getParent()->getRegInfo(); // Keep track of the most recently seen previous use or def of each reg, // so that we can update them with dead/kill markers. DenseMap > LastUseDef; for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I) { for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { MachineOperand& MO = I->getOperand(i); // Uses don't trigger any flags, but we need to save // them for later. Also, we have to process these // _before_ processing the defs, since an instr // uses regs before it defs them. if (MO.isReg() && MO.getReg() && MO.isUse()) { LastUseDef[MO.getReg()] = std::make_pair(I, i); if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) continue; const unsigned* Aliases = TRI->getAliasSet(MO.getReg()); if (Aliases) { while (*Aliases) { DenseMap >::iterator alias = LastUseDef.find(*Aliases); if (alias != LastUseDef.end() && alias->second.first != I) LastUseDef[*Aliases] = std::make_pair(I, i); ++Aliases; } } } } for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { MachineOperand& MO = I->getOperand(i); // Defs others than 2-addr redefs _do_ trigger flag changes: // - A def followed by a def is dead // - A use followed by a def is a kill if (MO.isReg() && MO.getReg() && MO.isDef()) { DenseMap >::iterator last = LastUseDef.find(MO.getReg()); if (last != LastUseDef.end()) { // Check if this is a two address instruction. If so, then // the def does not kill the use. if (last->second.first == I && I->isRegTiedToUseOperand(i)) continue; MachineOperand& lastUD = last->second.first->getOperand(last->second.second); if (lastUD.isDef()) lastUD.setIsDead(true); else lastUD.setIsKill(true); } LastUseDef[MO.getReg()] = std::make_pair(I, i); } } } // Live-out (of the function) registers contain return values of the function, // so we need to make sure they are alive at return time. if (!MBB.empty() && MBB.back().getDesc().isReturn()) { MachineInstr* Ret = &MBB.back(); for (MachineRegisterInfo::liveout_iterator I = MF->getRegInfo().liveout_begin(), E = MF->getRegInfo().liveout_end(); I != E; ++I) if (!Ret->readsRegister(*I)) { Ret->addOperand(MachineOperand::CreateReg(*I, false, true)); LastUseDef[*I] = std::make_pair(Ret, Ret->getNumOperands()-1); } } // Finally, loop over the final use/def of each reg // in the block and determine if it is dead. for (DenseMap >::iterator I = LastUseDef.begin(), E = LastUseDef.end(); I != E; ++I) { MachineInstr* MI = I->second.first; unsigned idx = I->second.second; MachineOperand& MO = MI->getOperand(idx); bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(MO.getReg()); // A crude approximation of "live-out" calculation bool usedOutsideBlock = isPhysReg ? false : UsedInMultipleBlocks.test(MO.getReg() - TargetRegisterInfo::FirstVirtualRegister); if (!isPhysReg && !usedOutsideBlock) for (MachineRegisterInfo::reg_iterator UI = MRI.reg_begin(MO.getReg()), UE = MRI.reg_end(); UI != UE; ++UI) // Two cases: // - used in another block // - used in the same block before it is defined (loop) if (UI->getParent() != &MBB || (MO.isDef() && UI.getOperand().isUse() && precedes(&*UI, MI))) { UsedInMultipleBlocks.set(MO.getReg() - TargetRegisterInfo::FirstVirtualRegister); usedOutsideBlock = true; break; } // Physical registers and those that are not live-out of the block // are killed/dead at their last use/def within this block. if (isPhysReg || !usedOutsideBlock) { if (MO.isUse()) { // Don't mark uses that are tied to defs as kills. if (!MI->isRegTiedToDefOperand(idx)) MO.setIsKill(true); } else MO.setIsDead(true); } } } void RALocal::AllocateBasicBlock(MachineBasicBlock &MBB) { // loop over each instruction MachineBasicBlock::iterator MII = MBB.begin(); DEBUG({ const BasicBlock *LBB = MBB.getBasicBlock(); if (LBB) dbgs() << "\nStarting RegAlloc of BB: " << LBB->getName(); }); // Add live-in registers as active. for (MachineBasicBlock::livein_iterator I = MBB.livein_begin(), E = MBB.livein_end(); I != E; ++I) { unsigned Reg = *I; MF->getRegInfo().setPhysRegUsed(Reg); PhysRegsUsed[Reg] = 0; // It is free and reserved now AddToPhysRegsUseOrder(Reg); for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); *SubRegs; ++SubRegs) { if (PhysRegsUsed[*SubRegs] != -2) { AddToPhysRegsUseOrder(*SubRegs); PhysRegsUsed[*SubRegs] = 0; // It is free and reserved now MF->getRegInfo().setPhysRegUsed(*SubRegs); } } } ComputeLocalLiveness(MBB); // Otherwise, sequentially allocate each instruction in the MBB. while (MII != MBB.end()) { MachineInstr *MI = MII++; const TargetInstrDesc &TID = MI->getDesc(); DEBUG({ dbgs() << "\nStarting RegAlloc of: " << *MI; dbgs() << " Regs have values: "; for (unsigned i = 0; i != TRI->getNumRegs(); ++i) if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2) dbgs() << "[" << TRI->getName(i) << ",%reg" << PhysRegsUsed[i] << "] "; dbgs() << '\n'; }); // Determine whether this is a copy instruction. The cases where the // source or destination are phys regs are handled specially. unsigned SrcCopyReg, DstCopyReg, SrcCopySubReg, DstCopySubReg; unsigned SrcCopyPhysReg = 0U; bool isCopy = TII->isMoveInstr(*MI, SrcCopyReg, DstCopyReg, SrcCopySubReg, DstCopySubReg); if (isCopy && TargetRegisterInfo::isVirtualRegister(SrcCopyReg)) SrcCopyPhysReg = getVirt2PhysRegMapSlot(SrcCopyReg); // Loop over the implicit uses, making sure that they are at the head of the // use order list, so they don't get reallocated. if (TID.ImplicitUses) { for (const unsigned *ImplicitUses = TID.ImplicitUses; *ImplicitUses; ++ImplicitUses) MarkPhysRegRecentlyUsed(*ImplicitUses); } SmallVector Kills; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand& MO = MI->getOperand(i); if (MO.isReg() && MO.isKill()) { if (!MO.isImplicit()) Kills.push_back(MO.getReg()); else if (!isReadModWriteImplicitKill(MI, MO.getReg())) // These are extra physical register kills when a sub-register // is defined (def of a sub-register is a read/mod/write of the // larger registers). Ignore. Kills.push_back(MO.getReg()); } } // If any physical regs are earlyclobber, spill any value they might // have in them, then mark them unallocatable. // If any virtual regs are earlyclobber, allocate them now (before // freeing inputs that are killed). if (MI->isInlineAsm()) { for (unsigned i = 0; i != MI->getNumOperands(); ++i) { MachineOperand& MO = MI->getOperand(i); if (MO.isReg() && MO.isDef() && MO.isEarlyClobber() && MO.getReg()) { if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) { unsigned DestVirtReg = MO.getReg(); unsigned DestPhysReg; // If DestVirtReg already has a value, use it. if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg))) DestPhysReg = getReg(MBB, MI, DestVirtReg); MF->getRegInfo().setPhysRegUsed(DestPhysReg); markVirtRegModified(DestVirtReg); getVirtRegLastUse(DestVirtReg) = std::make_pair((MachineInstr*)0, 0); DEBUG(dbgs() << " Assigning " << TRI->getName(DestPhysReg) << " to %reg" << DestVirtReg << "\n"); MO.setReg(DestPhysReg); // Assign the earlyclobber register } else { unsigned Reg = MO.getReg(); if (PhysRegsUsed[Reg] == -2) continue; // Something like ESP. // These are extra physical register defs when a sub-register // is defined (def of a sub-register is a read/mod/write of the // larger registers). Ignore. if (isReadModWriteImplicitDef(MI, MO.getReg())) continue; MF->getRegInfo().setPhysRegUsed(Reg); spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg PhysRegsUsed[Reg] = 0; // It is free and reserved now AddToPhysRegsUseOrder(Reg); for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); *SubRegs; ++SubRegs) { if (PhysRegsUsed[*SubRegs] != -2) { MF->getRegInfo().setPhysRegUsed(*SubRegs); PhysRegsUsed[*SubRegs] = 0; // It is free and reserved now AddToPhysRegsUseOrder(*SubRegs); } } } } } } // If a DBG_VALUE says something is located in a spilled register, // change the DBG_VALUE to be undef, which prevents the register // from being reloaded here. Doing that would change the generated // code, unless another use immediately follows this instruction. if (MI->isDebugValue() && MI->getNumOperands()==3 && MI->getOperand(0).isReg()) { unsigned VirtReg = MI->getOperand(0).getReg(); if (VirtReg && TargetRegisterInfo::isVirtualRegister(VirtReg) && !getVirt2PhysRegMapSlot(VirtReg)) MI->getOperand(0).setReg(0U); } // Get the used operands into registers. This has the potential to spill // incoming values if we are out of registers. Note that we completely // ignore physical register uses here. We assume that if an explicit // physical register is referenced by the instruction, that it is guaranteed // to be live-in, or the input is badly hosed. // SmallSet ReloadedRegs; for (unsigned i = 0; i != MI->getNumOperands(); ++i) { MachineOperand& MO = MI->getOperand(i); // here we are looking for only used operands (never def&use) if (MO.isReg() && !MO.isDef() && MO.getReg() && !MO.isImplicit() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) MI = reloadVirtReg(MBB, MI, i, ReloadedRegs, isCopy ? DstCopyReg : 0); } // If this instruction is the last user of this register, kill the // value, freeing the register being used, so it doesn't need to be // spilled to memory. // for (unsigned i = 0, e = Kills.size(); i != e; ++i) { unsigned VirtReg = Kills[i]; unsigned PhysReg = VirtReg; if (TargetRegisterInfo::isVirtualRegister(VirtReg)) { // If the virtual register was never materialized into a register, it // might not be in the map, but it won't hurt to zero it out anyway. unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg); PhysReg = PhysRegSlot; PhysRegSlot = 0; } else if (PhysRegsUsed[PhysReg] == -2) { // Unallocatable register dead, ignore. continue; } else { assert((!PhysRegsUsed[PhysReg] || PhysRegsUsed[PhysReg] == -1) && "Silently clearing a virtual register?"); } if (PhysReg) { DEBUG(dbgs() << " Last use of " << TRI->getName(PhysReg) << "[%reg" << VirtReg <<"], removing it from live set\n"); removePhysReg(PhysReg); for (const unsigned *SubRegs = TRI->getSubRegisters(PhysReg); *SubRegs; ++SubRegs) { if (PhysRegsUsed[*SubRegs] != -2) { DEBUG(dbgs() << " Last use of " << TRI->getName(*SubRegs) << "[%reg" << VirtReg <<"], removing it from live set\n"); removePhysReg(*SubRegs); } } } } // Loop over all of the operands of the instruction, spilling registers that // are defined, and marking explicit destinations in the PhysRegsUsed map. for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand& MO = MI->getOperand(i); if (MO.isReg() && MO.isDef() && !MO.isImplicit() && MO.getReg() && !MO.isEarlyClobber() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { unsigned Reg = MO.getReg(); if (PhysRegsUsed[Reg] == -2) continue; // Something like ESP. // These are extra physical register defs when a sub-register // is defined (def of a sub-register is a read/mod/write of the // larger registers). Ignore. if (isReadModWriteImplicitDef(MI, MO.getReg())) continue; MF->getRegInfo().setPhysRegUsed(Reg); spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg PhysRegsUsed[Reg] = 0; // It is free and reserved now AddToPhysRegsUseOrder(Reg); for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); *SubRegs; ++SubRegs) { if (PhysRegsUsed[*SubRegs] != -2) { MF->getRegInfo().setPhysRegUsed(*SubRegs); PhysRegsUsed[*SubRegs] = 0; // It is free and reserved now AddToPhysRegsUseOrder(*SubRegs); } } } } // Loop over the implicit defs, spilling them as well. if (TID.ImplicitDefs) { for (const unsigned *ImplicitDefs = TID.ImplicitDefs; *ImplicitDefs; ++ImplicitDefs) { unsigned Reg = *ImplicitDefs; if (PhysRegsUsed[Reg] != -2) { spillPhysReg(MBB, MI, Reg, true); AddToPhysRegsUseOrder(Reg); PhysRegsUsed[Reg] = 0; // It is free and reserved now } MF->getRegInfo().setPhysRegUsed(Reg); for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); *SubRegs; ++SubRegs) { if (PhysRegsUsed[*SubRegs] != -2) { AddToPhysRegsUseOrder(*SubRegs); PhysRegsUsed[*SubRegs] = 0; // It is free and reserved now MF->getRegInfo().setPhysRegUsed(*SubRegs); } } } } SmallVector DeadDefs; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand& MO = MI->getOperand(i); if (MO.isReg() && MO.isDead()) DeadDefs.push_back(MO.getReg()); } // Okay, we have allocated all of the source operands and spilled any values // that would be destroyed by defs of this instruction. Loop over the // explicit defs and assign them to a register, spilling incoming values if // we need to scavenge a register. // for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand& MO = MI->getOperand(i); if (MO.isReg() && MO.isDef() && MO.getReg() && !MO.isEarlyClobber() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) { unsigned DestVirtReg = MO.getReg(); unsigned DestPhysReg; // If DestVirtReg already has a value, use it. if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg))) { // If this is a copy try to reuse the input as the output; // that will make the copy go away. // If this is a copy, the source reg is a phys reg, and // that reg is available, use that phys reg for DestPhysReg. // If this is a copy, the source reg is a virtual reg, and // the phys reg that was assigned to that virtual reg is now // available, use that phys reg for DestPhysReg. (If it's now // available that means this was the last use of the source.) if (isCopy && TargetRegisterInfo::isPhysicalRegister(SrcCopyReg) && isPhysRegAvailable(SrcCopyReg)) { DestPhysReg = SrcCopyReg; assignVirtToPhysReg(DestVirtReg, DestPhysReg); } else if (isCopy && TargetRegisterInfo::isVirtualRegister(SrcCopyReg) && SrcCopyPhysReg && isPhysRegAvailable(SrcCopyPhysReg) && MF->getRegInfo().getRegClass(DestVirtReg)-> contains(SrcCopyPhysReg)) { DestPhysReg = SrcCopyPhysReg; assignVirtToPhysReg(DestVirtReg, DestPhysReg); } else DestPhysReg = getReg(MBB, MI, DestVirtReg); } MF->getRegInfo().setPhysRegUsed(DestPhysReg); markVirtRegModified(DestVirtReg); getVirtRegLastUse(DestVirtReg) = std::make_pair((MachineInstr*)0, 0); DEBUG(dbgs() << " Assigning " << TRI->getName(DestPhysReg) << " to %reg" << DestVirtReg << "\n"); MO.setReg(DestPhysReg); // Assign the output register } } // If this instruction defines any registers that are immediately dead, // kill them now. // for (unsigned i = 0, e = DeadDefs.size(); i != e; ++i) { unsigned VirtReg = DeadDefs[i]; unsigned PhysReg = VirtReg; if (TargetRegisterInfo::isVirtualRegister(VirtReg)) { unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg); PhysReg = PhysRegSlot; assert(PhysReg != 0); PhysRegSlot = 0; } else if (PhysRegsUsed[PhysReg] == -2) { // Unallocatable register dead, ignore. continue; } if (PhysReg) { DEBUG(dbgs() << " Register " << TRI->getName(PhysReg) << " [%reg" << VirtReg << "] is never used, removing it from live set\n"); removePhysReg(PhysReg); for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg); *AliasSet; ++AliasSet) { if (PhysRegsUsed[*AliasSet] != -2) { DEBUG(dbgs() << " Register " << TRI->getName(*AliasSet) << " [%reg" << *AliasSet << "] is never used, removing it from live set\n"); removePhysReg(*AliasSet); } } } } // Finally, if this is a noop copy instruction, zap it. (Except that if // the copy is dead, it must be kept to avoid messing up liveness info for // the register scavenger. See pr4100.) if (TII->isMoveInstr(*MI, SrcCopyReg, DstCopyReg, SrcCopySubReg, DstCopySubReg) && SrcCopyReg == DstCopyReg && DeadDefs.empty()) MBB.erase(MI); } MachineBasicBlock::iterator MI = MBB.getFirstTerminator(); // Spill all physical registers holding virtual registers now. for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2) { if (unsigned VirtReg = PhysRegsUsed[i]) spillVirtReg(MBB, MI, VirtReg, i); else removePhysReg(i); } #if 0 // This checking code is very expensive. bool AllOk = true; for (unsigned i = TargetRegisterInfo::FirstVirtualRegister, e = MF->getRegInfo().getLastVirtReg(); i <= e; ++i) if (unsigned PR = Virt2PhysRegMap[i]) { cerr << "Register still mapped: " << i << " -> " << PR << "\n"; AllOk = false; } assert(AllOk && "Virtual registers still in phys regs?"); #endif // Clear any physical register which appear live at the end of the basic // block, but which do not hold any virtual registers. e.g., the stack // pointer. PhysRegsUseOrder.clear(); } /// runOnMachineFunction - Register allocate the whole function /// bool RALocal::runOnMachineFunction(MachineFunction &Fn) { DEBUG(dbgs() << "Machine Function\n"); MF = &Fn; TM = &Fn.getTarget(); TRI = TM->getRegisterInfo(); TII = TM->getInstrInfo(); PhysRegsUsed.assign(TRI->getNumRegs(), -1); // At various places we want to efficiently check to see whether a register // is allocatable. To handle this, we mark all unallocatable registers as // being pinned down, permanently. { BitVector Allocable = TRI->getAllocatableSet(Fn); for (unsigned i = 0, e = Allocable.size(); i != e; ++i) if (!Allocable[i]) PhysRegsUsed[i] = -2; // Mark the reg unallocable. } // initialize the virtual->physical register map to have a 'null' // mapping for all virtual registers unsigned LastVirtReg = MF->getRegInfo().getLastVirtReg(); StackSlotForVirtReg.grow(LastVirtReg); Virt2PhysRegMap.grow(LastVirtReg); Virt2LastUseMap.grow(LastVirtReg); VirtRegModified.resize(LastVirtReg+1-TargetRegisterInfo::FirstVirtualRegister); UsedInMultipleBlocks.resize(LastVirtReg+1-TargetRegisterInfo::FirstVirtualRegister); // Loop over all of the basic blocks, eliminating virtual register references for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); MBB != MBBe; ++MBB) AllocateBasicBlock(*MBB); StackSlotForVirtReg.clear(); PhysRegsUsed.clear(); VirtRegModified.clear(); UsedInMultipleBlocks.clear(); Virt2PhysRegMap.clear(); Virt2LastUseMap.clear(); return true; } FunctionPass *llvm::createLocalRegisterAllocator() { return new RALocal(); }