//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements the ScheduleDAGInstrs class, which implements re-scheduling // of MachineInstrs. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "sched-instrs" #include "llvm/CodeGen/ScheduleDAGInstrs.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; ScheduleDAGInstrs::ScheduleDAGInstrs(MachineBasicBlock *bb, const TargetMachine &tm) : ScheduleDAG(0, bb, tm) {} void ScheduleDAGInstrs::BuildSchedUnits() { SUnits.clear(); SUnits.reserve(BB->size()); // We build scheduling units by walking a block's instruction list from bottom // to top. // Remember where defs and uses of each physical register are as we procede. SUnit *Defs[TargetRegisterInfo::FirstVirtualRegister] = {}; std::vector Uses[TargetRegisterInfo::FirstVirtualRegister] = {}; // Remember where unknown loads are after the most recent unknown store // as we procede. std::vector PendingLoads; // Remember where a generic side-effecting instruction is as we procede. If // ChainMMO is null, this is assumed to have arbitrary side-effects. If // ChainMMO is non-null, then Chain makes only a single memory reference. SUnit *Chain = 0; MachineMemOperand *ChainMMO = 0; // Memory references to specific known memory locations are tracked so that // they can be given more precise dependencies. std::map MemDefs; std::map > MemUses; // Terminators can perform control transfers, we we need to make sure that // all the work of the block is done before the terminator. SUnit *Terminator = 0; for (MachineBasicBlock::iterator MII = BB->end(), MIE = BB->begin(); MII != MIE; --MII) { MachineInstr *MI = prior(MII); SUnit *SU = NewSUnit(MI); // Assign the Latency field of SU using target-provided information. ComputeLatency(SU); // Add register-based dependencies (data, anti, and output). for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) { const MachineOperand &MO = MI->getOperand(j); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!"); std::vector &UseList = Uses[Reg]; SUnit *&Def = Defs[Reg]; // Optionally add output and anti dependencies. // TODO: Using a latency of 1 here assumes there's no cost for // reusing registers. SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; if (Def && Def != SU) Def->addPred(SDep(SU, Kind, /*Latency=*/1, /*Reg=*/Reg)); for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { SUnit *&Def = Defs[*Alias]; if (Def && Def != SU) Def->addPred(SDep(SU, Kind, /*Latency=*/1, /*Reg=*/ *Alias)); } if (MO.isDef()) { // Add any data dependencies. for (unsigned i = 0, e = UseList.size(); i != e; ++i) if (UseList[i] != SU) UseList[i]->addPred(SDep(SU, SDep::Data, SU->Latency, Reg)); for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { std::vector &UseList = Uses[*Alias]; for (unsigned i = 0, e = UseList.size(); i != e; ++i) if (UseList[i] != SU) UseList[i]->addPred(SDep(SU, SDep::Data, SU->Latency, *Alias)); } UseList.clear(); Def = SU; } else { UseList.push_back(SU); } } // Add chain dependencies. // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable // after stack slots are lowered to actual addresses. // TODO: Use an AliasAnalysis and do real alias-analysis queries, and // produce more precise dependence information. const TargetInstrDesc &TID = MI->getDesc(); if (TID.isCall() || TID.isReturn() || TID.isBranch() || TID.hasUnmodeledSideEffects()) { new_chain: // This is the conservative case. Add dependencies on all memory // references. if (Chain) Chain->addPred(SDep(SU, SDep::Order, SU->Latency)); Chain = SU; for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) PendingLoads[k]->addPred(SDep(SU, SDep::Order, SU->Latency)); PendingLoads.clear(); for (std::map::iterator I = MemDefs.begin(), E = MemDefs.end(); I != E; ++I) { I->second->addPred(SDep(SU, SDep::Order, SU->Latency)); I->second = SU; } for (std::map >::iterator I = MemUses.begin(), E = MemUses.end(); I != E; ++I) { for (unsigned i = 0, e = I->second.size(); i != e; ++i) I->second[i]->addPred(SDep(SU, SDep::Order, SU->Latency)); I->second.clear(); } // See if it is known to just have a single memory reference. MachineInstr *ChainMI = Chain->getInstr(); const TargetInstrDesc &ChainTID = ChainMI->getDesc(); if (!ChainTID.isCall() && !ChainTID.isReturn() && !ChainTID.isBranch() && !ChainTID.hasUnmodeledSideEffects() && ChainMI->hasOneMemOperand() && !ChainMI->memoperands_begin()->isVolatile() && ChainMI->memoperands_begin()->getValue()) // We know that the Chain accesses one specific memory location. ChainMMO = &*ChainMI->memoperands_begin(); else // Unknown memory accesses. Assume the worst. ChainMMO = 0; } else if (TID.mayStore()) { if (MI->hasOneMemOperand() && MI->memoperands_begin()->getValue() && !MI->memoperands_begin()->isVolatile() && isa(MI->memoperands_begin()->getValue())) { // A store to a specific PseudoSourceValue. Add precise dependencies. const Value *V = MI->memoperands_begin()->getValue(); // Handle the def in MemDefs, if there is one. std::map::iterator I = MemDefs.find(V); if (I != MemDefs.end()) { I->second->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0, /*isNormalMemory=*/true)); I->second = SU; } else { MemDefs[V] = SU; } // Handle the uses in MemUses, if there are any. std::map >::iterator J = MemUses.find(V); if (J != MemUses.end()) { for (unsigned i = 0, e = J->second.size(); i != e; ++i) J->second[i]->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0, /*isNormalMemory=*/true)); J->second.clear(); } // Add a general dependence too, if needed. if (Chain) Chain->addPred(SDep(SU, SDep::Order, SU->Latency)); } else // Treat all other stores conservatively. goto new_chain; } else if (TID.mayLoad()) { if (TII->isInvariantLoad(MI)) { // Invariant load, no chain dependencies needed! } else if (MI->hasOneMemOperand() && MI->memoperands_begin()->getValue() && !MI->memoperands_begin()->isVolatile() && isa(MI->memoperands_begin()->getValue())) { // A load from a specific PseudoSourceValue. Add precise dependencies. const Value *V = MI->memoperands_begin()->getValue(); std::map::iterator I = MemDefs.find(V); if (I != MemDefs.end()) I->second->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0, /*isNormalMemory=*/true)); MemUses[V].push_back(SU); // Add a general dependence too, if needed. if (Chain && (!ChainMMO || (ChainMMO->isStore() || ChainMMO->isVolatile()))) Chain->addPred(SDep(SU, SDep::Order, SU->Latency)); } else if (MI->hasVolatileMemoryRef()) { // Treat volatile loads conservatively. Note that this includes // cases where memoperand information is unavailable. goto new_chain; } else { // A normal load. Just depend on the general chain. if (Chain) Chain->addPred(SDep(SU, SDep::Order, SU->Latency)); PendingLoads.push_back(SU); } } // Add chain edges from the terminator to ensure that all the work of the // block is completed before any control transfers. if (Terminator && SU->Succs.empty()) Terminator->addPred(SDep(SU, SDep::Order, SU->Latency)); if (TID.isTerminator() || MI->isLabel()) Terminator = SU; } } void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) { const InstrItineraryData &InstrItins = TM.getInstrItineraryData(); // Compute the latency for the node. We use the sum of the latencies for // all nodes flagged together into this SUnit. SU->Latency = InstrItins.getLatency(SU->getInstr()->getDesc().getSchedClass()); } void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const { SU->getInstr()->dump(); } std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { std::string s; raw_string_ostream oss(s); SU->getInstr()->print(oss); return oss.str(); } // EmitSchedule - Emit the machine code in scheduled order. MachineBasicBlock *ScheduleDAGInstrs::EmitSchedule() { // For MachineInstr-based scheduling, we're rescheduling the instructions in // the block, so start by removing them from the block. while (!BB->empty()) BB->remove(BB->begin()); for (unsigned i = 0, e = Sequence.size(); i != e; i++) { SUnit *SU = Sequence[i]; if (!SU) { // Null SUnit* is a noop. EmitNoop(); continue; } BB->push_back(SU->getInstr()); } return BB; }