//===-- FastISel.cpp - Implementation of the FastISel class ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the implementation of the FastISel class. // // "Fast" instruction selection is designed to emit very poor code quickly. // Also, it is not designed to be able to do much lowering, so most illegal // types (e.g. i64 on 32-bit targets) and operations are not supported. It is // also not intended to be able to do much optimization, except in a few cases // where doing optimizations reduces overall compile time. For example, folding // constants into immediate fields is often done, because it's cheap and it // reduces the number of instructions later phases have to examine. // // "Fast" instruction selection is able to fail gracefully and transfer // control to the SelectionDAG selector for operations that it doesn't // support. In many cases, this allows us to avoid duplicating a lot of // the complicated lowering logic that SelectionDAG currently has. // // The intended use for "fast" instruction selection is "-O0" mode // compilation, where the quality of the generated code is irrelevant when // weighed against the speed at which the code can be generated. Also, // at -O0, the LLVM optimizers are not running, and this makes the // compile time of codegen a much higher portion of the overall compile // time. Despite its limitations, "fast" instruction selection is able to // handle enough code on its own to provide noticeable overall speedups // in -O0 compiles. // // Basic operations are supported in a target-independent way, by reading // the same instruction descriptions that the SelectionDAG selector reads, // and identifying simple arithmetic operations that can be directly selected // from simple operators. More complicated operations currently require // target-specific code. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "isel" #include "llvm/CodeGen/FastISel.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/Loads.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/FunctionLoweringInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/DebugInfo.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Operator.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetLibraryInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetMachine.h" using namespace llvm; STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " "target-independent selector"); STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " "target-specific selector"); STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); /// startNewBlock - Set the current block to which generated machine /// instructions will be appended, and clear the local CSE map. /// void FastISel::startNewBlock() { LocalValueMap.clear(); EmitStartPt = 0; // Advance the emit start point past any EH_LABEL instructions. MachineBasicBlock::iterator I = FuncInfo.MBB->begin(), E = FuncInfo.MBB->end(); while (I != E && I->getOpcode() == TargetOpcode::EH_LABEL) { EmitStartPt = I; ++I; } LastLocalValue = EmitStartPt; } bool FastISel::LowerArguments() { if (!FuncInfo.CanLowerReturn) // Fallback to SDISel argument lowering code to deal with sret pointer // parameter. return false; if (!FastLowerArguments()) return false; // Enter non-dead arguments into ValueMap for uses in non-entry BBs. for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(), E = FuncInfo.Fn->arg_end(); I != E; ++I) { if (!I->use_empty()) { DenseMap::iterator VI = LocalValueMap.find(I); assert(VI != LocalValueMap.end() && "Missed an argument?"); FuncInfo.ValueMap[I] = VI->second; } } return true; } void FastISel::flushLocalValueMap() { LocalValueMap.clear(); LastLocalValue = EmitStartPt; recomputeInsertPt(); } bool FastISel::hasTrivialKill(const Value *V) const { // Don't consider constants or arguments to have trivial kills. const Instruction *I = dyn_cast(V); if (!I) return false; // No-op casts are trivially coalesced by fast-isel. if (const CastInst *Cast = dyn_cast(I)) if (Cast->isNoopCast(TD.getIntPtrType(Cast->getContext())) && !hasTrivialKill(Cast->getOperand(0))) return false; // GEPs with all zero indices are trivially coalesced by fast-isel. if (const GetElementPtrInst *GEP = dyn_cast(I)) if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0))) return false; // Only instructions with a single use in the same basic block are considered // to have trivial kills. return I->hasOneUse() && !(I->getOpcode() == Instruction::BitCast || I->getOpcode() == Instruction::PtrToInt || I->getOpcode() == Instruction::IntToPtr) && cast(*I->use_begin())->getParent() == I->getParent(); } unsigned FastISel::getRegForValue(const Value *V) { EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true); // Don't handle non-simple values in FastISel. if (!RealVT.isSimple()) return 0; // Ignore illegal types. We must do this before looking up the value // in ValueMap because Arguments are given virtual registers regardless // of whether FastISel can handle them. MVT VT = RealVT.getSimpleVT(); if (!TLI.isTypeLegal(VT)) { // Handle integer promotions, though, because they're common and easy. if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); else return 0; } // Look up the value to see if we already have a register for it. unsigned Reg = lookUpRegForValue(V); if (Reg != 0) return Reg; // In bottom-up mode, just create the virtual register which will be used // to hold the value. It will be materialized later. if (isa(V) && (!isa(V) || !FuncInfo.StaticAllocaMap.count(cast(V)))) return FuncInfo.InitializeRegForValue(V); SavePoint SaveInsertPt = enterLocalValueArea(); // Materialize the value in a register. Emit any instructions in the // local value area. Reg = materializeRegForValue(V, VT); leaveLocalValueArea(SaveInsertPt); return Reg; } /// materializeRegForValue - Helper for getRegForValue. This function is /// called when the value isn't already available in a register and must /// be materialized with new instructions. unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) { unsigned Reg = 0; if (const ConstantInt *CI = dyn_cast(V)) { if (CI->getValue().getActiveBits() <= 64) Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); } else if (isa(V)) { Reg = TargetMaterializeAlloca(cast(V)); } else if (isa(V)) { // Translate this as an integer zero so that it can be // local-CSE'd with actual integer zeros. Reg = getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext()))); } else if (const ConstantFP *CF = dyn_cast(V)) { if (CF->isNullValue()) { Reg = TargetMaterializeFloatZero(CF); } else { // Try to emit the constant directly. Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF); } if (!Reg) { // Try to emit the constant by using an integer constant with a cast. const APFloat &Flt = CF->getValueAPF(); EVT IntVT = TLI.getPointerTy(); uint64_t x[2]; uint32_t IntBitWidth = IntVT.getSizeInBits(); bool isExact; (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true, APFloat::rmTowardZero, &isExact); if (isExact) { APInt IntVal(IntBitWidth, x); unsigned IntegerReg = getRegForValue(ConstantInt::get(V->getContext(), IntVal)); if (IntegerReg != 0) Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg, /*Kill=*/false); } } } else if (const Operator *Op = dyn_cast(V)) { if (!SelectOperator(Op, Op->getOpcode())) if (!isa(Op) || !TargetSelectInstruction(cast(Op))) return 0; Reg = lookUpRegForValue(Op); } else if (isa(V)) { Reg = createResultReg(TLI.getRegClassFor(VT)); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::IMPLICIT_DEF), Reg); } // If target-independent code couldn't handle the value, give target-specific // code a try. if (!Reg && isa(V)) Reg = TargetMaterializeConstant(cast(V)); // Don't cache constant materializations in the general ValueMap. // To do so would require tracking what uses they dominate. if (Reg != 0) { LocalValueMap[V] = Reg; LastLocalValue = MRI.getVRegDef(Reg); } return Reg; } unsigned FastISel::lookUpRegForValue(const Value *V) { // Look up the value to see if we already have a register for it. We // cache values defined by Instructions across blocks, and other values // only locally. This is because Instructions already have the SSA // def-dominates-use requirement enforced. DenseMap::iterator I = FuncInfo.ValueMap.find(V); if (I != FuncInfo.ValueMap.end()) return I->second; return LocalValueMap[V]; } /// UpdateValueMap - Update the value map to include the new mapping for this /// instruction, or insert an extra copy to get the result in a previous /// determined register. /// NOTE: This is only necessary because we might select a block that uses /// a value before we select the block that defines the value. It might be /// possible to fix this by selecting blocks in reverse postorder. void FastISel::UpdateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) { if (!isa(I)) { LocalValueMap[I] = Reg; return; } unsigned &AssignedReg = FuncInfo.ValueMap[I]; if (AssignedReg == 0) // Use the new register. AssignedReg = Reg; else if (Reg != AssignedReg) { // Arrange for uses of AssignedReg to be replaced by uses of Reg. for (unsigned i = 0; i < NumRegs; i++) FuncInfo.RegFixups[AssignedReg+i] = Reg+i; AssignedReg = Reg; } } std::pair FastISel::getRegForGEPIndex(const Value *Idx) { unsigned IdxN = getRegForValue(Idx); if (IdxN == 0) // Unhandled operand. Halt "fast" selection and bail. return std::pair(0, false); bool IdxNIsKill = hasTrivialKill(Idx); // If the index is smaller or larger than intptr_t, truncate or extend it. MVT PtrVT = TLI.getPointerTy(); EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); if (IdxVT.bitsLT(PtrVT)) { IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN, IdxNIsKill); IdxNIsKill = true; } else if (IdxVT.bitsGT(PtrVT)) { IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill); IdxNIsKill = true; } return std::pair(IdxN, IdxNIsKill); } void FastISel::recomputeInsertPt() { if (getLastLocalValue()) { FuncInfo.InsertPt = getLastLocalValue(); FuncInfo.MBB = FuncInfo.InsertPt->getParent(); ++FuncInfo.InsertPt; } else FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); // Now skip past any EH_LABELs, which must remain at the beginning. while (FuncInfo.InsertPt != FuncInfo.MBB->end() && FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL) ++FuncInfo.InsertPt; } void FastISel::removeDeadCode(MachineBasicBlock::iterator I, MachineBasicBlock::iterator E) { assert (I && E && std::distance(I, E) > 0 && "Invalid iterator!"); while (I != E) { MachineInstr *Dead = &*I; ++I; Dead->eraseFromParent(); ++NumFastIselDead; } recomputeInsertPt(); } FastISel::SavePoint FastISel::enterLocalValueArea() { MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt; DebugLoc OldDL = DL; recomputeInsertPt(); DL = DebugLoc(); SavePoint SP = { OldInsertPt, OldDL }; return SP; } void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) LastLocalValue = llvm::prior(FuncInfo.InsertPt); // Restore the previous insert position. FuncInfo.InsertPt = OldInsertPt.InsertPt; DL = OldInsertPt.DL; } /// SelectBinaryOp - Select and emit code for a binary operator instruction, /// which has an opcode which directly corresponds to the given ISD opcode. /// bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) { EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); if (VT == MVT::Other || !VT.isSimple()) // Unhandled type. Halt "fast" selection and bail. return false; // We only handle legal types. For example, on x86-32 the instruction // selector contains all of the 64-bit instructions from x86-64, // under the assumption that i64 won't be used if the target doesn't // support it. if (!TLI.isTypeLegal(VT)) { // MVT::i1 is special. Allow AND, OR, or XOR because they // don't require additional zeroing, which makes them easy. if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || ISDOpcode == ISD::XOR)) VT = TLI.getTypeToTransformTo(I->getContext(), VT); else return false; } // Check if the first operand is a constant, and handle it as "ri". At -O0, // we don't have anything that canonicalizes operand order. if (ConstantInt *CI = dyn_cast(I->getOperand(0))) if (isa(I) && cast(I)->isCommutative()) { unsigned Op1 = getRegForValue(I->getOperand(1)); if (Op1 == 0) return false; bool Op1IsKill = hasTrivialKill(I->getOperand(1)); unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill, CI->getZExtValue(), VT.getSimpleVT()); if (ResultReg == 0) return false; // We successfully emitted code for the given LLVM Instruction. UpdateValueMap(I, ResultReg); return true; } unsigned Op0 = getRegForValue(I->getOperand(0)); if (Op0 == 0) // Unhandled operand. Halt "fast" selection and bail. return false; bool Op0IsKill = hasTrivialKill(I->getOperand(0)); // Check if the second operand is a constant and handle it appropriately. if (ConstantInt *CI = dyn_cast(I->getOperand(1))) { uint64_t Imm = CI->getZExtValue(); // Transform "sdiv exact X, 8" -> "sra X, 3". if (ISDOpcode == ISD::SDIV && isa(I) && cast(I)->isExact() && isPowerOf2_64(Imm)) { Imm = Log2_64(Imm); ISDOpcode = ISD::SRA; } // Transform "urem x, pow2" -> "and x, pow2-1". if (ISDOpcode == ISD::UREM && isa(I) && isPowerOf2_64(Imm)) { --Imm; ISDOpcode = ISD::AND; } unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, Op0IsKill, Imm, VT.getSimpleVT()); if (ResultReg == 0) return false; // We successfully emitted code for the given LLVM Instruction. UpdateValueMap(I, ResultReg); return true; } // Check if the second operand is a constant float. if (ConstantFP *CF = dyn_cast(I->getOperand(1))) { unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(), ISDOpcode, Op0, Op0IsKill, CF); if (ResultReg != 0) { // We successfully emitted code for the given LLVM Instruction. UpdateValueMap(I, ResultReg); return true; } } unsigned Op1 = getRegForValue(I->getOperand(1)); if (Op1 == 0) // Unhandled operand. Halt "fast" selection and bail. return false; bool Op1IsKill = hasTrivialKill(I->getOperand(1)); // Now we have both operands in registers. Emit the instruction. unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill); if (ResultReg == 0) // Target-specific code wasn't able to find a machine opcode for // the given ISD opcode and type. Halt "fast" selection and bail. return false; // We successfully emitted code for the given LLVM Instruction. UpdateValueMap(I, ResultReg); return true; } bool FastISel::SelectGetElementPtr(const User *I) { unsigned N = getRegForValue(I->getOperand(0)); if (N == 0) // Unhandled operand. Halt "fast" selection and bail. return false; bool NIsKill = hasTrivialKill(I->getOperand(0)); // Keep a running tab of the total offset to coalesce multiple N = N + Offset // into a single N = N + TotalOffset. uint64_t TotalOffs = 0; // FIXME: What's a good SWAG number for MaxOffs? uint64_t MaxOffs = 2048; Type *Ty = I->getOperand(0)->getType(); MVT VT = TLI.getPointerTy(); for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1, E = I->op_end(); OI != E; ++OI) { const Value *Idx = *OI; if (StructType *StTy = dyn_cast(Ty)) { unsigned Field = cast(Idx)->getZExtValue(); if (Field) { // N = N + Offset TotalOffs += TD.getStructLayout(StTy)->getElementOffset(Field); if (TotalOffs >= MaxOffs) { N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); if (N == 0) // Unhandled operand. Halt "fast" selection and bail. return false; NIsKill = true; TotalOffs = 0; } } Ty = StTy->getElementType(Field); } else { Ty = cast(Ty)->getElementType(); // If this is a constant subscript, handle it quickly. if (const ConstantInt *CI = dyn_cast(Idx)) { if (CI->isZero()) continue; // N = N + Offset TotalOffs += TD.getTypeAllocSize(Ty)*cast(CI)->getSExtValue(); if (TotalOffs >= MaxOffs) { N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); if (N == 0) // Unhandled operand. Halt "fast" selection and bail. return false; NIsKill = true; TotalOffs = 0; } continue; } if (TotalOffs) { N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); if (N == 0) // Unhandled operand. Halt "fast" selection and bail. return false; NIsKill = true; TotalOffs = 0; } // N = N + Idx * ElementSize; uint64_t ElementSize = TD.getTypeAllocSize(Ty); std::pair Pair = getRegForGEPIndex(Idx); unsigned IdxN = Pair.first; bool IdxNIsKill = Pair.second; if (IdxN == 0) // Unhandled operand. Halt "fast" selection and bail. return false; if (ElementSize != 1) { IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT); if (IdxN == 0) // Unhandled operand. Halt "fast" selection and bail. return false; IdxNIsKill = true; } N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill); if (N == 0) // Unhandled operand. Halt "fast" selection and bail. return false; } } if (TotalOffs) { N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); if (N == 0) // Unhandled operand. Halt "fast" selection and bail. return false; } // We successfully emitted code for the given LLVM Instruction. UpdateValueMap(I, N); return true; } bool FastISel::SelectCall(const User *I) { const CallInst *Call = cast(I); // Handle simple inline asms. if (const InlineAsm *IA = dyn_cast(Call->getCalledValue())) { // Don't attempt to handle constraints. if (!IA->getConstraintString().empty()) return false; unsigned ExtraInfo = 0; if (IA->hasSideEffects()) ExtraInfo |= InlineAsm::Extra_HasSideEffects; if (IA->isAlignStack()) ExtraInfo |= InlineAsm::Extra_IsAlignStack; BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::INLINEASM)) .addExternalSymbol(IA->getAsmString().c_str()) .addImm(ExtraInfo); return true; } MachineModuleInfo &MMI = FuncInfo.MF->getMMI(); ComputeUsesVAFloatArgument(*Call, &MMI); const Function *F = Call->getCalledFunction(); if (!F) return false; // Handle selected intrinsic function calls. switch (F->getIntrinsicID()) { default: break; // At -O0 we don't care about the lifetime intrinsics. case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: // The donothing intrinsic does, well, nothing. case Intrinsic::donothing: return true; case Intrinsic::dbg_declare: { const DbgDeclareInst *DI = cast(Call); if (!DIVariable(DI->getVariable()).Verify() || !FuncInfo.MF->getMMI().hasDebugInfo()) { DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); return true; } const Value *Address = DI->getAddress(); if (!Address || isa(Address)) { DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); return true; } unsigned Reg = 0; unsigned Offset = 0; if (const Argument *Arg = dyn_cast(Address)) { // Some arguments' frame index is recorded during argument lowering. Offset = FuncInfo.getArgumentFrameIndex(Arg); if (Offset) Reg = TRI.getFrameRegister(*FuncInfo.MF); } if (!Reg) Reg = lookUpRegForValue(Address); // If we have a VLA that has a "use" in a metadata node that's then used // here but it has no other uses, then we have a problem. E.g., // // int foo (const int *x) { // char a[*x]; // return 0; // } // // If we assign 'a' a vreg and fast isel later on has to use the selection // DAG isel, it will want to copy the value to the vreg. However, there are // no uses, which goes counter to what selection DAG isel expects. if (!Reg && !Address->use_empty() && isa(Address) && (!isa(Address) || !FuncInfo.StaticAllocaMap.count(cast(Address)))) Reg = FuncInfo.InitializeRegForValue(Address); if (Reg) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::DBG_VALUE)) .addReg(Reg, RegState::Debug).addImm(Offset) .addMetadata(DI->getVariable()); else // We can't yet handle anything else here because it would require // generating code, thus altering codegen because of debug info. DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); return true; } case Intrinsic::dbg_value: { // This form of DBG_VALUE is target-independent. const DbgValueInst *DI = cast(Call); const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); const Value *V = DI->getValue(); if (!V) { // Currently the optimizer can produce this; insert an undef to // help debugging. Probably the optimizer should not do this. BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) .addReg(0U).addImm(DI->getOffset()) .addMetadata(DI->getVariable()); } else if (const ConstantInt *CI = dyn_cast(V)) { if (CI->getBitWidth() > 64) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) .addCImm(CI).addImm(DI->getOffset()) .addMetadata(DI->getVariable()); else BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) .addImm(CI->getZExtValue()).addImm(DI->getOffset()) .addMetadata(DI->getVariable()); } else if (const ConstantFP *CF = dyn_cast(V)) { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) .addFPImm(CF).addImm(DI->getOffset()) .addMetadata(DI->getVariable()); } else if (unsigned Reg = lookUpRegForValue(V)) { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) .addReg(Reg, RegState::Debug).addImm(DI->getOffset()) .addMetadata(DI->getVariable()); } else { // We can't yet handle anything else here because it would require // generating code, thus altering codegen because of debug info. DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); } return true; } case Intrinsic::objectsize: { ConstantInt *CI = cast(Call->getArgOperand(1)); unsigned long long Res = CI->isZero() ? -1ULL : 0; Constant *ResCI = ConstantInt::get(Call->getType(), Res); unsigned ResultReg = getRegForValue(ResCI); if (ResultReg == 0) return false; UpdateValueMap(Call, ResultReg); return true; } case Intrinsic::expect: { unsigned ResultReg = getRegForValue(Call->getArgOperand(0)); if (ResultReg == 0) return false; UpdateValueMap(Call, ResultReg); return true; } } // Usually, it does not make sense to initialize a value, // make an unrelated function call and use the value, because // it tends to be spilled on the stack. So, we move the pointer // to the last local value to the beginning of the block, so that // all the values which have already been materialized, // appear after the call. It also makes sense to skip intrinsics // since they tend to be inlined. if (!isa(Call)) flushLocalValueMap(); // An arbitrary call. Bail. return false; } bool FastISel::SelectCast(const User *I, unsigned Opcode) { EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); EVT DstVT = TLI.getValueType(I->getType()); if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other || !DstVT.isSimple()) // Unhandled type. Halt "fast" selection and bail. return false; // Check if the destination type is legal. if (!TLI.isTypeLegal(DstVT)) return false; // Check if the source operand is legal. if (!TLI.isTypeLegal(SrcVT)) return false; unsigned InputReg = getRegForValue(I->getOperand(0)); if (!InputReg) // Unhandled operand. Halt "fast" selection and bail. return false; bool InputRegIsKill = hasTrivialKill(I->getOperand(0)); unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opcode, InputReg, InputRegIsKill); if (!ResultReg) return false; UpdateValueMap(I, ResultReg); return true; } bool FastISel::SelectBitCast(const User *I) { // If the bitcast doesn't change the type, just use the operand value. if (I->getType() == I->getOperand(0)->getType()) { unsigned Reg = getRegForValue(I->getOperand(0)); if (Reg == 0) return false; UpdateValueMap(I, Reg); return true; } // Bitcasts of other values become reg-reg copies or BITCAST operators. EVT SrcEVT = TLI.getValueType(I->getOperand(0)->getType()); EVT DstEVT = TLI.getValueType(I->getType()); if (SrcEVT == MVT::Other || DstEVT == MVT::Other || !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT)) // Unhandled type. Halt "fast" selection and bail. return false; MVT SrcVT = SrcEVT.getSimpleVT(); MVT DstVT = DstEVT.getSimpleVT(); unsigned Op0 = getRegForValue(I->getOperand(0)); if (Op0 == 0) // Unhandled operand. Halt "fast" selection and bail. return false; bool Op0IsKill = hasTrivialKill(I->getOperand(0)); // First, try to perform the bitcast by inserting a reg-reg copy. unsigned ResultReg = 0; if (SrcVT == DstVT) { const TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT); const TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT); // Don't attempt a cross-class copy. It will likely fail. if (SrcClass == DstClass) { ResultReg = createResultReg(DstClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0); } } // If the reg-reg copy failed, select a BITCAST opcode. if (!ResultReg) ResultReg = FastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill); if (!ResultReg) return false; UpdateValueMap(I, ResultReg); return true; } bool FastISel::SelectInstruction(const Instruction *I) { // Just before the terminator instruction, insert instructions to // feed PHI nodes in successor blocks. if (isa(I)) if (!HandlePHINodesInSuccessorBlocks(I->getParent())) return false; DL = I->getDebugLoc(); MachineBasicBlock::iterator SavedInsertPt = FuncInfo.InsertPt; // As a special case, don't handle calls to builtin library functions that // may be translated directly to target instructions. if (const CallInst *Call = dyn_cast(I)) { const Function *F = Call->getCalledFunction(); LibFunc::Func Func; if (F && !F->hasLocalLinkage() && F->hasName() && LibInfo->getLibFunc(F->getName(), Func) && LibInfo->hasOptimizedCodeGen(Func)) return false; } // First, try doing target-independent selection. if (SelectOperator(I, I->getOpcode())) { ++NumFastIselSuccessIndependent; DL = DebugLoc(); return true; } // Remove dead code. However, ignore call instructions since we've flushed // the local value map and recomputed the insert point. if (!isa(I)) { recomputeInsertPt(); if (SavedInsertPt != FuncInfo.InsertPt) removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); } // Next, try calling the target to attempt to handle the instruction. SavedInsertPt = FuncInfo.InsertPt; if (TargetSelectInstruction(I)) { ++NumFastIselSuccessTarget; DL = DebugLoc(); return true; } // Check for dead code and remove as necessary. recomputeInsertPt(); if (SavedInsertPt != FuncInfo.InsertPt) removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); DL = DebugLoc(); return false; } /// FastEmitBranch - Emit an unconditional branch to the given block, /// unless it is the immediate (fall-through) successor, and update /// the CFG. void FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DL) { if (FuncInfo.MBB->getBasicBlock()->size() > 1 && FuncInfo.MBB->isLayoutSuccessor(MSucc)) { // For more accurate line information if this is the only instruction // in the block then emit it, otherwise we have the unconditional // fall-through case, which needs no instructions. } else { // The unconditional branch case. TII.InsertBranch(*FuncInfo.MBB, MSucc, NULL, SmallVector(), DL); } FuncInfo.MBB->addSuccessor(MSucc); } /// SelectFNeg - Emit an FNeg operation. /// bool FastISel::SelectFNeg(const User *I) { unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I)); if (OpReg == 0) return false; bool OpRegIsKill = hasTrivialKill(I); // If the target has ISD::FNEG, use it. EVT VT = TLI.getValueType(I->getType()); unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG, OpReg, OpRegIsKill); if (ResultReg != 0) { UpdateValueMap(I, ResultReg); return true; } // Bitcast the value to integer, twiddle the sign bit with xor, // and then bitcast it back to floating-point. if (VT.getSizeInBits() > 64) return false; EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); if (!TLI.isTypeLegal(IntVT)) return false; unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), ISD::BITCAST, OpReg, OpRegIsKill); if (IntReg == 0) return false; unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR, IntReg, /*Kill=*/true, UINT64_C(1) << (VT.getSizeInBits()-1), IntVT.getSimpleVT()); if (IntResultReg == 0) return false; ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST, IntResultReg, /*Kill=*/true); if (ResultReg == 0) return false; UpdateValueMap(I, ResultReg); return true; } bool FastISel::SelectExtractValue(const User *U) { const ExtractValueInst *EVI = dyn_cast(U); if (!EVI) return false; // Make sure we only try to handle extracts with a legal result. But also // allow i1 because it's easy. EVT RealVT = TLI.getValueType(EVI->getType(), /*AllowUnknown=*/true); if (!RealVT.isSimple()) return false; MVT VT = RealVT.getSimpleVT(); if (!TLI.isTypeLegal(VT) && VT != MVT::i1) return false; const Value *Op0 = EVI->getOperand(0); Type *AggTy = Op0->getType(); // Get the base result register. unsigned ResultReg; DenseMap::iterator I = FuncInfo.ValueMap.find(Op0); if (I != FuncInfo.ValueMap.end()) ResultReg = I->second; else if (isa(Op0)) ResultReg = FuncInfo.InitializeRegForValue(Op0); else return false; // fast-isel can't handle aggregate constants at the moment // Get the actual result register, which is an offset from the base register. unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); SmallVector AggValueVTs; ComputeValueVTs(TLI, AggTy, AggValueVTs); for (unsigned i = 0; i < VTIndex; i++) ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); UpdateValueMap(EVI, ResultReg); return true; } bool FastISel::SelectOperator(const User *I, unsigned Opcode) { switch (Opcode) { case Instruction::Add: return SelectBinaryOp(I, ISD::ADD); case Instruction::FAdd: return SelectBinaryOp(I, ISD::FADD); case Instruction::Sub: return SelectBinaryOp(I, ISD::SUB); case Instruction::FSub: // FNeg is currently represented in LLVM IR as a special case of FSub. if (BinaryOperator::isFNeg(I)) return SelectFNeg(I); return SelectBinaryOp(I, ISD::FSUB); case Instruction::Mul: return SelectBinaryOp(I, ISD::MUL); case Instruction::FMul: return SelectBinaryOp(I, ISD::FMUL); case Instruction::SDiv: return SelectBinaryOp(I, ISD::SDIV); case Instruction::UDiv: return SelectBinaryOp(I, ISD::UDIV); case Instruction::FDiv: return SelectBinaryOp(I, ISD::FDIV); case Instruction::SRem: return SelectBinaryOp(I, ISD::SREM); case Instruction::URem: return SelectBinaryOp(I, ISD::UREM); case Instruction::FRem: return SelectBinaryOp(I, ISD::FREM); case Instruction::Shl: return SelectBinaryOp(I, ISD::SHL); case Instruction::LShr: return SelectBinaryOp(I, ISD::SRL); case Instruction::AShr: return SelectBinaryOp(I, ISD::SRA); case Instruction::And: return SelectBinaryOp(I, ISD::AND); case Instruction::Or: return SelectBinaryOp(I, ISD::OR); case Instruction::Xor: return SelectBinaryOp(I, ISD::XOR); case Instruction::GetElementPtr: return SelectGetElementPtr(I); case Instruction::Br: { const BranchInst *BI = cast(I); if (BI->isUnconditional()) { const BasicBlock *LLVMSucc = BI->getSuccessor(0); MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; FastEmitBranch(MSucc, BI->getDebugLoc()); return true; } // Conditional branches are not handed yet. // Halt "fast" selection and bail. return false; } case Instruction::Unreachable: // Nothing to emit. return true; case Instruction::Alloca: // FunctionLowering has the static-sized case covered. if (FuncInfo.StaticAllocaMap.count(cast(I))) return true; // Dynamic-sized alloca is not handled yet. return false; case Instruction::Call: return SelectCall(I); case Instruction::BitCast: return SelectBitCast(I); case Instruction::FPToSI: return SelectCast(I, ISD::FP_TO_SINT); case Instruction::ZExt: return SelectCast(I, ISD::ZERO_EXTEND); case Instruction::SExt: return SelectCast(I, ISD::SIGN_EXTEND); case Instruction::Trunc: return SelectCast(I, ISD::TRUNCATE); case Instruction::SIToFP: return SelectCast(I, ISD::SINT_TO_FP); case Instruction::IntToPtr: // Deliberate fall-through. case Instruction::PtrToInt: { EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); EVT DstVT = TLI.getValueType(I->getType()); if (DstVT.bitsGT(SrcVT)) return SelectCast(I, ISD::ZERO_EXTEND); if (DstVT.bitsLT(SrcVT)) return SelectCast(I, ISD::TRUNCATE); unsigned Reg = getRegForValue(I->getOperand(0)); if (Reg == 0) return false; UpdateValueMap(I, Reg); return true; } case Instruction::ExtractValue: return SelectExtractValue(I); case Instruction::PHI: llvm_unreachable("FastISel shouldn't visit PHI nodes!"); default: // Unhandled instruction. Halt "fast" selection and bail. return false; } } FastISel::FastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo) : FuncInfo(funcInfo), MRI(FuncInfo.MF->getRegInfo()), MFI(*FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()), TM(FuncInfo.MF->getTarget()), TD(*TM.getDataLayout()), TII(*TM.getInstrInfo()), TLI(*TM.getTargetLowering()), TRI(*TM.getRegisterInfo()), LibInfo(libInfo) { } FastISel::~FastISel() {} bool FastISel::FastLowerArguments() { return false; } unsigned FastISel::FastEmit_(MVT, MVT, unsigned) { return 0; } unsigned FastISel::FastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/, bool /*Op0IsKill*/) { return 0; } unsigned FastISel::FastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/, bool /*Op0IsKill*/, unsigned /*Op1*/, bool /*Op1IsKill*/) { return 0; } unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { return 0; } unsigned FastISel::FastEmit_f(MVT, MVT, unsigned, const ConstantFP * /*FPImm*/) { return 0; } unsigned FastISel::FastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/, bool /*Op0IsKill*/, uint64_t /*Imm*/) { return 0; } unsigned FastISel::FastEmit_rf(MVT, MVT, unsigned, unsigned /*Op0*/, bool /*Op0IsKill*/, const ConstantFP * /*FPImm*/) { return 0; } unsigned FastISel::FastEmit_rri(MVT, MVT, unsigned, unsigned /*Op0*/, bool /*Op0IsKill*/, unsigned /*Op1*/, bool /*Op1IsKill*/, uint64_t /*Imm*/) { return 0; } /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries /// to emit an instruction with an immediate operand using FastEmit_ri. /// If that fails, it materializes the immediate into a register and try /// FastEmit_rr instead. unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, bool Op0IsKill, uint64_t Imm, MVT ImmType) { // If this is a multiply by a power of two, emit this as a shift left. if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { Opcode = ISD::SHL; Imm = Log2_64(Imm); } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { // div x, 8 -> srl x, 3 Opcode = ISD::SRL; Imm = Log2_64(Imm); } // Horrible hack (to be removed), check to make sure shift amounts are // in-range. if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && Imm >= VT.getSizeInBits()) return 0; // First check if immediate type is legal. If not, we can't use the ri form. unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm); if (ResultReg != 0) return ResultReg; unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm); if (MaterialReg == 0) { // This is a bit ugly/slow, but failing here means falling out of // fast-isel, which would be very slow. IntegerType *ITy = IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits()); MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); assert (MaterialReg != 0 && "Unable to materialize imm."); if (MaterialReg == 0) return 0; } return FastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, /*Kill=*/true); } unsigned FastISel::createResultReg(const TargetRegisterClass* RC) { return MRI.createVirtualRegister(RC); } unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode, const TargetRegisterClass* RC) { unsigned ResultReg = createResultReg(RC); const MCInstrDesc &II = TII.get(MachineInstOpcode); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg); return ResultReg; } unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill) { unsigned ResultReg = createResultReg(RC); const MCInstrDesc &II = TII.get(MachineInstOpcode); if (II.getNumDefs() >= 1) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) .addReg(Op0, Op0IsKill * RegState::Kill); else { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) .addReg(Op0, Op0IsKill * RegState::Kill); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); } return ResultReg; } unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, unsigned Op1, bool Op1IsKill) { unsigned ResultReg = createResultReg(RC); const MCInstrDesc &II = TII.get(MachineInstOpcode); if (II.getNumDefs() >= 1) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) .addReg(Op0, Op0IsKill * RegState::Kill) .addReg(Op1, Op1IsKill * RegState::Kill); else { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) .addReg(Op0, Op0IsKill * RegState::Kill) .addReg(Op1, Op1IsKill * RegState::Kill); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); } return ResultReg; } unsigned FastISel::FastEmitInst_rrr(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, unsigned Op1, bool Op1IsKill, unsigned Op2, bool Op2IsKill) { unsigned ResultReg = createResultReg(RC); const MCInstrDesc &II = TII.get(MachineInstOpcode); if (II.getNumDefs() >= 1) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) .addReg(Op0, Op0IsKill * RegState::Kill) .addReg(Op1, Op1IsKill * RegState::Kill) .addReg(Op2, Op2IsKill * RegState::Kill); else { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) .addReg(Op0, Op0IsKill * RegState::Kill) .addReg(Op1, Op1IsKill * RegState::Kill) .addReg(Op2, Op2IsKill * RegState::Kill); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); } return ResultReg; } unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, uint64_t Imm) { unsigned ResultReg = createResultReg(RC); const MCInstrDesc &II = TII.get(MachineInstOpcode); if (II.getNumDefs() >= 1) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) .addReg(Op0, Op0IsKill * RegState::Kill) .addImm(Imm); else { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) .addReg(Op0, Op0IsKill * RegState::Kill) .addImm(Imm); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); } return ResultReg; } unsigned FastISel::FastEmitInst_rii(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, uint64_t Imm1, uint64_t Imm2) { unsigned ResultReg = createResultReg(RC); const MCInstrDesc &II = TII.get(MachineInstOpcode); if (II.getNumDefs() >= 1) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) .addReg(Op0, Op0IsKill * RegState::Kill) .addImm(Imm1) .addImm(Imm2); else { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) .addReg(Op0, Op0IsKill * RegState::Kill) .addImm(Imm1) .addImm(Imm2); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); } return ResultReg; } unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, const ConstantFP *FPImm) { unsigned ResultReg = createResultReg(RC); const MCInstrDesc &II = TII.get(MachineInstOpcode); if (II.getNumDefs() >= 1) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) .addReg(Op0, Op0IsKill * RegState::Kill) .addFPImm(FPImm); else { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) .addReg(Op0, Op0IsKill * RegState::Kill) .addFPImm(FPImm); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); } return ResultReg; } unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, unsigned Op1, bool Op1IsKill, uint64_t Imm) { unsigned ResultReg = createResultReg(RC); const MCInstrDesc &II = TII.get(MachineInstOpcode); if (II.getNumDefs() >= 1) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) .addReg(Op0, Op0IsKill * RegState::Kill) .addReg(Op1, Op1IsKill * RegState::Kill) .addImm(Imm); else { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) .addReg(Op0, Op0IsKill * RegState::Kill) .addReg(Op1, Op1IsKill * RegState::Kill) .addImm(Imm); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); } return ResultReg; } unsigned FastISel::FastEmitInst_rrii(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, unsigned Op1, bool Op1IsKill, uint64_t Imm1, uint64_t Imm2) { unsigned ResultReg = createResultReg(RC); const MCInstrDesc &II = TII.get(MachineInstOpcode); if (II.getNumDefs() >= 1) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) .addReg(Op0, Op0IsKill * RegState::Kill) .addReg(Op1, Op1IsKill * RegState::Kill) .addImm(Imm1).addImm(Imm2); else { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) .addReg(Op0, Op0IsKill * RegState::Kill) .addReg(Op1, Op1IsKill * RegState::Kill) .addImm(Imm1).addImm(Imm2); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); } return ResultReg; } unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode, const TargetRegisterClass *RC, uint64_t Imm) { unsigned ResultReg = createResultReg(RC); const MCInstrDesc &II = TII.get(MachineInstOpcode); if (II.getNumDefs() >= 1) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg).addImm(Imm); else { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); } return ResultReg; } unsigned FastISel::FastEmitInst_ii(unsigned MachineInstOpcode, const TargetRegisterClass *RC, uint64_t Imm1, uint64_t Imm2) { unsigned ResultReg = createResultReg(RC); const MCInstrDesc &II = TII.get(MachineInstOpcode); if (II.getNumDefs() >= 1) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) .addImm(Imm1).addImm(Imm2); else { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm1).addImm(Imm2); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); } return ResultReg; } unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, bool Op0IsKill, uint32_t Idx) { unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); assert(TargetRegisterInfo::isVirtualRegister(Op0) && "Cannot yet extract from physregs"); const TargetRegisterClass *RC = MRI.getRegClass(Op0); MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), ResultReg) .addReg(Op0, getKillRegState(Op0IsKill), Idx); return ResultReg; } /// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op /// with all but the least significant bit set to zero. unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) { return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1); } /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. /// Emit code to ensure constants are copied into registers when needed. /// Remember the virtual registers that need to be added to the Machine PHI /// nodes as input. We cannot just directly add them, because expansion /// might result in multiple MBB's for one BB. As such, the start of the /// BB might correspond to a different MBB than the end. bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { const TerminatorInst *TI = LLVMBB->getTerminator(); SmallPtrSet SuccsHandled; unsigned OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); // Check successor nodes' PHI nodes that expect a constant to be available // from this block. for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { const BasicBlock *SuccBB = TI->getSuccessor(succ); if (!isa(SuccBB->begin())) continue; MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; // If this terminator has multiple identical successors (common for // switches), only handle each succ once. if (!SuccsHandled.insert(SuccMBB)) continue; MachineBasicBlock::iterator MBBI = SuccMBB->begin(); // At this point we know that there is a 1-1 correspondence between LLVM PHI // nodes and Machine PHI nodes, but the incoming operands have not been // emitted yet. for (BasicBlock::const_iterator I = SuccBB->begin(); const PHINode *PN = dyn_cast(I); ++I) { // Ignore dead phi's. if (PN->use_empty()) continue; // Only handle legal types. Two interesting things to note here. First, // by bailing out early, we may leave behind some dead instructions, // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its // own moves. Second, this check is necessary because FastISel doesn't // use CreateRegs to create registers, so it always creates // exactly one register for each non-void instruction. EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true); if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { // Handle integer promotions, though, because they're common and easy. if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT); else { FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); return false; } } const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); // Set the DebugLoc for the copy. Prefer the location of the operand // if there is one; use the location of the PHI otherwise. DL = PN->getDebugLoc(); if (const Instruction *Inst = dyn_cast(PHIOp)) DL = Inst->getDebugLoc(); unsigned Reg = getRegForValue(PHIOp); if (Reg == 0) { FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); return false; } FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg)); DL = DebugLoc(); } } return true; } bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) { assert(LI->hasOneUse() && "tryToFoldLoad expected a LoadInst with a single use"); // We know that the load has a single use, but don't know what it is. If it // isn't one of the folded instructions, then we can't succeed here. Handle // this by scanning the single-use users of the load until we get to FoldInst. unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. const Instruction *TheUser = LI->use_back(); while (TheUser != FoldInst && // Scan up until we find FoldInst. // Stay in the right block. TheUser->getParent() == FoldInst->getParent() && --MaxUsers) { // Don't scan too far. // If there are multiple or no uses of this instruction, then bail out. if (!TheUser->hasOneUse()) return false; TheUser = TheUser->use_back(); } // If we didn't find the fold instruction, then we failed to collapse the // sequence. if (TheUser != FoldInst) return false; // Don't try to fold volatile loads. Target has to deal with alignment // constraints. if (LI->isVolatile()) return false; // Figure out which vreg this is going into. If there is no assigned vreg yet // then there actually was no reference to it. Perhaps the load is referenced // by a dead instruction. unsigned LoadReg = getRegForValue(LI); if (LoadReg == 0) return false; // We can't fold if this vreg has no uses or more than one use. Multiple uses // may mean that the instruction got lowered to multiple MIs, or the use of // the loaded value ended up being multiple operands of the result. if (!MRI.hasOneUse(LoadReg)) return false; MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg); MachineInstr *User = &*RI; // Set the insertion point properly. Folding the load can cause generation of // other random instructions (like sign extends) for addressing modes; make // sure they get inserted in a logical place before the new instruction. FuncInfo.InsertPt = User; FuncInfo.MBB = User->getParent(); // Ask the target to try folding the load. return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI); }