//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the SelectionDAG::Legalize method. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Triple.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/LLVMContext.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetFrameLowering.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetSubtargetInfo.h" using namespace llvm; #define DEBUG_TYPE "legalizedag" //===----------------------------------------------------------------------===// /// This takes an arbitrary SelectionDAG as input and /// hacks on it until the target machine can handle it. This involves /// eliminating value sizes the machine cannot handle (promoting small sizes to /// large sizes or splitting up large values into small values) as well as /// eliminating operations the machine cannot handle. /// /// This code also does a small amount of optimization and recognition of idioms /// as part of its processing. For example, if a target does not support a /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this /// will attempt merge setcc and brc instructions into brcc's. /// namespace { class SelectionDAGLegalize { const TargetMachine &TM; const TargetLowering &TLI; SelectionDAG &DAG; /// \brief The set of nodes which have already been legalized. We hold a /// reference to it in order to update as necessary on node deletion. SmallPtrSetImpl &LegalizedNodes; /// \brief A set of all the nodes updated during legalization. SmallSetVector *UpdatedNodes; EVT getSetCCResultType(EVT VT) const { return TLI.getSetCCResultType(*DAG.getContext(), VT); } // Libcall insertion helpers. public: SelectionDAGLegalize(SelectionDAG &DAG, SmallPtrSetImpl &LegalizedNodes, SmallSetVector *UpdatedNodes = nullptr) : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG), LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {} /// \brief Legalizes the given operation. void LegalizeOp(SDNode *Node); private: SDValue OptimizeFloatStore(StoreSDNode *ST); void LegalizeLoadOps(SDNode *Node); void LegalizeStoreOps(SDNode *Node); /// Some targets cannot handle a variable /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it /// is necessary to spill the vector being inserted into to memory, perform /// the insert there, and then read the result back. SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, SDLoc dl); SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, SDLoc dl); /// Return a vector shuffle operation which /// performs the same shuffe in terms of order or result bytes, but on a type /// whose vector element type is narrower than the original shuffle type. /// e.g. <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, SDLoc dl, SDValue N1, SDValue N2, ArrayRef Mask) const; bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, bool &NeedInvert, SDLoc dl); SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops, unsigned NumOps, bool isSigned, SDLoc dl); std::pair ExpandChainLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128, RTLIB::Libcall Call_PPCF128); SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, RTLIB::Libcall Call_I8, RTLIB::Libcall Call_I16, RTLIB::Libcall Call_I32, RTLIB::Libcall Call_I64, RTLIB::Libcall Call_I128); void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl &Results); void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl &Results); SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, SDLoc dl); SDValue ExpandBUILD_VECTOR(SDNode *Node); SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); void ExpandDYNAMIC_STACKALLOC(SDNode *Node, SmallVectorImpl &Results); SDValue ExpandFCOPYSIGN(SDNode *Node); SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT, SDLoc dl); SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned, SDLoc dl); SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned, SDLoc dl); SDValue ExpandBSWAP(SDValue Op, SDLoc dl); SDValue ExpandBitCount(unsigned Opc, SDValue Op, SDLoc dl); SDValue ExpandExtractFromVectorThroughStack(SDValue Op); SDValue ExpandInsertToVectorThroughStack(SDValue Op); SDValue ExpandVectorBuildThroughStack(SDNode* Node); SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); std::pair ExpandAtomic(SDNode *Node); void ExpandNode(SDNode *Node); void PromoteNode(SDNode *Node); public: // Node replacement helpers void ReplacedNode(SDNode *N) { LegalizedNodes.erase(N); if (UpdatedNodes) UpdatedNodes->insert(N); } void ReplaceNode(SDNode *Old, SDNode *New) { DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); dbgs() << " with: "; New->dump(&DAG)); assert(Old->getNumValues() == New->getNumValues() && "Replacing one node with another that produces a different number " "of values!"); DAG.ReplaceAllUsesWith(Old, New); for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) DAG.TransferDbgValues(SDValue(Old, i), SDValue(New, i)); if (UpdatedNodes) UpdatedNodes->insert(New); ReplacedNode(Old); } void ReplaceNode(SDValue Old, SDValue New) { DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); dbgs() << " with: "; New->dump(&DAG)); DAG.ReplaceAllUsesWith(Old, New); DAG.TransferDbgValues(Old, New); if (UpdatedNodes) UpdatedNodes->insert(New.getNode()); ReplacedNode(Old.getNode()); } void ReplaceNode(SDNode *Old, const SDValue *New) { DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG)); DAG.ReplaceAllUsesWith(Old, New); for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { DEBUG(dbgs() << (i == 0 ? " with: " : " and: "); New[i]->dump(&DAG)); DAG.TransferDbgValues(SDValue(Old, i), New[i]); if (UpdatedNodes) UpdatedNodes->insert(New[i].getNode()); } ReplacedNode(Old); } }; } /// Return a vector shuffle operation which /// performs the same shuffe in terms of order or result bytes, but on a type /// whose vector element type is narrower than the original shuffle type. /// e.g. <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT, SDLoc dl, SDValue N1, SDValue N2, ArrayRef Mask) const { unsigned NumMaskElts = VT.getVectorNumElements(); unsigned NumDestElts = NVT.getVectorNumElements(); unsigned NumEltsGrowth = NumDestElts / NumMaskElts; assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); if (NumEltsGrowth == 1) return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]); SmallVector NewMask; for (unsigned i = 0; i != NumMaskElts; ++i) { int Idx = Mask[i]; for (unsigned j = 0; j != NumEltsGrowth; ++j) { if (Idx < 0) NewMask.push_back(-1); else NewMask.push_back(Idx * NumEltsGrowth + j); } } assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]); } /// Expands the ConstantFP node to an integer constant or /// a load from the constant pool. SDValue SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { bool Extend = false; SDLoc dl(CFP); // If a FP immediate is precise when represented as a float and if the // target can do an extending load from float to double, we put it into // the constant pool as a float, even if it's is statically typed as a // double. This shrinks FP constants and canonicalizes them for targets where // an FP extending load is the same cost as a normal load (such as on the x87 // fp stack or PPC FP unit). EVT VT = CFP->getValueType(0); ConstantFP *LLVMC = const_cast(CFP->getConstantFPValue()); if (!UseCP) { assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), (VT == MVT::f64) ? MVT::i64 : MVT::i32); } EVT OrigVT = VT; EVT SVT = VT; while (SVT != MVT::f32 && SVT != MVT::f16) { SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) && // Only do this if the target has a native EXTLOAD instruction from // smaller type. TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) && TLI.ShouldShrinkFPConstant(OrigVT)) { Type *SType = SVT.getTypeForEVT(*DAG.getContext()); LLVMC = cast(ConstantExpr::getFPTrunc(LLVMC, SType)); VT = SVT; Extend = true; } } SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy()); unsigned Alignment = cast(CPIdx)->getAlignment(); if (Extend) { SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, MachinePointerInfo::getConstantPool(), VT, false, false, false, Alignment); return Result; } SDValue Result = DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx, MachinePointerInfo::getConstantPool(), false, false, false, Alignment); return Result; } /// Expands an unaligned store to 2 half-size stores. static void ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG, const TargetLowering &TLI, SelectionDAGLegalize *DAGLegalize) { assert(ST->getAddressingMode() == ISD::UNINDEXED && "unaligned indexed stores not implemented!"); SDValue Chain = ST->getChain(); SDValue Ptr = ST->getBasePtr(); SDValue Val = ST->getValue(); EVT VT = Val.getValueType(); int Alignment = ST->getAlignment(); unsigned AS = ST->getAddressSpace(); SDLoc dl(ST); if (ST->getMemoryVT().isFloatingPoint() || ST->getMemoryVT().isVector()) { EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); if (TLI.isTypeLegal(intVT)) { // Expand to a bitconvert of the value to the integer type of the // same size, then a (misaligned) int store. // FIXME: Does not handle truncating floating point stores! SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), ST->isVolatile(), ST->isNonTemporal(), Alignment); DAGLegalize->ReplaceNode(SDValue(ST, 0), Result); return; } // Do a (aligned) store to a stack slot, then copy from the stack slot // to the final destination using (unaligned) integer loads and stores. EVT StoredVT = ST->getMemoryVT(); MVT RegVT = TLI.getRegisterType(*DAG.getContext(), EVT::getIntegerVT(*DAG.getContext(), StoredVT.getSizeInBits())); unsigned StoredBytes = StoredVT.getSizeInBits() / 8; unsigned RegBytes = RegVT.getSizeInBits() / 8; unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; // Make sure the stack slot is also aligned for the register type. SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); // Perform the original store, only redirected to the stack slot. SDValue Store = DAG.getTruncStore(Chain, dl, Val, StackPtr, MachinePointerInfo(), StoredVT, false, false, 0); SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy(AS)); SmallVector Stores; unsigned Offset = 0; // Do all but one copies using the full register width. for (unsigned i = 1; i < NumRegs; i++) { // Load one integer register's worth from the stack slot. SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, MachinePointerInfo(), false, false, false, 0); // Store it to the final location. Remember the store. Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, ST->getPointerInfo().getWithOffset(Offset), ST->isVolatile(), ST->isNonTemporal(), MinAlign(ST->getAlignment(), Offset))); // Increment the pointers. Offset += RegBytes; StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, Increment); Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); } // The last store may be partial. Do a truncating store. On big-endian // machines this requires an extending load from the stack slot to ensure // that the bits are in the right place. EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); // Load from the stack slot. SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr, MachinePointerInfo(), MemVT, false, false, false, 0); Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, ST->getPointerInfo() .getWithOffset(Offset), MemVT, ST->isVolatile(), ST->isNonTemporal(), MinAlign(ST->getAlignment(), Offset), ST->getAAInfo())); // The order of the stores doesn't matter - say it with a TokenFactor. SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); DAGLegalize->ReplaceNode(SDValue(ST, 0), Result); return; } assert(ST->getMemoryVT().isInteger() && !ST->getMemoryVT().isVector() && "Unaligned store of unknown type."); // Get the half-size VT EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); int NumBits = NewStoredVT.getSizeInBits(); int IncrementSize = NumBits / 8; // Divide the stored value in two parts. SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy(Val.getValueType())); SDValue Lo = Val; SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); // Store the two parts SDValue Store1, Store2; Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr, ST->getPointerInfo(), NewStoredVT, ST->isVolatile(), ST->isNonTemporal(), Alignment); Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, DAG.getConstant(IncrementSize, TLI.getPointerTy(AS))); Alignment = MinAlign(Alignment, IncrementSize); Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr, ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, ST->isVolatile(), ST->isNonTemporal(), Alignment, ST->getAAInfo()); SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); DAGLegalize->ReplaceNode(SDValue(ST, 0), Result); } /// Expands an unaligned load to 2 half-size loads. static void ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG, const TargetLowering &TLI, SDValue &ValResult, SDValue &ChainResult) { assert(LD->getAddressingMode() == ISD::UNINDEXED && "unaligned indexed loads not implemented!"); SDValue Chain = LD->getChain(); SDValue Ptr = LD->getBasePtr(); EVT VT = LD->getValueType(0); EVT LoadedVT = LD->getMemoryVT(); SDLoc dl(LD); if (VT.isFloatingPoint() || VT.isVector()) { EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); if (TLI.isTypeLegal(intVT) && TLI.isTypeLegal(LoadedVT)) { // Expand to a (misaligned) integer load of the same size, // then bitconvert to floating point or vector. SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getMemOperand()); SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); if (LoadedVT != VT) Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : ISD::ANY_EXTEND, dl, VT, Result); ValResult = Result; ChainResult = Chain; return; } // Copy the value to a (aligned) stack slot using (unaligned) integer // loads and stores, then do a (aligned) load from the stack slot. MVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT); unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8; unsigned RegBytes = RegVT.getSizeInBits() / 8; unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; // Make sure the stack slot is also aligned for the register type. SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); SmallVector Stores; SDValue StackPtr = StackBase; unsigned Offset = 0; // Do all but one copies using the full register width. for (unsigned i = 1; i < NumRegs; i++) { // Load one integer register's worth from the original location. SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(), MinAlign(LD->getAlignment(), Offset), LD->getAAInfo()); // Follow the load with a store to the stack slot. Remember the store. Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr, MachinePointerInfo(), false, false, 0)); // Increment the pointers. Offset += RegBytes; Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, Increment); } // The last copy may be partial. Do an extending load. EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8 * (LoadedBytes - Offset)); SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), MemVT, LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(), MinAlign(LD->getAlignment(), Offset), LD->getAAInfo()); // Follow the load with a store to the stack slot. Remember the store. // On big-endian machines this requires a truncating store to ensure // that the bits end up in the right place. Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr, MachinePointerInfo(), MemVT, false, false, 0)); // The order of the stores doesn't matter - say it with a TokenFactor. SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); // Finally, perform the original load only redirected to the stack slot. Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, MachinePointerInfo(), LoadedVT, false,false, false, 0); // Callers expect a MERGE_VALUES node. ValResult = Load; ChainResult = TF; return; } assert(LoadedVT.isInteger() && !LoadedVT.isVector() && "Unaligned load of unsupported type."); // Compute the new VT that is half the size of the old one. This is an // integer MVT. unsigned NumBits = LoadedVT.getSizeInBits(); EVT NewLoadedVT; NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); NumBits >>= 1; unsigned Alignment = LD->getAlignment(); unsigned IncrementSize = NumBits / 8; ISD::LoadExtType HiExtType = LD->getExtensionType(); // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. if (HiExtType == ISD::NON_EXTLOAD) HiExtType = ISD::ZEXTLOAD; // Load the value in two parts SDValue Lo, Hi; if (TLI.isLittleEndian()) { Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), NewLoadedVT, LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(), Alignment, LD->getAAInfo()); Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, DAG.getConstant(IncrementSize, Ptr.getValueType())); Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo().getWithOffset(IncrementSize), NewLoadedVT, LD->isVolatile(), LD->isNonTemporal(),LD->isInvariant(), MinAlign(Alignment, IncrementSize), LD->getAAInfo()); } else { Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), NewLoadedVT, LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(), Alignment, LD->getAAInfo()); Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, DAG.getConstant(IncrementSize, Ptr.getValueType())); Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo().getWithOffset(IncrementSize), NewLoadedVT, LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(), MinAlign(Alignment, IncrementSize), LD->getAAInfo()); } // aggregate the two parts SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy(Hi.getValueType())); SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), Hi.getValue(1)); ValResult = Result; ChainResult = TF; } /// Some target cannot handle a variable insertion index for the /// INSERT_VECTOR_ELT instruction. In this case, it /// is necessary to spill the vector being inserted into to memory, perform /// the insert there, and then read the result back. SDValue SelectionDAGLegalize:: PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, SDLoc dl) { SDValue Tmp1 = Vec; SDValue Tmp2 = Val; SDValue Tmp3 = Idx; // If the target doesn't support this, we have to spill the input vector // to a temporary stack slot, update the element, then reload it. This is // badness. We could also load the value into a vector register (either // with a "move to register" or "extload into register" instruction, then // permute it into place, if the idx is a constant and if the idx is // supported by the target. EVT VT = Tmp1.getValueType(); EVT EltVT = VT.getVectorElementType(); EVT IdxVT = Tmp3.getValueType(); EVT PtrVT = TLI.getPointerTy(); SDValue StackPtr = DAG.CreateStackTemporary(VT); int SPFI = cast(StackPtr.getNode())->getIndex(); // Store the vector. SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr, MachinePointerInfo::getFixedStack(SPFI), false, false, 0); // Truncate or zero extend offset to target pointer type. unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND; Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3); // Add the offset to the index. unsigned EltSize = EltVT.getSizeInBits()/8; Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT)); SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr); // Store the scalar value. Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT, false, false, 0); // Load the updated vector. return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack(SPFI), false, false, false, 0); } SDValue SelectionDAGLegalize:: ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, SDLoc dl) { if (ConstantSDNode *InsertPos = dyn_cast(Idx)) { // SCALAR_TO_VECTOR requires that the type of the value being inserted // match the element type of the vector being created, except for // integers in which case the inserted value can be over width. EVT EltVT = Vec.getValueType().getVectorElementType(); if (Val.getValueType() == EltVT || (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, Vec.getValueType(), Val); unsigned NumElts = Vec.getValueType().getVectorNumElements(); // We generate a shuffle of InVec and ScVec, so the shuffle mask // should be 0,1,2,3,4,5... with the appropriate element replaced with // elt 0 of the RHS. SmallVector ShufOps; for (unsigned i = 0; i != NumElts; ++i) ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, &ShufOps[0]); } } return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); } SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' // FIXME: We shouldn't do this for TargetConstantFP's. // FIXME: move this to the DAG Combiner! Note that we can't regress due // to phase ordering between legalized code and the dag combiner. This // probably means that we need to integrate dag combiner and legalizer // together. // We generally can't do this one for long doubles. SDValue Chain = ST->getChain(); SDValue Ptr = ST->getBasePtr(); unsigned Alignment = ST->getAlignment(); bool isVolatile = ST->isVolatile(); bool isNonTemporal = ST->isNonTemporal(); AAMDNodes AAInfo = ST->getAAInfo(); SDLoc dl(ST); if (ConstantFPSDNode *CFP = dyn_cast(ST->getValue())) { if (CFP->getValueType(0) == MVT::f32 && TLI.isTypeLegal(MVT::i32)) { SDValue Con = DAG.getConstant(CFP->getValueAPF(). bitcastToAPInt().zextOrTrunc(32), MVT::i32); return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), isVolatile, isNonTemporal, Alignment, AAInfo); } if (CFP->getValueType(0) == MVT::f64) { // If this target supports 64-bit registers, do a single 64-bit store. if (TLI.isTypeLegal(MVT::i64)) { SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). zextOrTrunc(64), MVT::i64); return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), isVolatile, isNonTemporal, Alignment, AAInfo); } if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { // Otherwise, if the target supports 32-bit registers, use 2 32-bit // stores. If the target supports neither 32- nor 64-bits, this // xform is certainly not worth it. const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt(); SDValue Lo = DAG.getConstant(IntVal.trunc(32), MVT::i32); SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32); if (TLI.isBigEndian()) std::swap(Lo, Hi); Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), isVolatile, isNonTemporal, Alignment, AAInfo); Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, DAG.getConstant(4, Ptr.getValueType())); Hi = DAG.getStore(Chain, dl, Hi, Ptr, ST->getPointerInfo().getWithOffset(4), isVolatile, isNonTemporal, MinAlign(Alignment, 4U), AAInfo); return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); } } } return SDValue(nullptr, 0); } void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { StoreSDNode *ST = cast(Node); SDValue Chain = ST->getChain(); SDValue Ptr = ST->getBasePtr(); SDLoc dl(Node); unsigned Alignment = ST->getAlignment(); bool isVolatile = ST->isVolatile(); bool isNonTemporal = ST->isNonTemporal(); AAMDNodes AAInfo = ST->getAAInfo(); if (!ST->isTruncatingStore()) { if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { ReplaceNode(ST, OptStore); return; } { SDValue Value = ST->getValue(); MVT VT = Value.getSimpleValueType(); switch (TLI.getOperationAction(ISD::STORE, VT)) { default: llvm_unreachable("This action is not supported yet!"); case TargetLowering::Legal: { // If this is an unaligned store and the target doesn't support it, // expand it. unsigned AS = ST->getAddressSpace(); unsigned Align = ST->getAlignment(); if (!TLI.allowsMisalignedMemoryAccesses(ST->getMemoryVT(), AS, Align)) { Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext()); unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty); if (Align < ABIAlignment) ExpandUnalignedStore(cast(Node), DAG, TLI, this); } break; } case TargetLowering::Custom: { SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); if (Res && Res != SDValue(Node, 0)) ReplaceNode(SDValue(Node, 0), Res); return; } case TargetLowering::Promote: { MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); assert(NVT.getSizeInBits() == VT.getSizeInBits() && "Can only promote stores to same size type"); Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); SDValue Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), isVolatile, isNonTemporal, Alignment, AAInfo); ReplaceNode(SDValue(Node, 0), Result); break; } } return; } } else { SDValue Value = ST->getValue(); EVT StVT = ST->getMemoryVT(); unsigned StWidth = StVT.getSizeInBits(); if (StWidth != StVT.getStoreSizeInBits()) { // Promote to a byte-sized store with upper bits zero if not // storing an integral number of bytes. For example, promote // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) EVT NVT = EVT::getIntegerVT(*DAG.getContext(), StVT.getStoreSizeInBits()); Value = DAG.getZeroExtendInReg(Value, dl, StVT); SDValue Result = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT, isVolatile, isNonTemporal, Alignment, AAInfo); ReplaceNode(SDValue(Node, 0), Result); } else if (StWidth & (StWidth - 1)) { // If not storing a power-of-2 number of bits, expand as two stores. assert(!StVT.isVector() && "Unsupported truncstore!"); unsigned RoundWidth = 1 << Log2_32(StWidth); assert(RoundWidth < StWidth); unsigned ExtraWidth = StWidth - RoundWidth; assert(ExtraWidth < RoundWidth); assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && "Store size not an integral number of bytes!"); EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); SDValue Lo, Hi; unsigned IncrementSize; if (TLI.isLittleEndian()) { // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) // Store the bottom RoundWidth bits. Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), RoundVT, isVolatile, isNonTemporal, Alignment, AAInfo); // Store the remaining ExtraWidth bits. IncrementSize = RoundWidth / 8; Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, DAG.getConstant(IncrementSize, Ptr.getValueType())); Hi = DAG.getNode(ISD::SRL, dl, Value.getValueType(), Value, DAG.getConstant(RoundWidth, TLI.getShiftAmountTy(Value.getValueType()))); Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, isVolatile, isNonTemporal, MinAlign(Alignment, IncrementSize), AAInfo); } else { // Big endian - avoid unaligned stores. // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X // Store the top RoundWidth bits. Hi = DAG.getNode(ISD::SRL, dl, Value.getValueType(), Value, DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy(Value.getValueType()))); Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), RoundVT, isVolatile, isNonTemporal, Alignment, AAInfo); // Store the remaining ExtraWidth bits. IncrementSize = RoundWidth / 8; Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, DAG.getConstant(IncrementSize, Ptr.getValueType())); Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, isVolatile, isNonTemporal, MinAlign(Alignment, IncrementSize), AAInfo); } // The order of the stores doesn't matter. SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); ReplaceNode(SDValue(Node, 0), Result); } else { switch (TLI.getTruncStoreAction(ST->getValue().getSimpleValueType(), StVT.getSimpleVT())) { default: llvm_unreachable("This action is not supported yet!"); case TargetLowering::Legal: { unsigned AS = ST->getAddressSpace(); unsigned Align = ST->getAlignment(); // If this is an unaligned store and the target doesn't support it, // expand it. if (!TLI.allowsMisalignedMemoryAccesses(ST->getMemoryVT(), AS, Align)) { Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext()); unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty); if (Align < ABIAlignment) ExpandUnalignedStore(cast(Node), DAG, TLI, this); } break; } case TargetLowering::Custom: { SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); if (Res && Res != SDValue(Node, 0)) ReplaceNode(SDValue(Node, 0), Res); return; } case TargetLowering::Expand: assert(!StVT.isVector() && "Vector Stores are handled in LegalizeVectorOps"); // TRUNCSTORE:i16 i32 -> STORE i16 assert(TLI.isTypeLegal(StVT) && "Do not know how to expand this store!"); Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); SDValue Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), isVolatile, isNonTemporal, Alignment, AAInfo); ReplaceNode(SDValue(Node, 0), Result); break; } } } } void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { LoadSDNode *LD = cast(Node); SDValue Chain = LD->getChain(); // The chain. SDValue Ptr = LD->getBasePtr(); // The base pointer. SDValue Value; // The value returned by the load op. SDLoc dl(Node); ISD::LoadExtType ExtType = LD->getExtensionType(); if (ExtType == ISD::NON_EXTLOAD) { MVT VT = Node->getSimpleValueType(0); SDValue RVal = SDValue(Node, 0); SDValue RChain = SDValue(Node, 1); switch (TLI.getOperationAction(Node->getOpcode(), VT)) { default: llvm_unreachable("This action is not supported yet!"); case TargetLowering::Legal: { unsigned AS = LD->getAddressSpace(); unsigned Align = LD->getAlignment(); // If this is an unaligned load and the target doesn't support it, // expand it. if (!TLI.allowsMisalignedMemoryAccesses(LD->getMemoryVT(), AS, Align)) { Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext()); unsigned ABIAlignment = TLI.getDataLayout()->getABITypeAlignment(Ty); if (Align < ABIAlignment){ ExpandUnalignedLoad(cast(Node), DAG, TLI, RVal, RChain); } } break; } case TargetLowering::Custom: { SDValue Res = TLI.LowerOperation(RVal, DAG); if (Res.getNode()) { RVal = Res; RChain = Res.getValue(1); } break; } case TargetLowering::Promote: { MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); assert(NVT.getSizeInBits() == VT.getSizeInBits() && "Can only promote loads to same size type"); SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand()); RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); RChain = Res.getValue(1); break; } } if (RChain.getNode() != Node) { assert(RVal.getNode() != Node && "Load must be completely replaced"); DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); if (UpdatedNodes) { UpdatedNodes->insert(RVal.getNode()); UpdatedNodes->insert(RChain.getNode()); } ReplacedNode(Node); } return; } EVT SrcVT = LD->getMemoryVT(); unsigned SrcWidth = SrcVT.getSizeInBits(); unsigned Alignment = LD->getAlignment(); bool isVolatile = LD->isVolatile(); bool isNonTemporal = LD->isNonTemporal(); bool isInvariant = LD->isInvariant(); AAMDNodes AAInfo = LD->getAAInfo(); if (SrcWidth != SrcVT.getStoreSizeInBits() && // Some targets pretend to have an i1 loading operation, and actually // load an i8. This trick is correct for ZEXTLOAD because the top 7 // bits are guaranteed to be zero; it helps the optimizers understand // that these bits are zero. It is also useful for EXTLOAD, since it // tells the optimizers that those bits are undefined. It would be // nice to have an effective generic way of getting these benefits... // Until such a way is found, don't insist on promoting i1 here. (SrcVT != MVT::i1 || TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) == TargetLowering::Promote)) { // Promote to a byte-sized load if not loading an integral number of // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. unsigned NewWidth = SrcVT.getStoreSizeInBits(); EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); SDValue Ch; // The extra bits are guaranteed to be zero, since we stored them that // way. A zext load from NVT thus automatically gives zext from SrcVT. ISD::LoadExtType NewExtType = ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; SDValue Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), Chain, Ptr, LD->getPointerInfo(), NVT, isVolatile, isNonTemporal, isInvariant, Alignment, AAInfo); Ch = Result.getValue(1); // The chain. if (ExtType == ISD::SEXTLOAD) // Having the top bits zero doesn't help when sign extending. Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Result.getValueType(), Result, DAG.getValueType(SrcVT)); else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) // All the top bits are guaranteed to be zero - inform the optimizers. Result = DAG.getNode(ISD::AssertZext, dl, Result.getValueType(), Result, DAG.getValueType(SrcVT)); Value = Result; Chain = Ch; } else if (SrcWidth & (SrcWidth - 1)) { // If not loading a power-of-2 number of bits, expand as two loads. assert(!SrcVT.isVector() && "Unsupported extload!"); unsigned RoundWidth = 1 << Log2_32(SrcWidth); assert(RoundWidth < SrcWidth); unsigned ExtraWidth = SrcWidth - RoundWidth; assert(ExtraWidth < RoundWidth); assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && "Load size not an integral number of bytes!"); EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); SDValue Lo, Hi, Ch; unsigned IncrementSize; if (TLI.isLittleEndian()) { // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) // Load the bottom RoundWidth bits. Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, LD->getPointerInfo(), RoundVT, isVolatile, isNonTemporal, isInvariant, Alignment, AAInfo); // Load the remaining ExtraWidth bits. IncrementSize = RoundWidth / 8; Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, DAG.getConstant(IncrementSize, Ptr.getValueType())); Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, LD->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, isVolatile, isNonTemporal, isInvariant, MinAlign(Alignment, IncrementSize), AAInfo); // Build a factor node to remember that this load is independent of // the other one. Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), Hi.getValue(1)); // Move the top bits to the right place. Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi, DAG.getConstant(RoundWidth, TLI.getShiftAmountTy(Hi.getValueType()))); // Join the hi and lo parts. Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); } else { // Big endian - avoid unaligned loads. // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 // Load the top RoundWidth bits. Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, LD->getPointerInfo(), RoundVT, isVolatile, isNonTemporal, isInvariant, Alignment, AAInfo); // Load the remaining ExtraWidth bits. IncrementSize = RoundWidth / 8; Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, DAG.getConstant(IncrementSize, Ptr.getValueType())); Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, LD->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, isVolatile, isNonTemporal, isInvariant, MinAlign(Alignment, IncrementSize), AAInfo); // Build a factor node to remember that this load is independent of // the other one. Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), Hi.getValue(1)); // Move the top bits to the right place. Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi, DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy(Hi.getValueType()))); // Join the hi and lo parts. Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); } Chain = Ch; } else { bool isCustom = false; switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0), SrcVT.getSimpleVT())) { default: llvm_unreachable("This action is not supported yet!"); case TargetLowering::Custom: isCustom = true; // FALLTHROUGH case TargetLowering::Legal: { Value = SDValue(Node, 0); Chain = SDValue(Node, 1); if (isCustom) { SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); if (Res.getNode()) { Value = Res; Chain = Res.getValue(1); } } else { // If this is an unaligned load and the target doesn't support // it, expand it. EVT MemVT = LD->getMemoryVT(); unsigned AS = LD->getAddressSpace(); unsigned Align = LD->getAlignment(); if (!TLI.allowsMisalignedMemoryAccesses(MemVT, AS, Align)) { Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext()); unsigned ABIAlignment = TLI.getDataLayout()->getABITypeAlignment(Ty); if (Align < ABIAlignment){ ExpandUnalignedLoad(cast(Node), DAG, TLI, Value, Chain); } } } break; } case TargetLowering::Expand: if (!TLI.isLoadExtLegal(ISD::EXTLOAD, Node->getValueType(0), SrcVT)) { // If the source type is not legal, see if there is a legal extload to // an intermediate type that we can then extend further. EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT()); if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT? TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) { // If we are loading a legal type, this is a non-extload followed by a // full extend. ISD::LoadExtType MidExtType = (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType; SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr, SrcVT, LD->getMemOperand()); unsigned ExtendOp = ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType); Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); Chain = Load.getValue(1); break; } } assert(!SrcVT.isVector() && "Vector Loads are handled in LegalizeVectorOps"); // FIXME: This does not work for vectors on most targets. Sign- // and zero-extend operations are currently folded into extending // loads, whether they are legal or not, and then we end up here // without any support for legalizing them. assert(ExtType != ISD::EXTLOAD && "EXTLOAD should always be supported!"); // Turn the unsupported load into an EXTLOAD followed by an // explicit zero/sign extend inreg. SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0), Chain, Ptr, SrcVT, LD->getMemOperand()); SDValue ValRes; if (ExtType == ISD::SEXTLOAD) ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Result.getValueType(), Result, DAG.getValueType(SrcVT)); else ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType()); Value = ValRes; Chain = Result.getValue(1); break; } } // Since loads produce two values, make sure to remember that we legalized // both of them. if (Chain.getNode() != Node) { assert(Value.getNode() != Node && "Load must be completely replaced"); DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); if (UpdatedNodes) { UpdatedNodes->insert(Value.getNode()); UpdatedNodes->insert(Chain.getNode()); } ReplacedNode(Node); } } /// Return a legal replacement for the given operation, with all legal operands. void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG)); if (Node->getOpcode() == ISD::TargetConstant) // Allow illegal target nodes. return; for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == TargetLowering::TypeLegal && "Unexpected illegal type!"); for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) assert((TLI.getTypeAction(*DAG.getContext(), Node->getOperand(i).getValueType()) == TargetLowering::TypeLegal || Node->getOperand(i).getOpcode() == ISD::TargetConstant) && "Unexpected illegal type!"); // Figure out the correct action; the way to query this varies by opcode TargetLowering::LegalizeAction Action = TargetLowering::Legal; bool SimpleFinishLegalizing = true; switch (Node->getOpcode()) { case ISD::INTRINSIC_W_CHAIN: case ISD::INTRINSIC_WO_CHAIN: case ISD::INTRINSIC_VOID: case ISD::STACKSAVE: Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); break; case ISD::VAARG: Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); if (Action != TargetLowering::Promote) Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); break; case ISD::FP_TO_FP16: case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: case ISD::EXTRACT_VECTOR_ELT: Action = TLI.getOperationAction(Node->getOpcode(), Node->getOperand(0).getValueType()); break; case ISD::FP_ROUND_INREG: case ISD::SIGN_EXTEND_INREG: { EVT InnerType = cast(Node->getOperand(1))->getVT(); Action = TLI.getOperationAction(Node->getOpcode(), InnerType); break; } case ISD::ATOMIC_STORE: { Action = TLI.getOperationAction(Node->getOpcode(), Node->getOperand(2).getValueType()); break; } case ISD::SELECT_CC: case ISD::SETCC: case ISD::BR_CC: { unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : Node->getOpcode() == ISD::SETCC ? 2 : 1; unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0; MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); ISD::CondCode CCCode = cast(Node->getOperand(CCOperand))->get(); Action = TLI.getCondCodeAction(CCCode, OpVT); if (Action == TargetLowering::Legal) { if (Node->getOpcode() == ISD::SELECT_CC) Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); else Action = TLI.getOperationAction(Node->getOpcode(), OpVT); } break; } case ISD::LOAD: case ISD::STORE: // FIXME: Model these properly. LOAD and STORE are complicated, and // STORE expects the unlegalized operand in some cases. SimpleFinishLegalizing = false; break; case ISD::CALLSEQ_START: case ISD::CALLSEQ_END: // FIXME: This shouldn't be necessary. These nodes have special properties // dealing with the recursive nature of legalization. Removing this // special case should be done as part of making LegalizeDAG non-recursive. SimpleFinishLegalizing = false; break; case ISD::EXTRACT_ELEMENT: case ISD::FLT_ROUNDS_: case ISD::SADDO: case ISD::SSUBO: case ISD::UADDO: case ISD::USUBO: case ISD::SMULO: case ISD::UMULO: case ISD::FPOWI: case ISD::MERGE_VALUES: case ISD::EH_RETURN: case ISD::FRAME_TO_ARGS_OFFSET: case ISD::EH_SJLJ_SETJMP: case ISD::EH_SJLJ_LONGJMP: // These operations lie about being legal: when they claim to be legal, // they should actually be expanded. Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); if (Action == TargetLowering::Legal) Action = TargetLowering::Expand; break; case ISD::INIT_TRAMPOLINE: case ISD::ADJUST_TRAMPOLINE: case ISD::FRAMEADDR: case ISD::RETURNADDR: // These operations lie about being legal: when they claim to be legal, // they should actually be custom-lowered. Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); if (Action == TargetLowering::Legal) Action = TargetLowering::Custom; break; case ISD::READ_REGISTER: case ISD::WRITE_REGISTER: // Named register is legal in the DAG, but blocked by register name // selection if not implemented by target (to chose the correct register) // They'll be converted to Copy(To/From)Reg. Action = TargetLowering::Legal; break; case ISD::DEBUGTRAP: Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); if (Action == TargetLowering::Expand) { // replace ISD::DEBUGTRAP with ISD::TRAP SDValue NewVal; NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), Node->getOperand(0)); ReplaceNode(Node, NewVal.getNode()); LegalizeOp(NewVal.getNode()); return; } break; default: if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { Action = TargetLowering::Legal; } else { Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); } break; } if (SimpleFinishLegalizing) { SDNode *NewNode = Node; switch (Node->getOpcode()) { default: break; case ISD::SHL: case ISD::SRL: case ISD::SRA: case ISD::ROTL: case ISD::ROTR: // Legalizing shifts/rotates requires adjusting the shift amount // to the appropriate width. if (!Node->getOperand(1).getValueType().isVector()) { SDValue SAO = DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(), Node->getOperand(1)); HandleSDNode Handle(SAO); LegalizeOp(SAO.getNode()); NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0), Handle.getValue()); } break; case ISD::SRL_PARTS: case ISD::SRA_PARTS: case ISD::SHL_PARTS: // Legalizing shifts/rotates requires adjusting the shift amount // to the appropriate width. if (!Node->getOperand(2).getValueType().isVector()) { SDValue SAO = DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(), Node->getOperand(2)); HandleSDNode Handle(SAO); LegalizeOp(SAO.getNode()); NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0), Node->getOperand(1), Handle.getValue()); } break; } if (NewNode != Node) { ReplaceNode(Node, NewNode); Node = NewNode; } switch (Action) { case TargetLowering::Legal: return; case TargetLowering::Custom: { // FIXME: The handling for custom lowering with multiple results is // a complete mess. SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); if (Res.getNode()) { if (!(Res.getNode() != Node || Res.getResNo() != 0)) return; if (Node->getNumValues() == 1) { // We can just directly replace this node with the lowered value. ReplaceNode(SDValue(Node, 0), Res); return; } SmallVector ResultVals; for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) ResultVals.push_back(Res.getValue(i)); ReplaceNode(Node, ResultVals.data()); return; } } // FALL THROUGH case TargetLowering::Expand: ExpandNode(Node); return; case TargetLowering::Promote: PromoteNode(Node); return; } } switch (Node->getOpcode()) { default: #ifndef NDEBUG dbgs() << "NODE: "; Node->dump( &DAG); dbgs() << "\n"; #endif llvm_unreachable("Do not know how to legalize this operator!"); case ISD::CALLSEQ_START: case ISD::CALLSEQ_END: break; case ISD::LOAD: { return LegalizeLoadOps(Node); } case ISD::STORE: { return LegalizeStoreOps(Node); } } } SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { SDValue Vec = Op.getOperand(0); SDValue Idx = Op.getOperand(1); SDLoc dl(Op); // Before we generate a new store to a temporary stack slot, see if there is // already one that we can use. There often is because when we scalarize // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in // the vector. If all are expanded here, we don't want one store per vector // element. SDValue StackPtr, Ch; for (SDNode::use_iterator UI = Vec.getNode()->use_begin(), UE = Vec.getNode()->use_end(); UI != UE; ++UI) { SDNode *User = *UI; if (StoreSDNode *ST = dyn_cast(User)) { if (ST->isIndexed() || ST->isTruncatingStore() || ST->getValue() != Vec) continue; // Make sure that nothing else could have stored into the destination of // this store. if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode())) continue; StackPtr = ST->getBasePtr(); Ch = SDValue(ST, 0); break; } } if (!Ch.getNode()) { // Store the value to a temporary stack slot, then LOAD the returned part. StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, MachinePointerInfo(), false, false, 0); } // Add the offset to the index. unsigned EltSize = Vec.getValueType().getVectorElementType().getSizeInBits()/8; Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx, DAG.getConstant(EltSize, Idx.getValueType())); Idx = DAG.getZExtOrTrunc(Idx, dl, TLI.getPointerTy()); StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr); SDValue NewLoad; if (Op.getValueType().isVector()) NewLoad = DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo(), false, false, false, 0); else NewLoad = DAG.getExtLoad( ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, MachinePointerInfo(), Vec.getValueType().getVectorElementType(), false, false, false, 0); // Replace the chain going out of the store, by the one out of the load. DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1)); // We introduced a cycle though, so update the loads operands, making sure // to use the original store's chain as an incoming chain. SmallVector NewLoadOperands(NewLoad->op_begin(), NewLoad->op_end()); NewLoadOperands[0] = Ch; NewLoad = SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0); return NewLoad; } SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); SDValue Vec = Op.getOperand(0); SDValue Part = Op.getOperand(1); SDValue Idx = Op.getOperand(2); SDLoc dl(Op); // Store the value to a temporary stack slot, then LOAD the returned part. SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); int FI = cast(StackPtr.getNode())->getIndex(); MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI); // First store the whole vector. SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo, false, false, 0); // Then store the inserted part. // Add the offset to the index. unsigned EltSize = Vec.getValueType().getVectorElementType().getSizeInBits()/8; Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx, DAG.getConstant(EltSize, Idx.getValueType())); Idx = DAG.getZExtOrTrunc(Idx, dl, TLI.getPointerTy()); SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr); // Store the subvector. Ch = DAG.getStore(Ch, dl, Part, SubStackPtr, MachinePointerInfo(), false, false, 0); // Finally, load the updated vector. return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo, false, false, false, 0); } SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { // We can't handle this case efficiently. Allocate a sufficiently // aligned object on the stack, store each element into it, then load // the result as a vector. // Create the stack frame object. EVT VT = Node->getValueType(0); EVT EltVT = VT.getVectorElementType(); SDLoc dl(Node); SDValue FIPtr = DAG.CreateStackTemporary(VT); int FI = cast(FIPtr.getNode())->getIndex(); MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI); // Emit a store of each element to the stack slot. SmallVector Stores; unsigned TypeByteSize = EltVT.getSizeInBits() / 8; // Store (in the right endianness) the elements to memory. for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { // Ignore undef elements. if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue; unsigned Offset = TypeByteSize*i; SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType()); Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx); // If the destination vector element type is narrower than the source // element type, only store the bits necessary. if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) { Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(i), Idx, PtrInfo.getWithOffset(Offset), EltVT, false, false, 0)); } else Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), Idx, PtrInfo.getWithOffset(Offset), false, false, 0)); } SDValue StoreChain; if (!Stores.empty()) // Not all undef elements? StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); else StoreChain = DAG.getEntryNode(); // Result is a load from the stack slot. return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo, false, false, false, 0); } SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) { SDLoc dl(Node); SDValue Tmp1 = Node->getOperand(0); SDValue Tmp2 = Node->getOperand(1); // Get the sign bit of the RHS. First obtain a value that has the same // sign as the sign bit, i.e. negative if and only if the sign bit is 1. SDValue SignBit; EVT FloatVT = Tmp2.getValueType(); EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits()); if (TLI.isTypeLegal(IVT)) { // Convert to an integer with the same sign bit. SignBit = DAG.getNode(ISD::BITCAST, dl, IVT, Tmp2); } else { // Store the float to memory, then load the sign part out as an integer. MVT LoadTy = TLI.getPointerTy(); // First create a temporary that is aligned for both the load and store. SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); // Then store the float to it. SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, MachinePointerInfo(), false, false, 0); if (TLI.isBigEndian()) { assert(FloatVT.isByteSized() && "Unsupported floating point type!"); // Load out a legal integer with the same sign bit as the float. SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(), false, false, false, 0); } else { // Little endian SDValue LoadPtr = StackPtr; // The float may be wider than the integer we are going to load. Advance // the pointer so that the loaded integer will contain the sign bit. unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits(); unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8; LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(), LoadPtr, DAG.getConstant(ByteOffset, LoadPtr.getValueType())); // Load a legal integer containing the sign bit. SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(), false, false, false, 0); // Move the sign bit to the top bit of the loaded integer. unsigned BitShift = LoadTy.getSizeInBits() - (FloatVT.getSizeInBits() - 8 * ByteOffset); assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?"); if (BitShift) SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit, DAG.getConstant(BitShift, TLI.getShiftAmountTy(SignBit.getValueType()))); } } // Now get the sign bit proper, by seeing whether the value is negative. SignBit = DAG.getSetCC(dl, getSetCCResultType(SignBit.getValueType()), SignBit, DAG.getConstant(0, SignBit.getValueType()), ISD::SETLT); // Get the absolute value of the result. SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1); // Select between the nabs and abs value based on the sign bit of // the input. return DAG.getSelect(dl, AbsVal.getValueType(), SignBit, DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal), AbsVal); } void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, SmallVectorImpl &Results) { unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" " not tell us which reg is the stack pointer!"); SDLoc dl(Node); EVT VT = Node->getValueType(0); SDValue Tmp1 = SDValue(Node, 0); SDValue Tmp2 = SDValue(Node, 1); SDValue Tmp3 = Node->getOperand(2); SDValue Chain = Tmp1.getOperand(0); // Chain the dynamic stack allocation so that it doesn't modify the stack // pointer when other instructions are using the stack. Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true), SDLoc(Node)); SDValue Size = Tmp2.getOperand(1); SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); Chain = SP.getValue(1); unsigned Align = cast(Tmp3)->getZExtValue(); unsigned StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlignment(); Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value if (Align > StackAlign) Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, DAG.getConstant(-(uint64_t)Align, VT)); Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true), DAG.getIntPtrConstant(0, true), SDValue(), SDLoc(Node)); Results.push_back(Tmp1); Results.push_back(Tmp2); } /// Legalize a SETCC with given LHS and RHS and condition code CC on the current /// target. /// /// If the SETCC has been legalized using AND / OR, then the legalized node /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert /// will be set to false. /// /// If the SETCC has been legalized by using getSetCCSwappedOperands(), /// then the values of LHS and RHS will be swapped, CC will be set to the /// new condition, and NeedInvert will be set to false. /// /// If the SETCC has been legalized using the inverse condcode, then LHS and /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert /// will be set to true. The caller must invert the result of the SETCC with /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect /// of a true/false result. /// /// \returns true if the SetCC has been legalized, false if it hasn't. bool SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, bool &NeedInvert, SDLoc dl) { MVT OpVT = LHS.getSimpleValueType(); ISD::CondCode CCCode = cast(CC)->get(); NeedInvert = false; switch (TLI.getCondCodeAction(CCCode, OpVT)) { default: llvm_unreachable("Unknown condition code action!"); case TargetLowering::Legal: // Nothing to do. break; case TargetLowering::Expand: { ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); if (TLI.isCondCodeLegal(InvCC, OpVT)) { std::swap(LHS, RHS); CC = DAG.getCondCode(InvCC); return true; } ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; unsigned Opc = 0; switch (CCCode) { default: llvm_unreachable("Don't know how to expand this condition!"); case ISD::SETO: assert(TLI.getCondCodeAction(ISD::SETOEQ, OpVT) == TargetLowering::Legal && "If SETO is expanded, SETOEQ must be legal!"); CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break; case ISD::SETUO: assert(TLI.getCondCodeAction(ISD::SETUNE, OpVT) == TargetLowering::Legal && "If SETUO is expanded, SETUNE must be legal!"); CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR; break; case ISD::SETOEQ: case ISD::SETOGT: case ISD::SETOGE: case ISD::SETOLT: case ISD::SETOLE: case ISD::SETONE: case ISD::SETUEQ: case ISD::SETUNE: case ISD::SETUGT: case ISD::SETUGE: case ISD::SETULT: case ISD::SETULE: // If we are floating point, assign and break, otherwise fall through. if (!OpVT.isInteger()) { // We can use the 4th bit to tell if we are the unordered // or ordered version of the opcode. CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); break; } // Fallthrough if we are unsigned integer. case ISD::SETLE: case ISD::SETGT: case ISD::SETGE: case ISD::SETLT: // We only support using the inverted operation, which is computed above // and not a different manner of supporting expanding these cases. llvm_unreachable("Don't know how to expand this condition!"); case ISD::SETNE: case ISD::SETEQ: // Try inverting the result of the inverse condition. InvCC = CCCode == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ; if (TLI.isCondCodeLegal(InvCC, OpVT)) { CC = DAG.getCondCode(InvCC); NeedInvert = true; return true; } // If inverting the condition didn't work then we have no means to expand // the condition. llvm_unreachable("Don't know how to expand this condition!"); } SDValue SetCC1, SetCC2; if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { // If we aren't the ordered or unorder operation, // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1); SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2); } else { // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1); SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2); } LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); RHS = SDValue(); CC = SDValue(); return true; } } return false; } /// Emit a store/load combination to the stack. This stores /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does /// a load from the stack slot to DestVT, extending it if needed. /// The resultant code need not be legal. SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, SDLoc dl) { // Create the stack frame object. unsigned SrcAlign = TLI.getDataLayout()->getPrefTypeAlignment(SrcOp.getValueType(). getTypeForEVT(*DAG.getContext())); SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); FrameIndexSDNode *StackPtrFI = cast(FIPtr); int SPFI = StackPtrFI->getIndex(); MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(SPFI); unsigned SrcSize = SrcOp.getValueType().getSizeInBits(); unsigned SlotSize = SlotVT.getSizeInBits(); unsigned DestSize = DestVT.getSizeInBits(); Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); unsigned DestAlign = TLI.getDataLayout()->getPrefTypeAlignment(DestType); // Emit a store to the stack slot. Use a truncstore if the input value is // later than DestVT. SDValue Store; if (SrcSize > SlotSize) Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, PtrInfo, SlotVT, false, false, SrcAlign); else { assert(SrcSize == SlotSize && "Invalid store"); Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, PtrInfo, false, false, SrcAlign); } // Result is a load from the stack slot. if (SlotSize == DestSize) return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, false, false, false, DestAlign); assert(SlotSize < DestSize && "Unknown extension!"); return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT, false, false, false, DestAlign); } SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { SDLoc dl(Node); // Create a vector sized/aligned stack slot, store the value to element #0, // then load the whole vector back out. SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); FrameIndexSDNode *StackPtrFI = cast(StackPtr); int SPFI = StackPtrFI->getIndex(); SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, MachinePointerInfo::getFixedStack(SPFI), Node->getValueType(0).getVectorElementType(), false, false, 0); return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr, MachinePointerInfo::getFixedStack(SPFI), false, false, false, 0); } static bool ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, const TargetLowering &TLI, SDValue &Res) { unsigned NumElems = Node->getNumOperands(); SDLoc dl(Node); EVT VT = Node->getValueType(0); // Try to group the scalars into pairs, shuffle the pairs together, then // shuffle the pairs of pairs together, etc. until the vector has // been built. This will work only if all of the necessary shuffle masks // are legal. // We do this in two phases; first to check the legality of the shuffles, // and next, assuming that all shuffles are legal, to create the new nodes. for (int Phase = 0; Phase < 2; ++Phase) { SmallVector >, 16> IntermedVals, NewIntermedVals; for (unsigned i = 0; i < NumElems; ++i) { SDValue V = Node->getOperand(i); if (V.getOpcode() == ISD::UNDEF) continue; SDValue Vec; if (Phase) Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V); IntermedVals.push_back(std::make_pair(Vec, SmallVector(1, i))); } while (IntermedVals.size() > 2) { NewIntermedVals.clear(); for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) { // This vector and the next vector are shuffled together (simply to // append the one to the other). SmallVector ShuffleVec(NumElems, -1); SmallVector FinalIndices; FinalIndices.reserve(IntermedVals[i].second.size() + IntermedVals[i+1].second.size()); int k = 0; for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f; ++j, ++k) { ShuffleVec[k] = j; FinalIndices.push_back(IntermedVals[i].second[j]); } for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f; ++j, ++k) { ShuffleVec[k] = NumElems + j; FinalIndices.push_back(IntermedVals[i+1].second[j]); } SDValue Shuffle; if (Phase) Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first, IntermedVals[i+1].first, ShuffleVec.data()); else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) return false; NewIntermedVals.push_back( std::make_pair(Shuffle, std::move(FinalIndices))); } // If we had an odd number of defined values, then append the last // element to the array of new vectors. if ((IntermedVals.size() & 1) != 0) NewIntermedVals.push_back(IntermedVals.back()); IntermedVals.swap(NewIntermedVals); } assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 && "Invalid number of intermediate vectors"); SDValue Vec1 = IntermedVals[0].first; SDValue Vec2; if (IntermedVals.size() > 1) Vec2 = IntermedVals[1].first; else if (Phase) Vec2 = DAG.getUNDEF(VT); SmallVector ShuffleVec(NumElems, -1); for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i) ShuffleVec[IntermedVals[0].second[i]] = i; for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i) ShuffleVec[IntermedVals[1].second[i]] = NumElems + i; if (Phase) Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data()); else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) return false; } return true; } /// Expand a BUILD_VECTOR node on targets that don't /// support the operation, but do support the resultant vector type. SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { unsigned NumElems = Node->getNumOperands(); SDValue Value1, Value2; SDLoc dl(Node); EVT VT = Node->getValueType(0); EVT OpVT = Node->getOperand(0).getValueType(); EVT EltVT = VT.getVectorElementType(); // If the only non-undef value is the low element, turn this into a // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. bool isOnlyLowElement = true; bool MoreThanTwoValues = false; bool isConstant = true; for (unsigned i = 0; i < NumElems; ++i) { SDValue V = Node->getOperand(i); if (V.getOpcode() == ISD::UNDEF) continue; if (i > 0) isOnlyLowElement = false; if (!isa(V) && !isa(V)) isConstant = false; if (!Value1.getNode()) { Value1 = V; } else if (!Value2.getNode()) { if (V != Value1) Value2 = V; } else if (V != Value1 && V != Value2) { MoreThanTwoValues = true; } } if (!Value1.getNode()) return DAG.getUNDEF(VT); if (isOnlyLowElement) return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); // If all elements are constants, create a load from the constant pool. if (isConstant) { SmallVector CV; for (unsigned i = 0, e = NumElems; i != e; ++i) { if (ConstantFPSDNode *V = dyn_cast(Node->getOperand(i))) { CV.push_back(const_cast(V->getConstantFPValue())); } else if (ConstantSDNode *V = dyn_cast(Node->getOperand(i))) { if (OpVT==EltVT) CV.push_back(const_cast(V->getConstantIntValue())); else { // If OpVT and EltVT don't match, EltVT is not legal and the // element values have been promoted/truncated earlier. Undo this; // we don't want a v16i8 to become a v16i32 for example. const ConstantInt *CI = V->getConstantIntValue(); CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), CI->getZExtValue())); } } else { assert(Node->getOperand(i).getOpcode() == ISD::UNDEF); Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); CV.push_back(UndefValue::get(OpNTy)); } } Constant *CP = ConstantVector::get(CV); SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy()); unsigned Alignment = cast(CPIdx)->getAlignment(); return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, MachinePointerInfo::getConstantPool(), false, false, false, Alignment); } SmallSet DefinedValues; for (unsigned i = 0; i < NumElems; ++i) { if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue; DefinedValues.insert(Node->getOperand(i)); } if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) { if (!MoreThanTwoValues) { SmallVector ShuffleVec(NumElems, -1); for (unsigned i = 0; i < NumElems; ++i) { SDValue V = Node->getOperand(i); if (V.getOpcode() == ISD::UNDEF) continue; ShuffleVec[i] = V == Value1 ? 0 : NumElems; } if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { // Get the splatted value into the low element of a vector register. SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); SDValue Vec2; if (Value2.getNode()) Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); else Vec2 = DAG.getUNDEF(VT); // Return shuffle(LowValVec, undef, <0,0,0,0>) return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data()); } } else { SDValue Res; if (ExpandBVWithShuffles(Node, DAG, TLI, Res)) return Res; } } // Otherwise, we can't handle this case efficiently. return ExpandVectorBuildThroughStack(Node); } // Expand a node into a call to a libcall. If the result value // does not fit into a register, return the lo part and set the hi part to the // by-reg argument. If it does fit into a single register, return the result // and leave the Hi part unset. SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned) { TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { EVT ArgVT = Node->getOperand(i).getValueType(); Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; Entry.isSExt = isSigned; Entry.isZExt = !isSigned; Args.push_back(Entry); } SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), TLI.getPointerTy()); Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); // By default, the input chain to this libcall is the entry node of the // function. If the libcall is going to be emitted as a tail call then // TLI.isUsedByReturnOnly will change it to the right chain if the return // node which is being folded has a non-entry input chain. SDValue InChain = DAG.getEntryNode(); // isTailCall may be true since the callee does not reference caller stack // frame. Check if it's in the right position. SDValue TCChain = InChain; bool isTailCall = TLI.isInTailCallPosition(DAG, Node, TCChain); if (isTailCall) InChain = TCChain; TargetLowering::CallLoweringInfo CLI(DAG); CLI.setDebugLoc(SDLoc(Node)).setChain(InChain) .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0) .setTailCall(isTailCall).setSExtResult(isSigned).setZExtResult(!isSigned); std::pair CallInfo = TLI.LowerCallTo(CLI); if (!CallInfo.second.getNode()) // It's a tailcall, return the chain (which is the DAG root). return DAG.getRoot(); return CallInfo.first; } /// Generate a libcall taking the given operands as arguments /// and returning a result of type RetVT. SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops, unsigned NumOps, bool isSigned, SDLoc dl) { TargetLowering::ArgListTy Args; Args.reserve(NumOps); TargetLowering::ArgListEntry Entry; for (unsigned i = 0; i != NumOps; ++i) { Entry.Node = Ops[i]; Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); Entry.isSExt = isSigned; Entry.isZExt = !isSigned; Args.push_back(Entry); } SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), TLI.getPointerTy()); Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); TargetLowering::CallLoweringInfo CLI(DAG); CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()) .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0) .setSExtResult(isSigned).setZExtResult(!isSigned); std::pair CallInfo = TLI.LowerCallTo(CLI); return CallInfo.first; } // Expand a node into a call to a libcall. Similar to // ExpandLibCall except that the first operand is the in-chain. std::pair SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned) { SDValue InChain = Node->getOperand(0); TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) { EVT ArgVT = Node->getOperand(i).getValueType(); Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; Entry.isSExt = isSigned; Entry.isZExt = !isSigned; Args.push_back(Entry); } SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), TLI.getPointerTy()); Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); TargetLowering::CallLoweringInfo CLI(DAG); CLI.setDebugLoc(SDLoc(Node)).setChain(InChain) .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0) .setSExtResult(isSigned).setZExtResult(!isSigned); std::pair CallInfo = TLI.LowerCallTo(CLI); return CallInfo; } SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128, RTLIB::Libcall Call_PPCF128) { RTLIB::Libcall LC; switch (Node->getSimpleValueType(0).SimpleTy) { default: llvm_unreachable("Unexpected request for libcall!"); case MVT::f32: LC = Call_F32; break; case MVT::f64: LC = Call_F64; break; case MVT::f80: LC = Call_F80; break; case MVT::f128: LC = Call_F128; break; case MVT::ppcf128: LC = Call_PPCF128; break; } return ExpandLibCall(LC, Node, false); } SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, RTLIB::Libcall Call_I8, RTLIB::Libcall Call_I16, RTLIB::Libcall Call_I32, RTLIB::Libcall Call_I64, RTLIB::Libcall Call_I128) { RTLIB::Libcall LC; switch (Node->getSimpleValueType(0).SimpleTy) { default: llvm_unreachable("Unexpected request for libcall!"); case MVT::i8: LC = Call_I8; break; case MVT::i16: LC = Call_I16; break; case MVT::i32: LC = Call_I32; break; case MVT::i64: LC = Call_I64; break; case MVT::i128: LC = Call_I128; break; } return ExpandLibCall(LC, Node, isSigned); } /// Return true if divmod libcall is available. static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, const TargetLowering &TLI) { RTLIB::Libcall LC; switch (Node->getSimpleValueType(0).SimpleTy) { default: llvm_unreachable("Unexpected request for libcall!"); case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; } return TLI.getLibcallName(LC) != nullptr; } /// Only issue divrem libcall if both quotient and remainder are needed. static bool useDivRem(SDNode *Node, bool isSigned, bool isDIV) { // The other use might have been replaced with a divrem already. unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; unsigned OtherOpcode = 0; if (isSigned) OtherOpcode = isDIV ? ISD::SREM : ISD::SDIV; else OtherOpcode = isDIV ? ISD::UREM : ISD::UDIV; SDValue Op0 = Node->getOperand(0); SDValue Op1 = Node->getOperand(1); for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), UE = Op0.getNode()->use_end(); UI != UE; ++UI) { SDNode *User = *UI; if (User == Node) continue; if ((User->getOpcode() == OtherOpcode || User->getOpcode() == DivRemOpc) && User->getOperand(0) == Op0 && User->getOperand(1) == Op1) return true; } return false; } /// Issue libcalls to __{u}divmod to compute div / rem pairs. void SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl &Results) { unsigned Opcode = Node->getOpcode(); bool isSigned = Opcode == ISD::SDIVREM; RTLIB::Libcall LC; switch (Node->getSimpleValueType(0).SimpleTy) { default: llvm_unreachable("Unexpected request for libcall!"); case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; } // The input chain to this libcall is the entry node of the function. // Legalizing the call will automatically add the previous call to the // dependence. SDValue InChain = DAG.getEntryNode(); EVT RetVT = Node->getValueType(0); Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { EVT ArgVT = Node->getOperand(i).getValueType(); Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; Entry.isSExt = isSigned; Entry.isZExt = !isSigned; Args.push_back(Entry); } // Also pass the return address of the remainder. SDValue FIPtr = DAG.CreateStackTemporary(RetVT); Entry.Node = FIPtr; Entry.Ty = RetTy->getPointerTo(); Entry.isSExt = isSigned; Entry.isZExt = !isSigned; Args.push_back(Entry); SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), TLI.getPointerTy()); SDLoc dl(Node); TargetLowering::CallLoweringInfo CLI(DAG); CLI.setDebugLoc(dl).setChain(InChain) .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0) .setSExtResult(isSigned).setZExtResult(!isSigned); std::pair CallInfo = TLI.LowerCallTo(CLI); // Remainder is loaded back from the stack frame. SDValue Rem = DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo(), false, false, false, 0); Results.push_back(CallInfo.first); Results.push_back(Rem); } /// Return true if sincos libcall is available. static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { RTLIB::Libcall LC; switch (Node->getSimpleValueType(0).SimpleTy) { default: llvm_unreachable("Unexpected request for libcall!"); case MVT::f32: LC = RTLIB::SINCOS_F32; break; case MVT::f64: LC = RTLIB::SINCOS_F64; break; case MVT::f80: LC = RTLIB::SINCOS_F80; break; case MVT::f128: LC = RTLIB::SINCOS_F128; break; case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; } return TLI.getLibcallName(LC) != nullptr; } /// Return true if sincos libcall is available and can be used to combine sin /// and cos. static bool canCombineSinCosLibcall(SDNode *Node, const TargetLowering &TLI, const TargetMachine &TM) { if (!isSinCosLibcallAvailable(Node, TLI)) return false; // GNU sin/cos functions set errno while sincos does not. Therefore // combining sin and cos is only safe if unsafe-fpmath is enabled. bool isGNU = Triple(TM.getTargetTriple()).getEnvironment() == Triple::GNU; if (isGNU && !TM.Options.UnsafeFPMath) return false; return true; } /// Only issue sincos libcall if both sin and cos are needed. static bool useSinCos(SDNode *Node) { unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN ? ISD::FCOS : ISD::FSIN; SDValue Op0 = Node->getOperand(0); for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), UE = Op0.getNode()->use_end(); UI != UE; ++UI) { SDNode *User = *UI; if (User == Node) continue; // The other user might have been turned into sincos already. if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) return true; } return false; } /// Issue libcalls to sincos to compute sin / cos pairs. void SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl &Results) { RTLIB::Libcall LC; switch (Node->getSimpleValueType(0).SimpleTy) { default: llvm_unreachable("Unexpected request for libcall!"); case MVT::f32: LC = RTLIB::SINCOS_F32; break; case MVT::f64: LC = RTLIB::SINCOS_F64; break; case MVT::f80: LC = RTLIB::SINCOS_F80; break; case MVT::f128: LC = RTLIB::SINCOS_F128; break; case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; } // The input chain to this libcall is the entry node of the function. // Legalizing the call will automatically add the previous call to the // dependence. SDValue InChain = DAG.getEntryNode(); EVT RetVT = Node->getValueType(0); Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; // Pass the argument. Entry.Node = Node->getOperand(0); Entry.Ty = RetTy; Entry.isSExt = false; Entry.isZExt = false; Args.push_back(Entry); // Pass the return address of sin. SDValue SinPtr = DAG.CreateStackTemporary(RetVT); Entry.Node = SinPtr; Entry.Ty = RetTy->getPointerTo(); Entry.isSExt = false; Entry.isZExt = false; Args.push_back(Entry); // Also pass the return address of the cos. SDValue CosPtr = DAG.CreateStackTemporary(RetVT); Entry.Node = CosPtr; Entry.Ty = RetTy->getPointerTo(); Entry.isSExt = false; Entry.isZExt = false; Args.push_back(Entry); SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), TLI.getPointerTy()); SDLoc dl(Node); TargetLowering::CallLoweringInfo CLI(DAG); CLI.setDebugLoc(dl).setChain(InChain) .setCallee(TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee, std::move(Args), 0); std::pair CallInfo = TLI.LowerCallTo(CLI); Results.push_back(DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo(), false, false, false, 0)); Results.push_back(DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo(), false, false, false, 0)); } /// This function is responsible for legalizing a /// INT_TO_FP operation of the specified operand when the target requests that /// we expand it. At this point, we know that the result and operand types are /// legal for the target. SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, SDValue Op0, EVT DestVT, SDLoc dl) { if (Op0.getValueType() == MVT::i32 && TLI.isTypeLegal(MVT::f64)) { // simple 32-bit [signed|unsigned] integer to float/double expansion // Get the stack frame index of a 8 byte buffer. SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); // word offset constant for Hi/Lo address computation SDValue WordOff = DAG.getConstant(sizeof(int), StackSlot.getValueType()); // set up Hi and Lo (into buffer) address based on endian SDValue Hi = StackSlot; SDValue Lo = DAG.getNode(ISD::ADD, dl, StackSlot.getValueType(), StackSlot, WordOff); if (TLI.isLittleEndian()) std::swap(Hi, Lo); // if signed map to unsigned space SDValue Op0Mapped; if (isSigned) { // constant used to invert sign bit (signed to unsigned mapping) SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32); Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit); } else { Op0Mapped = Op0; } // store the lo of the constructed double - based on integer input SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op0Mapped, Lo, MachinePointerInfo(), false, false, 0); // initial hi portion of constructed double SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32); // store the hi of the constructed double - biased exponent SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi, MachinePointerInfo(), false, false, 0); // load the constructed double SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, MachinePointerInfo(), false, false, false, 0); // FP constant to bias correct the final result SDValue Bias = DAG.getConstantFP(isSigned ? BitsToDouble(0x4330000080000000ULL) : BitsToDouble(0x4330000000000000ULL), MVT::f64); // subtract the bias SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); // final result SDValue Result; // handle final rounding if (DestVT == MVT::f64) { // do nothing Result = Sub; } else if (DestVT.bitsLT(MVT::f64)) { Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, DAG.getIntPtrConstant(0)); } else if (DestVT.bitsGT(MVT::f64)) { Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); } return Result; } assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); // Code below here assumes !isSigned without checking again. // Implementation of unsigned i64 to f64 following the algorithm in // __floatundidf in compiler_rt. This implementation has the advantage // of performing rounding correctly, both in the default rounding mode // and in all alternate rounding modes. // TODO: Generalize this for use with other types. if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) { SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64); SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64); SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64); SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32); SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, DAG.getConstant(32, MVT::i64)); SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52); SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84); SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr); SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr); SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt, TwoP84PlusTwoP52); return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub); } // Implementation of unsigned i64 to f32. // TODO: Generalize this for use with other types. if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) { // For unsigned conversions, convert them to signed conversions using the // algorithm from the x86_64 __floatundidf in compiler_rt. if (!isSigned) { SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0); SDValue ShiftConst = DAG.getConstant(1, TLI.getShiftAmountTy(Op0.getValueType())); SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst); SDValue AndConst = DAG.getConstant(1, MVT::i64); SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst); SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr); SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or); SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt); // TODO: This really should be implemented using a branch rather than a // select. We happen to get lucky and machinesink does the right // thing most of the time. This would be a good candidate for a //pseudo-op, or, even better, for whole-function isel. SDValue SignBitTest = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), Op0, DAG.getConstant(0, MVT::i64), ISD::SETLT); return DAG.getSelect(dl, MVT::f32, SignBitTest, Slow, Fast); } // Otherwise, implement the fully general conversion. SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64)); SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, DAG.getConstant(UINT64_C(0x800), MVT::i64)); SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, DAG.getConstant(UINT64_C(0x7ff), MVT::i64)); SDValue Ne = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE); SDValue Sel = DAG.getSelect(dl, MVT::i64, Ne, Or, Op0); SDValue Ge = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64), ISD::SETUGE); SDValue Sel2 = DAG.getSelect(dl, MVT::i64, Ge, Sel, Op0); EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType()); SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2, DAG.getConstant(32, SHVT)); SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh); SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc); SDValue TwoP32 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64); SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt); SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2); SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo); SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2); return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd, DAG.getIntPtrConstant(0)); } SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(Op0.getValueType()), Op0, DAG.getConstant(0, Op0.getValueType()), ISD::SETLT); SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), SignSet, Four, Zero); // If the sign bit of the integer is set, the large number will be treated // as a negative number. To counteract this, the dynamic code adds an // offset depending on the data type. uint64_t FF; switch (Op0.getSimpleValueType().SimpleTy) { default: llvm_unreachable("Unsupported integer type!"); case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) } if (TLI.isLittleEndian()) FF <<= 32; Constant *FudgeFactor = ConstantInt::get( Type::getInt64Ty(*DAG.getContext()), FF); SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); unsigned Alignment = cast(CPIdx)->getAlignment(); CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset); Alignment = std::min(Alignment, 4u); SDValue FudgeInReg; if (DestVT == MVT::f32) FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx, MachinePointerInfo::getConstantPool(), false, false, false, Alignment); else { SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, MachinePointerInfo::getConstantPool(), MVT::f32, false, false, false, Alignment); HandleSDNode Handle(Load); LegalizeOp(Load.getNode()); FudgeInReg = Handle.getValue(); } return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); } /// This function is responsible for legalizing a /// *INT_TO_FP operation of the specified operand when the target requests that /// we promote it. At this point, we know that the result and operand types are /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP /// operation that takes a larger input. SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned, SDLoc dl) { // First step, figure out the appropriate *INT_TO_FP operation to use. EVT NewInTy = LegalOp.getValueType(); unsigned OpToUse = 0; // Scan for the appropriate larger type to use. while (1) { NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); assert(NewInTy.isInteger() && "Ran out of possibilities!"); // If the target supports SINT_TO_FP of this type, use it. if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) { OpToUse = ISD::SINT_TO_FP; break; } if (isSigned) continue; // If the target supports UINT_TO_FP of this type, use it. if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) { OpToUse = ISD::UINT_TO_FP; break; } // Otherwise, try a larger type. } // Okay, we found the operation and type to use. Zero extend our input to the // desired type then run the operation on it. return DAG.getNode(OpToUse, dl, DestVT, DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, dl, NewInTy, LegalOp)); } /// This function is responsible for legalizing a /// FP_TO_*INT operation of the specified operand when the target requests that /// we promote it. At this point, we know that the result and operand types are /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT /// operation that returns a larger result. SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned, SDLoc dl) { // First step, figure out the appropriate FP_TO*INT operation to use. EVT NewOutTy = DestVT; unsigned OpToUse = 0; // Scan for the appropriate larger type to use. while (1) { NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); assert(NewOutTy.isInteger() && "Ran out of possibilities!"); // A larger signed type can hold all unsigned values of the requested type, // so using FP_TO_SINT is valid if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) { OpToUse = ISD::FP_TO_SINT; break; } // However, if the value may be < 0.0, we *must* use some FP_TO_SINT. if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) { OpToUse = ISD::FP_TO_UINT; break; } // Otherwise, try a larger type. } // Okay, we found the operation and type to use. SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); // Truncate the result of the extended FP_TO_*INT operation to the desired // size. return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); } /// Open code the operations for BSWAP of the specified operation. SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, SDLoc dl) { EVT VT = Op.getValueType(); EVT SHVT = TLI.getShiftAmountTy(VT); SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; switch (VT.getSimpleVT().SimpleTy) { default: llvm_unreachable("Unhandled Expand type in BSWAP!"); case MVT::i16: Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); case MVT::i32: Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT)); Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT)); Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT)); Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT)); Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); case MVT::i64: Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT)); Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT)); Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT)); Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT)); Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT)); Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT)); Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT)); Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT)); Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT)); Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT)); Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT)); Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT)); Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); } } /// Expand the specified bitcount instruction into operations. SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op, SDLoc dl) { switch (Opc) { default: llvm_unreachable("Cannot expand this yet!"); case ISD::CTPOP: { EVT VT = Op.getValueType(); EVT ShVT = TLI.getShiftAmountTy(VT); unsigned Len = VT.getSizeInBits(); assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 && "CTPOP not implemented for this type."); // This is the "best" algorithm from // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel SDValue Mask55 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), VT); SDValue Mask33 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), VT); SDValue Mask0F = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), VT); SDValue Mask01 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), VT); // v = v - ((v >> 1) & 0x55555555...) Op = DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getNode(ISD::AND, dl, VT, DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(1, ShVT)), Mask55)); // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), DAG.getNode(ISD::AND, dl, VT, DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(2, ShVT)), Mask33)); // v = (v + (v >> 4)) & 0x0F0F0F0F... Op = DAG.getNode(ISD::AND, dl, VT, DAG.getNode(ISD::ADD, dl, VT, Op, DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(4, ShVT))), Mask0F); // v = (v * 0x01010101...) >> (Len - 8) Op = DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), DAG.getConstant(Len - 8, ShVT)); return Op; } case ISD::CTLZ_ZERO_UNDEF: // This trivially expands to CTLZ. return DAG.getNode(ISD::CTLZ, dl, Op.getValueType(), Op); case ISD::CTLZ: { // for now, we do this: // x = x | (x >> 1); // x = x | (x >> 2); // ... // x = x | (x >>16); // x = x | (x >>32); // for 64-bit input // return popcount(~x); // // Ref: "Hacker's Delight" by Henry Warren EVT VT = Op.getValueType(); EVT ShVT = TLI.getShiftAmountTy(VT); unsigned len = VT.getSizeInBits(); for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT); Op = DAG.getNode(ISD::OR, dl, VT, Op, DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3)); } Op = DAG.getNOT(dl, Op, VT); return DAG.getNode(ISD::CTPOP, dl, VT, Op); } case ISD::CTTZ_ZERO_UNDEF: // This trivially expands to CTTZ. return DAG.getNode(ISD::CTTZ, dl, Op.getValueType(), Op); case ISD::CTTZ: { // for now, we use: { return popcount(~x & (x - 1)); } // unless the target has ctlz but not ctpop, in which case we use: // { return 32 - nlz(~x & (x-1)); } // Ref: "Hacker's Delight" by Henry Warren EVT VT = Op.getValueType(); SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, VT))); // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) && TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(VT.getSizeInBits(), VT), DAG.getNode(ISD::CTLZ, dl, VT, Tmp3)); return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3); } } } std::pair SelectionDAGLegalize::ExpandAtomic(SDNode *Node) { unsigned Opc = Node->getOpcode(); MVT VT = cast(Node)->getMemoryVT().getSimpleVT(); RTLIB::Libcall LC = RTLIB::getATOMIC(Opc, VT); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!"); return ExpandChainLibCall(LC, Node, false); } void SelectionDAGLegalize::ExpandNode(SDNode *Node) { SmallVector Results; SDLoc dl(Node); SDValue Tmp1, Tmp2, Tmp3, Tmp4; bool NeedInvert; switch (Node->getOpcode()) { case ISD::CTPOP: case ISD::CTLZ: case ISD::CTLZ_ZERO_UNDEF: case ISD::CTTZ: case ISD::CTTZ_ZERO_UNDEF: Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl); Results.push_back(Tmp1); break; case ISD::BSWAP: Results.push_back(ExpandBSWAP(Node->getOperand(0), dl)); break; case ISD::FRAMEADDR: case ISD::RETURNADDR: case ISD::FRAME_TO_ARGS_OFFSET: Results.push_back(DAG.getConstant(0, Node->getValueType(0))); break; case ISD::FLT_ROUNDS_: Results.push_back(DAG.getConstant(1, Node->getValueType(0))); break; case ISD::EH_RETURN: case ISD::EH_LABEL: case ISD::PREFETCH: case ISD::VAEND: case ISD::EH_SJLJ_LONGJMP: // If the target didn't expand these, there's nothing to do, so just // preserve the chain and be done. Results.push_back(Node->getOperand(0)); break; case ISD::EH_SJLJ_SETJMP: // If the target didn't expand this, just return 'zero' and preserve the // chain. Results.push_back(DAG.getConstant(0, MVT::i32)); Results.push_back(Node->getOperand(0)); break; case ISD::ATOMIC_FENCE: { // If the target didn't lower this, lower it to '__sync_synchronize()' call // FIXME: handle "fence singlethread" more efficiently. TargetLowering::ArgListTy Args; TargetLowering::CallLoweringInfo CLI(DAG); CLI.setDebugLoc(dl).setChain(Node->getOperand(0)) .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), DAG.getExternalSymbol("__sync_synchronize", TLI.getPointerTy()), std::move(Args), 0); std::pair CallResult = TLI.LowerCallTo(CLI); Results.push_back(CallResult.second); break; } case ISD::ATOMIC_LOAD: { // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. SDValue Zero = DAG.getConstant(0, Node->getValueType(0)); SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); SDValue Swap = DAG.getAtomicCmpSwap( ISD::ATOMIC_CMP_SWAP, dl, cast(Node)->getMemoryVT(), VTs, Node->getOperand(0), Node->getOperand(1), Zero, Zero, cast(Node)->getMemOperand(), cast(Node)->getOrdering(), cast(Node)->getOrdering(), cast(Node)->getSynchScope()); Results.push_back(Swap.getValue(0)); Results.push_back(Swap.getValue(1)); break; } case ISD::ATOMIC_STORE: { // There is no libcall for atomic store; fake it with ATOMIC_SWAP. SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, cast(Node)->getMemoryVT(), Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), cast(Node)->getMemOperand(), cast(Node)->getOrdering(), cast(Node)->getSynchScope()); Results.push_back(Swap.getValue(1)); break; } // By default, atomic intrinsics are marked Legal and lowered. Targets // which don't support them directly, however, may want libcalls, in which // case they mark them Expand, and we get here. case ISD::ATOMIC_SWAP: case ISD::ATOMIC_LOAD_ADD: case ISD::ATOMIC_LOAD_SUB: case ISD::ATOMIC_LOAD_AND: case ISD::ATOMIC_LOAD_OR: case ISD::ATOMIC_LOAD_XOR: case ISD::ATOMIC_LOAD_NAND: case ISD::ATOMIC_LOAD_MIN: case ISD::ATOMIC_LOAD_MAX: case ISD::ATOMIC_LOAD_UMIN: case ISD::ATOMIC_LOAD_UMAX: case ISD::ATOMIC_CMP_SWAP: { std::pair Tmp = ExpandAtomic(Node); Results.push_back(Tmp.first); Results.push_back(Tmp.second); break; } case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and // splits out the success value as a comparison. Expanding the resulting // ATOMIC_CMP_SWAP will produce a libcall. SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); SDValue Res = DAG.getAtomicCmpSwap( ISD::ATOMIC_CMP_SWAP, dl, cast(Node)->getMemoryVT(), VTs, Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), Node->getOperand(3), cast(Node)->getMemOperand(), cast(Node)->getSuccessOrdering(), cast(Node)->getFailureOrdering(), cast(Node)->getSynchScope()); SDValue Success = DAG.getSetCC(SDLoc(Node), Node->getValueType(1), Res, Node->getOperand(2), ISD::SETEQ); Results.push_back(Res.getValue(0)); Results.push_back(Success); Results.push_back(Res.getValue(1)); break; } case ISD::DYNAMIC_STACKALLOC: ExpandDYNAMIC_STACKALLOC(Node, Results); break; case ISD::MERGE_VALUES: for (unsigned i = 0; i < Node->getNumValues(); i++) Results.push_back(Node->getOperand(i)); break; case ISD::UNDEF: { EVT VT = Node->getValueType(0); if (VT.isInteger()) Results.push_back(DAG.getConstant(0, VT)); else { assert(VT.isFloatingPoint() && "Unknown value type!"); Results.push_back(DAG.getConstantFP(0, VT)); } break; } case ISD::TRAP: { // If this operation is not supported, lower it to 'abort()' call TargetLowering::ArgListTy Args; TargetLowering::CallLoweringInfo CLI(DAG); CLI.setDebugLoc(dl).setChain(Node->getOperand(0)) .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), DAG.getExternalSymbol("abort", TLI.getPointerTy()), std::move(Args), 0); std::pair CallResult = TLI.LowerCallTo(CLI); Results.push_back(CallResult.second); break; } case ISD::FP_ROUND: case ISD::BITCAST: Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), Node->getValueType(0), dl); Results.push_back(Tmp1); break; case ISD::FP_EXTEND: Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getOperand(0).getValueType(), Node->getValueType(0), dl); Results.push_back(Tmp1); break; case ISD::SIGN_EXTEND_INREG: { // NOTE: we could fall back on load/store here too for targets without // SAR. However, it is doubtful that any exist. EVT ExtraVT = cast(Node->getOperand(1))->getVT(); EVT VT = Node->getValueType(0); EVT ShiftAmountTy = TLI.getShiftAmountTy(VT); if (VT.isVector()) ShiftAmountTy = VT; unsigned BitsDiff = VT.getScalarType().getSizeInBits() - ExtraVT.getScalarType().getSizeInBits(); SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy); Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), Node->getOperand(0), ShiftCst); Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); Results.push_back(Tmp1); break; } case ISD::FP_ROUND_INREG: { // The only way we can lower this is to turn it into a TRUNCSTORE, // EXTLOAD pair, targeting a temporary location (a stack slot). // NOTE: there is a choice here between constantly creating new stack // slots and always reusing the same one. We currently always create // new ones, as reuse may inhibit scheduling. EVT ExtraVT = cast(Node->getOperand(1))->getVT(); Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT, Node->getValueType(0), dl); Results.push_back(Tmp1); break; } case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP, Node->getOperand(0), Node->getValueType(0), dl); Results.push_back(Tmp1); break; case ISD::FP_TO_SINT: if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) Results.push_back(Tmp1); break; case ISD::FP_TO_UINT: { SDValue True, False; EVT VT = Node->getOperand(0).getValueType(); EVT NVT = Node->getValueType(0); APFloat apf(DAG.EVTToAPFloatSemantics(VT), APInt::getNullValue(VT.getSizeInBits())); APInt x = APInt::getSignBit(NVT.getSizeInBits()); (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven); Tmp1 = DAG.getConstantFP(apf, VT); Tmp2 = DAG.getSetCC(dl, getSetCCResultType(VT), Node->getOperand(0), Tmp1, ISD::SETLT); True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0)); False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, DAG.getNode(ISD::FSUB, dl, VT, Node->getOperand(0), Tmp1)); False = DAG.getNode(ISD::XOR, dl, NVT, False, DAG.getConstant(x, NVT)); Tmp1 = DAG.getSelect(dl, NVT, Tmp2, True, False); Results.push_back(Tmp1); break; } case ISD::VAARG: { const Value *V = cast(Node->getOperand(2))->getValue(); EVT VT = Node->getValueType(0); Tmp1 = Node->getOperand(0); Tmp2 = Node->getOperand(1); unsigned Align = Node->getConstantOperandVal(3); SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, MachinePointerInfo(V), false, false, false, 0); SDValue VAList = VAListLoad; if (Align > TLI.getMinStackArgumentAlignment()) { assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); VAList = DAG.getNode(ISD::ADD, dl, VAList.getValueType(), VAList, DAG.getConstant(Align - 1, VAList.getValueType())); VAList = DAG.getNode(ISD::AND, dl, VAList.getValueType(), VAList, DAG.getConstant(-(int64_t)Align, VAList.getValueType())); } // Increment the pointer, VAList, to the next vaarg Tmp3 = DAG.getNode(ISD::ADD, dl, VAList.getValueType(), VAList, DAG.getConstant(TLI.getDataLayout()-> getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())), VAList.getValueType())); // Store the incremented VAList to the legalized pointer Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2, MachinePointerInfo(V), false, false, 0); // Load the actual argument out of the pointer VAList Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(), false, false, false, 0)); Results.push_back(Results[0].getValue(1)); break; } case ISD::VACOPY: { // This defaults to loading a pointer from the input and storing it to the // output, returning the chain. const Value *VD = cast(Node->getOperand(3))->getValue(); const Value *VS = cast(Node->getOperand(4))->getValue(); Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0), Node->getOperand(2), MachinePointerInfo(VS), false, false, false, 0); Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), MachinePointerInfo(VD), false, false, 0); Results.push_back(Tmp1); break; } case ISD::EXTRACT_VECTOR_ELT: if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) // This must be an access of the only element. Return it. Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Node->getOperand(0)); else Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); Results.push_back(Tmp1); break; case ISD::EXTRACT_SUBVECTOR: Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); break; case ISD::INSERT_SUBVECTOR: Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); break; case ISD::CONCAT_VECTORS: { Results.push_back(ExpandVectorBuildThroughStack(Node)); break; } case ISD::SCALAR_TO_VECTOR: Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); break; case ISD::INSERT_VECTOR_ELT: Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), dl)); break; case ISD::VECTOR_SHUFFLE: { SmallVector NewMask; ArrayRef Mask = cast(Node)->getMask(); EVT VT = Node->getValueType(0); EVT EltVT = VT.getVectorElementType(); SDValue Op0 = Node->getOperand(0); SDValue Op1 = Node->getOperand(1); if (!TLI.isTypeLegal(EltVT)) { EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); // BUILD_VECTOR operands are allowed to be wider than the element type. // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept // it. if (NewEltVT.bitsLT(EltVT)) { // Convert shuffle node. // If original node was v4i64 and the new EltVT is i32, // cast operands to v8i32 and re-build the mask. // Calculate new VT, the size of the new VT should be equal to original. EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltVT, VT.getSizeInBits() / NewEltVT.getSizeInBits()); assert(NewVT.bitsEq(VT)); // cast operands to new VT Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); // Convert the shuffle mask unsigned int factor = NewVT.getVectorNumElements()/VT.getVectorNumElements(); // EltVT gets smaller assert(factor > 0); for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { if (Mask[i] < 0) { for (unsigned fi = 0; fi < factor; ++fi) NewMask.push_back(Mask[i]); } else { for (unsigned fi = 0; fi < factor; ++fi) NewMask.push_back(Mask[i]*factor+fi); } } Mask = NewMask; VT = NewVT; } EltVT = NewEltVT; } unsigned NumElems = VT.getVectorNumElements(); SmallVector Ops; for (unsigned i = 0; i != NumElems; ++i) { if (Mask[i] < 0) { Ops.push_back(DAG.getUNDEF(EltVT)); continue; } unsigned Idx = Mask[i]; if (Idx < NumElems) Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, DAG.getConstant(Idx, TLI.getVectorIdxTy()))); else Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1, DAG.getConstant(Idx - NumElems, TLI.getVectorIdxTy()))); } Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); Results.push_back(Tmp1); break; } case ISD::EXTRACT_ELEMENT: { EVT OpTy = Node->getOperand(0).getValueType(); if (cast(Node->getOperand(1))->getZExtValue()) { // 1 -> Hi Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), DAG.getConstant(OpTy.getSizeInBits()/2, TLI.getShiftAmountTy(Node->getOperand(0).getValueType()))); Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); } else { // 0 -> Lo Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Node->getOperand(0)); } Results.push_back(Tmp1); break; } case ISD::STACKSAVE: // Expand to CopyFromReg if the target set // StackPointerRegisterToSaveRestore. if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, Node->getValueType(0))); Results.push_back(Results[0].getValue(1)); } else { Results.push_back(DAG.getUNDEF(Node->getValueType(0))); Results.push_back(Node->getOperand(0)); } break; case ISD::STACKRESTORE: // Expand to CopyToReg if the target set // StackPointerRegisterToSaveRestore. if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, Node->getOperand(1))); } else { Results.push_back(Node->getOperand(0)); } break; case ISD::FCOPYSIGN: Results.push_back(ExpandFCOPYSIGN(Node)); break; case ISD::FNEG: // Expand Y = FNEG(X) -> Y = SUB -0.0, X Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0)); Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1, Node->getOperand(0)); Results.push_back(Tmp1); break; case ISD::FABS: { // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X). EVT VT = Node->getValueType(0); Tmp1 = Node->getOperand(0); Tmp2 = DAG.getConstantFP(0.0, VT); Tmp2 = DAG.getSetCC(dl, getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, ISD::SETUGT); Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1); Tmp1 = DAG.getSelect(dl, VT, Tmp2, Tmp1, Tmp3); Results.push_back(Tmp1); break; } case ISD::FMINNUM: Results.push_back(ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64, RTLIB::FMIN_F80, RTLIB::FMIN_F128, RTLIB::FMIN_PPCF128)); break; case ISD::FMAXNUM: Results.push_back(ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64, RTLIB::FMAX_F80, RTLIB::FMAX_F128, RTLIB::FMAX_PPCF128)); break; case ISD::FSQRT: Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, RTLIB::SQRT_F80, RTLIB::SQRT_F128, RTLIB::SQRT_PPCF128)); break; case ISD::FSIN: case ISD::FCOS: { EVT VT = Node->getValueType(0); bool isSIN = Node->getOpcode() == ISD::FSIN; // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / // fcos which share the same operand and both are used. if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || canCombineSinCosLibcall(Node, TLI, TM)) && useSinCos(Node)) { SDVTList VTs = DAG.getVTList(VT, VT); Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); if (!isSIN) Tmp1 = Tmp1.getValue(1); Results.push_back(Tmp1); } else if (isSIN) { Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, RTLIB::SIN_F80, RTLIB::SIN_F128, RTLIB::SIN_PPCF128)); } else { Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, RTLIB::COS_F80, RTLIB::COS_F128, RTLIB::COS_PPCF128)); } break; } case ISD::FSINCOS: // Expand into sincos libcall. ExpandSinCosLibCall(Node, Results); break; case ISD::FLOG: Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80, RTLIB::LOG_F128, RTLIB::LOG_PPCF128)); break; case ISD::FLOG2: Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80, RTLIB::LOG2_F128, RTLIB::LOG2_PPCF128)); break; case ISD::FLOG10: Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80, RTLIB::LOG10_F128, RTLIB::LOG10_PPCF128)); break; case ISD::FEXP: Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80, RTLIB::EXP_F128, RTLIB::EXP_PPCF128)); break; case ISD::FEXP2: Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80, RTLIB::EXP2_F128, RTLIB::EXP2_PPCF128)); break; case ISD::FTRUNC: Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, RTLIB::TRUNC_PPCF128)); break; case ISD::FFLOOR: Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, RTLIB::FLOOR_PPCF128)); break; case ISD::FCEIL: Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, RTLIB::CEIL_F80, RTLIB::CEIL_F128, RTLIB::CEIL_PPCF128)); break; case ISD::FRINT: Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, RTLIB::RINT_F80, RTLIB::RINT_F128, RTLIB::RINT_PPCF128)); break; case ISD::FNEARBYINT: Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, RTLIB::NEARBYINT_F64, RTLIB::NEARBYINT_F80, RTLIB::NEARBYINT_F128, RTLIB::NEARBYINT_PPCF128)); break; case ISD::FROUND: Results.push_back(ExpandFPLibCall(Node, RTLIB::ROUND_F32, RTLIB::ROUND_F64, RTLIB::ROUND_F80, RTLIB::ROUND_F128, RTLIB::ROUND_PPCF128)); break; case ISD::FPOWI: Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64, RTLIB::POWI_F80, RTLIB::POWI_F128, RTLIB::POWI_PPCF128)); break; case ISD::FPOW: Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, RTLIB::POW_F128, RTLIB::POW_PPCF128)); break; case ISD::FDIV: Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, RTLIB::DIV_F80, RTLIB::DIV_F128, RTLIB::DIV_PPCF128)); break; case ISD::FREM: Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, RTLIB::REM_F80, RTLIB::REM_F128, RTLIB::REM_PPCF128)); break; case ISD::FMA: Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, RTLIB::FMA_F80, RTLIB::FMA_F128, RTLIB::FMA_PPCF128)); break; case ISD::FMAD: llvm_unreachable("Illegal fmad should never be formed"); case ISD::FADD: Results.push_back(ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64, RTLIB::ADD_F80, RTLIB::ADD_F128, RTLIB::ADD_PPCF128)); break; case ISD::FMUL: Results.push_back(ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64, RTLIB::MUL_F80, RTLIB::MUL_F128, RTLIB::MUL_PPCF128)); break; case ISD::FP16_TO_FP: { if (Node->getValueType(0) == MVT::f32) { Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); break; } // We can extend to types bigger than f32 in two steps without changing the // result. Since "f16 -> f32" is much more commonly available, give CodeGen // the option of emitting that before resorting to a libcall. SDValue Res = DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0)); Results.push_back( DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res)); break; } case ISD::FP_TO_FP16: { if (!TM.Options.UseSoftFloat && TM.Options.UnsafeFPMath) { SDValue Op = Node->getOperand(0); MVT SVT = Op.getSimpleValueType(); if ((SVT == MVT::f64 || SVT == MVT::f80) && TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) { // Under fastmath, we can expand this node into a fround followed by // a float-half conversion. SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, DAG.getIntPtrConstant(0)); Results.push_back( DAG.getNode(ISD::FP_TO_FP16, dl, MVT::i16, FloatVal)); break; } } RTLIB::Libcall LC = RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16"); Results.push_back(ExpandLibCall(LC, Node, false)); break; } case ISD::ConstantFP: { ConstantFPSDNode *CFP = cast(Node); // Check to see if this FP immediate is already legal. // If this is a legal constant, turn it into a TargetConstantFP node. if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0))) Results.push_back(ExpandConstantFP(CFP, true)); break; } case ISD::FSUB: { EVT VT = Node->getValueType(0); if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) && TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) { Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1); Results.push_back(Tmp1); } else { Results.push_back(ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64, RTLIB::SUB_F80, RTLIB::SUB_F128, RTLIB::SUB_PPCF128)); } break; } case ISD::SUB: { EVT VT = Node->getValueType(0); assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && TLI.isOperationLegalOrCustom(ISD::XOR, VT) && "Don't know how to expand this subtraction!"); Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT)); Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, VT)); Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); break; } case ISD::UREM: case ISD::SREM: { EVT VT = Node->getValueType(0); bool isSigned = Node->getOpcode() == ISD::SREM; unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; Tmp2 = Node->getOperand(0); Tmp3 = Node->getOperand(1); if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) || (isDivRemLibcallAvailable(Node, isSigned, TLI) && // If div is legal, it's better to do the normal expansion !TLI.isOperationLegalOrCustom(DivOpc, Node->getValueType(0)) && useDivRem(Node, isSigned, false))) { SDVTList VTs = DAG.getVTList(VT, VT); Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1); } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) { // X % Y -> X-X/Y*Y Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3); Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3); Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1); } else if (isSigned) Tmp1 = ExpandIntLibCall(Node, true, RTLIB::SREM_I8, RTLIB::SREM_I16, RTLIB::SREM_I32, RTLIB::SREM_I64, RTLIB::SREM_I128); else Tmp1 = ExpandIntLibCall(Node, false, RTLIB::UREM_I8, RTLIB::UREM_I16, RTLIB::UREM_I32, RTLIB::UREM_I64, RTLIB::UREM_I128); Results.push_back(Tmp1); break; } case ISD::UDIV: case ISD::SDIV: { bool isSigned = Node->getOpcode() == ISD::SDIV; unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; EVT VT = Node->getValueType(0); SDVTList VTs = DAG.getVTList(VT, VT); if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) || (isDivRemLibcallAvailable(Node, isSigned, TLI) && useDivRem(Node, isSigned, true))) Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), Node->getOperand(1)); else if (isSigned) Tmp1 = ExpandIntLibCall(Node, true, RTLIB::SDIV_I8, RTLIB::SDIV_I16, RTLIB::SDIV_I32, RTLIB::SDIV_I64, RTLIB::SDIV_I128); else Tmp1 = ExpandIntLibCall(Node, false, RTLIB::UDIV_I8, RTLIB::UDIV_I16, RTLIB::UDIV_I32, RTLIB::UDIV_I64, RTLIB::UDIV_I128); Results.push_back(Tmp1); break; } case ISD::MULHU: case ISD::MULHS: { unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI; EVT VT = Node->getValueType(0); SDVTList VTs = DAG.getVTList(VT, VT); assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) && "If this wasn't legal, it shouldn't have been created!"); Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), Node->getOperand(1)); Results.push_back(Tmp1.getValue(1)); break; } case ISD::SDIVREM: case ISD::UDIVREM: // Expand into divrem libcall ExpandDivRemLibCall(Node, Results); break; case ISD::MUL: { EVT VT = Node->getValueType(0); SDVTList VTs = DAG.getVTList(VT, VT); // See if multiply or divide can be lowered using two-result operations. // We just need the low half of the multiply; try both the signed // and unsigned forms. If the target supports both SMUL_LOHI and // UMUL_LOHI, form a preference by checking which forms of plain // MULH it supports. bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); unsigned OpToUse = 0; if (HasSMUL_LOHI && !HasMULHS) { OpToUse = ISD::SMUL_LOHI; } else if (HasUMUL_LOHI && !HasMULHU) { OpToUse = ISD::UMUL_LOHI; } else if (HasSMUL_LOHI) { OpToUse = ISD::SMUL_LOHI; } else if (HasUMUL_LOHI) { OpToUse = ISD::UMUL_LOHI; } if (OpToUse) { Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), Node->getOperand(1))); break; } SDValue Lo, Hi; EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext()); if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) && TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) && TLI.isOperationLegalOrCustom(ISD::SHL, VT) && TLI.isOperationLegalOrCustom(ISD::OR, VT) && TLI.expandMUL(Node, Lo, Hi, HalfType, DAG)) { Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi); SDValue Shift = DAG.getConstant(HalfType.getSizeInBits(), TLI.getShiftAmountTy(HalfType)); Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); break; } Tmp1 = ExpandIntLibCall(Node, false, RTLIB::MUL_I8, RTLIB::MUL_I16, RTLIB::MUL_I32, RTLIB::MUL_I64, RTLIB::MUL_I128); Results.push_back(Tmp1); break; } case ISD::SADDO: case ISD::SSUBO: { SDValue LHS = Node->getOperand(0); SDValue RHS = Node->getOperand(1); SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ? ISD::ADD : ISD::SUB, dl, LHS.getValueType(), LHS, RHS); Results.push_back(Sum); EVT ResultType = Node->getValueType(1); EVT OType = getSetCCResultType(Node->getValueType(0)); SDValue Zero = DAG.getConstant(0, LHS.getValueType()); // LHSSign -> LHS >= 0 // RHSSign -> RHS >= 0 // SumSign -> Sum >= 0 // // Add: // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) // Sub: // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) // SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE); SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE); SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign, Node->getOpcode() == ISD::SADDO ? ISD::SETEQ : ISD::SETNE); SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE); SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE); SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE); Results.push_back(DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType)); break; } case ISD::UADDO: case ISD::USUBO: { SDValue LHS = Node->getOperand(0); SDValue RHS = Node->getOperand(1); SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ? ISD::ADD : ISD::SUB, dl, LHS.getValueType(), LHS, RHS); Results.push_back(Sum); EVT ResultType = Node->getValueType(1); EVT SetCCType = getSetCCResultType(Node->getValueType(0)); ISD::CondCode CC = Node->getOpcode() == ISD::UADDO ? ISD::SETULT : ISD::SETUGT; SDValue SetCC = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC); Results.push_back(DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType)); break; } case ISD::UMULO: case ISD::SMULO: { EVT VT = Node->getValueType(0); EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2); SDValue LHS = Node->getOperand(0); SDValue RHS = Node->getOperand(1); SDValue BottomHalf; SDValue TopHalf; static const unsigned Ops[2][3] = { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; bool isSigned = Node->getOpcode() == ISD::SMULO; if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) { BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) { BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, RHS); TopHalf = BottomHalf.getValue(1); } else if (TLI.isTypeLegal(WideVT)) { LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, DAG.getIntPtrConstant(0)); TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, DAG.getIntPtrConstant(1)); } else { // We can fall back to a libcall with an illegal type for the MUL if we // have a libcall big enough. // Also, we can fall back to a division in some cases, but that's a big // performance hit in the general case. RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; if (WideVT == MVT::i16) LC = RTLIB::MUL_I16; else if (WideVT == MVT::i32) LC = RTLIB::MUL_I32; else if (WideVT == MVT::i64) LC = RTLIB::MUL_I64; else if (WideVT == MVT::i128) LC = RTLIB::MUL_I128; assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); // The high part is obtained by SRA'ing all but one of the bits of low // part. unsigned LoSize = VT.getSizeInBits(); SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, RHS, DAG.getConstant(LoSize-1, TLI.getPointerTy())); SDValue HiRHS = DAG.getNode(ISD::SRA, dl, VT, LHS, DAG.getConstant(LoSize-1, TLI.getPointerTy())); // Here we're passing the 2 arguments explicitly as 4 arguments that are // pre-lowered to the correct types. This all depends upon WideVT not // being a legal type for the architecture and thus has to be split to // two arguments. SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl); BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret, DAG.getIntPtrConstant(0)); TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret, DAG.getIntPtrConstant(1)); // Ret is a node with an illegal type. Because such things are not // generally permitted during this phase of legalization, make sure the // node has no more uses. The above EXTRACT_ELEMENT nodes should have been // folded. assert(Ret->use_empty() && "Unexpected uses of illegally type from expanded lib call."); } if (isSigned) { Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, TLI.getShiftAmountTy(BottomHalf.getValueType())); Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1); TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf, Tmp1, ISD::SETNE); } else { TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf, DAG.getConstant(0, VT), ISD::SETNE); } Results.push_back(BottomHalf); Results.push_back(TopHalf); break; } case ISD::BUILD_PAIR: { EVT PairTy = Node->getValueType(0); Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2, DAG.getConstant(PairTy.getSizeInBits()/2, TLI.getShiftAmountTy(PairTy))); Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); break; } case ISD::SELECT: Tmp1 = Node->getOperand(0); Tmp2 = Node->getOperand(1); Tmp3 = Node->getOperand(2); if (Tmp1.getOpcode() == ISD::SETCC) { Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), Tmp2, Tmp3, cast(Tmp1.getOperand(2))->get()); } else { Tmp1 = DAG.getSelectCC(dl, Tmp1, DAG.getConstant(0, Tmp1.getValueType()), Tmp2, Tmp3, ISD::SETNE); } Results.push_back(Tmp1); break; case ISD::BR_JT: { SDValue Chain = Node->getOperand(0); SDValue Table = Node->getOperand(1); SDValue Index = Node->getOperand(2); EVT PTy = TLI.getPointerTy(); const DataLayout &TD = *TLI.getDataLayout(); unsigned EntrySize = DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, DAG.getConstant(EntrySize, Index.getValueType())); SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(), Index, Table); EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr, MachinePointerInfo::getJumpTable(), MemVT, false, false, false, 0); Addr = LD; if (TM.getRelocationModel() == Reloc::PIC_) { // For PIC, the sequence is: // BRIND(load(Jumptable + index) + RelocBase) // RelocBase can be JumpTable, GOT or some sort of global base. Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, TLI.getPICJumpTableRelocBase(Table, DAG)); } Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr); Results.push_back(Tmp1); break; } case ISD::BRCOND: // Expand brcond's setcc into its constituent parts and create a BR_CC // Node. Tmp1 = Node->getOperand(0); Tmp2 = Node->getOperand(1); if (Tmp2.getOpcode() == ISD::SETCC) { Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, Tmp2.getOperand(2), Tmp2.getOperand(0), Tmp2.getOperand(1), Node->getOperand(2)); } else { // We test only the i1 bit. Skip the AND if UNDEF. Tmp3 = (Tmp2.getOpcode() == ISD::UNDEF) ? Tmp2 : DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, DAG.getConstant(1, Tmp2.getValueType())); Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, DAG.getCondCode(ISD::SETNE), Tmp3, DAG.getConstant(0, Tmp3.getValueType()), Node->getOperand(2)); } Results.push_back(Tmp1); break; case ISD::SETCC: { Tmp1 = Node->getOperand(0); Tmp2 = Node->getOperand(1); Tmp3 = Node->getOperand(2); bool Legalized = LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, NeedInvert, dl); if (Legalized) { // If we expanded the SETCC by swapping LHS and RHS, or by inverting the // condition code, create a new SETCC node. if (Tmp3.getNode()) Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1, Tmp2, Tmp3); // If we expanded the SETCC by inverting the condition code, then wrap // the existing SETCC in a NOT to restore the intended condition. if (NeedInvert) Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0)); Results.push_back(Tmp1); break; } // Otherwise, SETCC for the given comparison type must be completely // illegal; expand it into a SELECT_CC. EVT VT = Node->getValueType(0); int TrueValue; switch (TLI.getBooleanContents(Tmp1->getValueType(0))) { case TargetLowering::ZeroOrOneBooleanContent: case TargetLowering::UndefinedBooleanContent: TrueValue = 1; break; case TargetLowering::ZeroOrNegativeOneBooleanContent: TrueValue = -1; break; } Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, DAG.getConstant(TrueValue, VT), DAG.getConstant(0, VT), Tmp3); Results.push_back(Tmp1); break; } case ISD::SELECT_CC: { Tmp1 = Node->getOperand(0); // LHS Tmp2 = Node->getOperand(1); // RHS Tmp3 = Node->getOperand(2); // True Tmp4 = Node->getOperand(3); // False EVT VT = Node->getValueType(0); SDValue CC = Node->getOperand(4); ISD::CondCode CCOp = cast(CC)->get(); if (TLI.isCondCodeLegal(CCOp, Tmp1.getSimpleValueType())) { // If the condition code is legal, then we need to expand this // node using SETCC and SELECT. EVT CmpVT = Tmp1.getValueType(); assert(!TLI.isOperationExpand(ISD::SELECT, VT) && "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be " "expanded."); EVT CCVT = TLI.getSetCCResultType(*DAG.getContext(), CmpVT); SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC); Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4)); break; } // SELECT_CC is legal, so the condition code must not be. bool Legalized = false; // Try to legalize by inverting the condition. This is for targets that // might support an ordered version of a condition, but not the unordered // version (or vice versa). ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, Tmp1.getValueType().isInteger()); if (TLI.isCondCodeLegal(InvCC, Tmp1.getSimpleValueType())) { // Use the new condition code and swap true and false Legalized = true; Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC); } else { // If The inverse is not legal, then try to swap the arguments using // the inverse condition code. ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC); if (TLI.isCondCodeLegal(SwapInvCC, Tmp1.getSimpleValueType())) { // The swapped inverse condition is legal, so swap true and false, // lhs and rhs. Legalized = true; Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC); } } if (!Legalized) { Legalized = LegalizeSetCCCondCode( getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, NeedInvert, dl); assert(Legalized && "Can't legalize SELECT_CC with legal condition!"); // If we expanded the SETCC by inverting the condition code, then swap // the True/False operands to match. if (NeedInvert) std::swap(Tmp3, Tmp4); // If we expanded the SETCC by swapping LHS and RHS, or by inverting the // condition code, create a new SELECT_CC node. if (CC.getNode()) { Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2, Tmp3, Tmp4, CC); } else { Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); CC = DAG.getCondCode(ISD::SETNE); Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2, Tmp3, Tmp4, CC); } } Results.push_back(Tmp1); break; } case ISD::BR_CC: { Tmp1 = Node->getOperand(0); // Chain Tmp2 = Node->getOperand(2); // LHS Tmp3 = Node->getOperand(3); // RHS Tmp4 = Node->getOperand(1); // CC bool Legalized = LegalizeSetCCCondCode(getSetCCResultType( Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, NeedInvert, dl); (void)Legalized; assert(Legalized && "Can't legalize BR_CC with legal condition!"); // If we expanded the SETCC by inverting the condition code, then wrap // the existing SETCC in a NOT to restore the intended condition. if (NeedInvert) Tmp4 = DAG.getNOT(dl, Tmp4, Tmp4->getValueType(0)); // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC // node. if (Tmp4.getNode()) { Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2, Tmp3, Node->getOperand(4)); } else { Tmp3 = DAG.getConstant(0, Tmp2.getValueType()); Tmp4 = DAG.getCondCode(ISD::SETNE); Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2, Tmp3, Node->getOperand(4)); } Results.push_back(Tmp1); break; } case ISD::BUILD_VECTOR: Results.push_back(ExpandBUILD_VECTOR(Node)); break; case ISD::SRA: case ISD::SRL: case ISD::SHL: { // Scalarize vector SRA/SRL/SHL. EVT VT = Node->getValueType(0); assert(VT.isVector() && "Unable to legalize non-vector shift"); assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); unsigned NumElem = VT.getVectorNumElements(); SmallVector Scalars; for (unsigned Idx = 0; Idx < NumElem; Idx++) { SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(0), DAG.getConstant(Idx, TLI.getVectorIdxTy())); SDValue Sh = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(1), DAG.getConstant(Idx, TLI.getVectorIdxTy())); Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, VT.getScalarType(), Ex, Sh)); } SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0), Scalars); ReplaceNode(SDValue(Node, 0), Result); break; } case ISD::GLOBAL_OFFSET_TABLE: case ISD::GlobalAddress: case ISD::GlobalTLSAddress: case ISD::ExternalSymbol: case ISD::ConstantPool: case ISD::JumpTable: case ISD::INTRINSIC_W_CHAIN: case ISD::INTRINSIC_WO_CHAIN: case ISD::INTRINSIC_VOID: // FIXME: Custom lowering for these operations shouldn't return null! break; } // Replace the original node with the legalized result. if (!Results.empty()) ReplaceNode(Node, Results.data()); } void SelectionDAGLegalize::PromoteNode(SDNode *Node) { SmallVector Results; MVT OVT = Node->getSimpleValueType(0); if (Node->getOpcode() == ISD::UINT_TO_FP || Node->getOpcode() == ISD::SINT_TO_FP || Node->getOpcode() == ISD::SETCC) { OVT = Node->getOperand(0).getSimpleValueType(); } MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); SDLoc dl(Node); SDValue Tmp1, Tmp2, Tmp3; switch (Node->getOpcode()) { case ISD::CTTZ: case ISD::CTTZ_ZERO_UNDEF: case ISD::CTLZ: case ISD::CTLZ_ZERO_UNDEF: case ISD::CTPOP: // Zero extend the argument. Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is // already the correct result. Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); if (Node->getOpcode() == ISD::CTTZ) { // FIXME: This should set a bit in the zero extended value instead. Tmp2 = DAG.getSetCC(dl, getSetCCResultType(NVT), Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT), ISD::SETEQ); Tmp1 = DAG.getSelect(dl, NVT, Tmp2, DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1); } else if (Node->getOpcode() == ISD::CTLZ || Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, DAG.getConstant(NVT.getSizeInBits() - OVT.getSizeInBits(), NVT)); } Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); break; case ISD::BSWAP: { unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1); Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1, DAG.getConstant(DiffBits, TLI.getShiftAmountTy(NVT))); Results.push_back(Tmp1); break; } case ISD::FP_TO_UINT: case ISD::FP_TO_SINT: Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0), Node->getOpcode() == ISD::FP_TO_SINT, dl); Results.push_back(Tmp1); break; case ISD::UINT_TO_FP: case ISD::SINT_TO_FP: Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0), Node->getOpcode() == ISD::SINT_TO_FP, dl); Results.push_back(Tmp1); break; case ISD::VAARG: { SDValue Chain = Node->getOperand(0); // Get the chain. SDValue Ptr = Node->getOperand(1); // Get the pointer. unsigned TruncOp; if (OVT.isVector()) { TruncOp = ISD::BITCAST; } else { assert(OVT.isInteger() && "VAARG promotion is supported only for vectors or integer types"); TruncOp = ISD::TRUNCATE; } // Perform the larger operation, then convert back Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), Node->getConstantOperandVal(3)); Chain = Tmp1.getValue(1); Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); // Modified the chain result - switch anything that used the old chain to // use the new one. DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); if (UpdatedNodes) { UpdatedNodes->insert(Tmp2.getNode()); UpdatedNodes->insert(Chain.getNode()); } ReplacedNode(Node); break; } case ISD::AND: case ISD::OR: case ISD::XOR: { unsigned ExtOp, TruncOp; if (OVT.isVector()) { ExtOp = ISD::BITCAST; TruncOp = ISD::BITCAST; } else { assert(OVT.isInteger() && "Cannot promote logic operation"); ExtOp = ISD::ANY_EXTEND; TruncOp = ISD::TRUNCATE; } // Promote each of the values to the new type. Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); // Perform the larger operation, then convert back Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); break; } case ISD::SELECT: { unsigned ExtOp, TruncOp; if (Node->getValueType(0).isVector() || Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) { ExtOp = ISD::BITCAST; TruncOp = ISD::BITCAST; } else if (Node->getValueType(0).isInteger()) { ExtOp = ISD::ANY_EXTEND; TruncOp = ISD::TRUNCATE; } else { ExtOp = ISD::FP_EXTEND; TruncOp = ISD::FP_ROUND; } Tmp1 = Node->getOperand(0); // Promote each of the values to the new type. Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); // Perform the larger operation, then round down. Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3); if (TruncOp != ISD::FP_ROUND) Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); else Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, DAG.getIntPtrConstant(0)); Results.push_back(Tmp1); break; } case ISD::VECTOR_SHUFFLE: { ArrayRef Mask = cast(Node)->getMask(); // Cast the two input vectors. Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); // Convert the shuffle mask to the right # elements. Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); Results.push_back(Tmp1); break; } case ISD::SETCC: { unsigned ExtOp = ISD::FP_EXTEND; if (NVT.isInteger()) { ISD::CondCode CCCode = cast(Node->getOperand(2))->get(); ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; } Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1, Tmp2, Node->getOperand(2))); break; } case ISD::FADD: case ISD::FSUB: case ISD::FMUL: case ISD::FDIV: case ISD::FREM: case ISD::FPOW: { Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp3, DAG.getIntPtrConstant(0))); break; } case ISD::FLOG2: case ISD::FEXP2: case ISD::FLOG: case ISD::FEXP: { Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp2, DAG.getIntPtrConstant(0))); break; } } // Replace the original node with the legalized result. if (!Results.empty()) ReplaceNode(Node, Results.data()); } /// This is the entry point for the file. void SelectionDAG::Legalize() { AssignTopologicalOrder(); SmallPtrSet LegalizedNodes; SelectionDAGLegalize Legalizer(*this, LegalizedNodes); // Visit all the nodes. We start in topological order, so that we see // nodes with their original operands intact. Legalization can produce // new nodes which may themselves need to be legalized. Iterate until all // nodes have been legalized. for (;;) { bool AnyLegalized = false; for (auto NI = allnodes_end(); NI != allnodes_begin();) { --NI; SDNode *N = NI; if (N->use_empty() && N != getRoot().getNode()) { ++NI; DeleteNode(N); continue; } if (LegalizedNodes.insert(N).second) { AnyLegalized = true; Legalizer.LegalizeOp(N); if (N->use_empty() && N != getRoot().getNode()) { ++NI; DeleteNode(N); } } } if (!AnyLegalized) break; } // Remove dead nodes now. RemoveDeadNodes(); } bool SelectionDAG::LegalizeOp(SDNode *N, SmallSetVector &UpdatedNodes) { SmallPtrSet LegalizedNodes; SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes); // Directly insert the node in question, and legalize it. This will recurse // as needed through operands. LegalizedNodes.insert(N); Legalizer.LegalizeOp(N); return LegalizedNodes.count(N); }