//===----- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler --===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements bottom-up and top-down register pressure reduction list // schedulers, using standard algorithms. The basic approach uses a priority // queue of available nodes to schedule. One at a time, nodes are taken from // the priority queue (thus in priority order), checked for legality to // schedule, and emitted if legal. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "pre-RA-sched" #include "ScheduleDAGSDNodes.h" #include "llvm/CodeGen/SchedulerRegistry.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/ADT/PriorityQueue.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include using namespace llvm; STATISTIC(NumBacktracks, "Number of times scheduler backtracked"); STATISTIC(NumUnfolds, "Number of nodes unfolded"); STATISTIC(NumDups, "Number of duplicated nodes"); STATISTIC(NumPRCopies, "Number of physical register copies"); static RegisterScheduler burrListDAGScheduler("list-burr", "Bottom-up register reduction list scheduling", createBURRListDAGScheduler); static RegisterScheduler tdrListrDAGScheduler("list-tdrr", "Top-down register reduction list scheduling", createTDRRListDAGScheduler); namespace { //===----------------------------------------------------------------------===// /// ScheduleDAGRRList - The actual register reduction list scheduler /// implementation. This supports both top-down and bottom-up scheduling. /// class VISIBILITY_HIDDEN ScheduleDAGRRList : public ScheduleDAGSDNodes { private: /// isBottomUp - This is true if the scheduling problem is bottom-up, false if /// it is top-down. bool isBottomUp; /// AvailableQueue - The priority queue to use for the available SUnits. SchedulingPriorityQueue *AvailableQueue; /// LiveRegDefs - A set of physical registers and their definition /// that are "live". These nodes must be scheduled before any other nodes that /// modifies the registers can be scheduled. unsigned NumLiveRegs; std::vector LiveRegDefs; std::vector LiveRegCycles; /// Topo - A topological ordering for SUnits which permits fast IsReachable /// and similar queries. ScheduleDAGTopologicalSort Topo; public: ScheduleDAGRRList(MachineFunction &mf, bool isbottomup, SchedulingPriorityQueue *availqueue) : ScheduleDAGSDNodes(mf), isBottomUp(isbottomup), AvailableQueue(availqueue), Topo(SUnits) { } ~ScheduleDAGRRList() { delete AvailableQueue; } void Schedule(); /// IsReachable - Checks if SU is reachable from TargetSU. bool IsReachable(const SUnit *SU, const SUnit *TargetSU) { return Topo.IsReachable(SU, TargetSU); } /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will /// create a cycle. bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) { return Topo.WillCreateCycle(SU, TargetSU); } /// AddPred - adds a predecessor edge to SUnit SU. /// This returns true if this is a new predecessor. /// Updates the topological ordering if required. void AddPred(SUnit *SU, const SDep &D) { Topo.AddPred(SU, D.getSUnit()); SU->addPred(D); } /// RemovePred - removes a predecessor edge from SUnit SU. /// This returns true if an edge was removed. /// Updates the topological ordering if required. void RemovePred(SUnit *SU, const SDep &D) { Topo.RemovePred(SU, D.getSUnit()); SU->removePred(D); } private: void ReleasePred(SUnit *SU, const SDep *PredEdge); void ReleasePredecessors(SUnit *SU, unsigned CurCycle); void ReleaseSucc(SUnit *SU, const SDep *SuccEdge); void ReleaseSuccessors(SUnit *SU); void CapturePred(SDep *PredEdge); void ScheduleNodeBottomUp(SUnit*, unsigned); void ScheduleNodeTopDown(SUnit*, unsigned); void UnscheduleNodeBottomUp(SUnit*); void BacktrackBottomUp(SUnit*, unsigned, unsigned&); SUnit *CopyAndMoveSuccessors(SUnit*); void InsertCopiesAndMoveSuccs(SUnit*, unsigned, const TargetRegisterClass*, const TargetRegisterClass*, SmallVector&); bool DelayForLiveRegsBottomUp(SUnit*, SmallVector&); void ListScheduleTopDown(); void ListScheduleBottomUp(); /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it. /// Updates the topological ordering if required. SUnit *CreateNewSUnit(SDNode *N) { unsigned NumSUnits = SUnits.size(); SUnit *NewNode = NewSUnit(N); // Update the topological ordering. if (NewNode->NodeNum >= NumSUnits) Topo.InitDAGTopologicalSorting(); return NewNode; } /// CreateClone - Creates a new SUnit from an existing one. /// Updates the topological ordering if required. SUnit *CreateClone(SUnit *N) { unsigned NumSUnits = SUnits.size(); SUnit *NewNode = Clone(N); // Update the topological ordering. if (NewNode->NodeNum >= NumSUnits) Topo.InitDAGTopologicalSorting(); return NewNode; } /// ForceUnitLatencies - Return true, since register-pressure-reducing /// scheduling doesn't need actual latency information. bool ForceUnitLatencies() const { return true; } }; } // end anonymous namespace /// Schedule - Schedule the DAG using list scheduling. void ScheduleDAGRRList::Schedule() { DOUT << "********** List Scheduling **********\n"; NumLiveRegs = 0; LiveRegDefs.resize(TRI->getNumRegs(), NULL); LiveRegCycles.resize(TRI->getNumRegs(), 0); // Build the scheduling graph. BuildSchedGraph(); DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) SUnits[su].dumpAll(this)); Topo.InitDAGTopologicalSorting(); AvailableQueue->initNodes(SUnits); // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate. if (isBottomUp) ListScheduleBottomUp(); else ListScheduleTopDown(); AvailableQueue->releaseState(); } //===----------------------------------------------------------------------===// // Bottom-Up Scheduling //===----------------------------------------------------------------------===// /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to /// the AvailableQueue if the count reaches zero. Also update its cycle bound. void ScheduleDAGRRList::ReleasePred(SUnit *SU, const SDep *PredEdge) { SUnit *PredSU = PredEdge->getSUnit(); --PredSU->NumSuccsLeft; #ifndef NDEBUG if (PredSU->NumSuccsLeft < 0) { cerr << "*** Scheduling failed! ***\n"; PredSU->dump(this); cerr << " has been released too many times!\n"; llvm_unreachable(); } #endif // If all the node's successors are scheduled, this node is ready // to be scheduled. Ignore the special EntrySU node. if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) { PredSU->isAvailable = true; AvailableQueue->push(PredSU); } } void ScheduleDAGRRList::ReleasePredecessors(SUnit *SU, unsigned CurCycle) { // Bottom up: release predecessors for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { ReleasePred(SU, &*I); if (I->isAssignedRegDep()) { // This is a physical register dependency and it's impossible or // expensive to copy the register. Make sure nothing that can // clobber the register is scheduled between the predecessor and // this node. if (!LiveRegDefs[I->getReg()]) { ++NumLiveRegs; LiveRegDefs[I->getReg()] = I->getSUnit(); LiveRegCycles[I->getReg()] = CurCycle; } } } } /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending /// count of its predecessors. If a predecessor pending count is zero, add it to /// the Available queue. void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) { DOUT << "*** Scheduling [" << CurCycle << "]: "; DEBUG(SU->dump(this)); assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!"); SU->setHeightToAtLeast(CurCycle); Sequence.push_back(SU); ReleasePredecessors(SU, CurCycle); // Release all the implicit physical register defs that are live. for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { if (I->isAssignedRegDep()) { if (LiveRegCycles[I->getReg()] == I->getSUnit()->getHeight()) { assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!"); assert(LiveRegDefs[I->getReg()] == SU && "Physical register dependency violated?"); --NumLiveRegs; LiveRegDefs[I->getReg()] = NULL; LiveRegCycles[I->getReg()] = 0; } } } SU->isScheduled = true; AvailableQueue->ScheduledNode(SU); } /// CapturePred - This does the opposite of ReleasePred. Since SU is being /// unscheduled, incrcease the succ left count of its predecessors. Remove /// them from AvailableQueue if necessary. void ScheduleDAGRRList::CapturePred(SDep *PredEdge) { SUnit *PredSU = PredEdge->getSUnit(); if (PredSU->isAvailable) { PredSU->isAvailable = false; if (!PredSU->isPending) AvailableQueue->remove(PredSU); } ++PredSU->NumSuccsLeft; } /// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and /// its predecessor states to reflect the change. void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) { DOUT << "*** Unscheduling [" << SU->getHeight() << "]: "; DEBUG(SU->dump(this)); AvailableQueue->UnscheduledNode(SU); for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { CapturePred(&*I); if (I->isAssignedRegDep() && SU->getHeight() == LiveRegCycles[I->getReg()]) { assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!"); assert(LiveRegDefs[I->getReg()] == I->getSUnit() && "Physical register dependency violated?"); --NumLiveRegs; LiveRegDefs[I->getReg()] = NULL; LiveRegCycles[I->getReg()] = 0; } } for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { if (I->isAssignedRegDep()) { if (!LiveRegDefs[I->getReg()]) { LiveRegDefs[I->getReg()] = SU; ++NumLiveRegs; } if (I->getSUnit()->getHeight() < LiveRegCycles[I->getReg()]) LiveRegCycles[I->getReg()] = I->getSUnit()->getHeight(); } } SU->setHeightDirty(); SU->isScheduled = false; SU->isAvailable = true; AvailableQueue->push(SU); } /// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in /// BTCycle in order to schedule a specific node. void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, unsigned BtCycle, unsigned &CurCycle) { SUnit *OldSU = NULL; while (CurCycle > BtCycle) { OldSU = Sequence.back(); Sequence.pop_back(); if (SU->isSucc(OldSU)) // Don't try to remove SU from AvailableQueue. SU->isAvailable = false; UnscheduleNodeBottomUp(OldSU); --CurCycle; } assert(!SU->isSucc(OldSU) && "Something is wrong!"); ++NumBacktracks; } /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled /// successors to the newly created node. SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) { if (SU->getNode()->getFlaggedNode()) return NULL; SDNode *N = SU->getNode(); if (!N) return NULL; SUnit *NewSU; bool TryUnfold = false; for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { MVT VT = N->getValueType(i); if (VT == MVT::Flag) return NULL; else if (VT == MVT::Other) TryUnfold = true; } for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { const SDValue &Op = N->getOperand(i); MVT VT = Op.getNode()->getValueType(Op.getResNo()); if (VT == MVT::Flag) return NULL; } if (TryUnfold) { SmallVector NewNodes; if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes)) return NULL; DOUT << "Unfolding SU # " << SU->NodeNum << "\n"; assert(NewNodes.size() == 2 && "Expected a load folding node!"); N = NewNodes[1]; SDNode *LoadNode = NewNodes[0]; unsigned NumVals = N->getNumValues(); unsigned OldNumVals = SU->getNode()->getNumValues(); for (unsigned i = 0; i != NumVals; ++i) DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i)); DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1), SDValue(LoadNode, 1)); // LoadNode may already exist. This can happen when there is another // load from the same location and producing the same type of value // but it has different alignment or volatileness. bool isNewLoad = true; SUnit *LoadSU; if (LoadNode->getNodeId() != -1) { LoadSU = &SUnits[LoadNode->getNodeId()]; isNewLoad = false; } else { LoadSU = CreateNewSUnit(LoadNode); LoadNode->setNodeId(LoadSU->NodeNum); ComputeLatency(LoadSU); } SUnit *NewSU = CreateNewSUnit(N); assert(N->getNodeId() == -1 && "Node already inserted!"); N->setNodeId(NewSU->NodeNum); const TargetInstrDesc &TID = TII->get(N->getMachineOpcode()); for (unsigned i = 0; i != TID.getNumOperands(); ++i) { if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) { NewSU->isTwoAddress = true; break; } } if (TID.isCommutable()) NewSU->isCommutable = true; ComputeLatency(NewSU); // Record all the edges to and from the old SU, by category. SmallVector ChainPreds; SmallVector ChainSuccs; SmallVector LoadPreds; SmallVector NodePreds; SmallVector NodeSuccs; for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { if (I->isCtrl()) ChainPreds.push_back(*I); else if (I->getSUnit()->getNode() && I->getSUnit()->getNode()->isOperandOf(LoadNode)) LoadPreds.push_back(*I); else NodePreds.push_back(*I); } for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { if (I->isCtrl()) ChainSuccs.push_back(*I); else NodeSuccs.push_back(*I); } // Now assign edges to the newly-created nodes. for (unsigned i = 0, e = ChainPreds.size(); i != e; ++i) { const SDep &Pred = ChainPreds[i]; RemovePred(SU, Pred); if (isNewLoad) AddPred(LoadSU, Pred); } for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) { const SDep &Pred = LoadPreds[i]; RemovePred(SU, Pred); if (isNewLoad) AddPred(LoadSU, Pred); } for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) { const SDep &Pred = NodePreds[i]; RemovePred(SU, Pred); AddPred(NewSU, Pred); } for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) { SDep D = NodeSuccs[i]; SUnit *SuccDep = D.getSUnit(); D.setSUnit(SU); RemovePred(SuccDep, D); D.setSUnit(NewSU); AddPred(SuccDep, D); } for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) { SDep D = ChainSuccs[i]; SUnit *SuccDep = D.getSUnit(); D.setSUnit(SU); RemovePred(SuccDep, D); if (isNewLoad) { D.setSUnit(LoadSU); AddPred(SuccDep, D); } } // Add a data dependency to reflect that NewSU reads the value defined // by LoadSU. AddPred(NewSU, SDep(LoadSU, SDep::Data, LoadSU->Latency)); if (isNewLoad) AvailableQueue->addNode(LoadSU); AvailableQueue->addNode(NewSU); ++NumUnfolds; if (NewSU->NumSuccsLeft == 0) { NewSU->isAvailable = true; return NewSU; } SU = NewSU; } DOUT << "Duplicating SU # " << SU->NodeNum << "\n"; NewSU = CreateClone(SU); // New SUnit has the exact same predecessors. for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) if (!I->isArtificial()) AddPred(NewSU, *I); // Only copy scheduled successors. Cut them from old node's successor // list and move them over. SmallVector, 4> DelDeps; for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { if (I->isArtificial()) continue; SUnit *SuccSU = I->getSUnit(); if (SuccSU->isScheduled) { SDep D = *I; D.setSUnit(NewSU); AddPred(SuccSU, D); D.setSUnit(SU); DelDeps.push_back(std::make_pair(SuccSU, D)); } } for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) RemovePred(DelDeps[i].first, DelDeps[i].second); AvailableQueue->updateNode(SU); AvailableQueue->addNode(NewSU); ++NumDups; return NewSU; } /// InsertCopiesAndMoveSuccs - Insert register copies and move all /// scheduled successors of the given SUnit to the last copy. void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg, const TargetRegisterClass *DestRC, const TargetRegisterClass *SrcRC, SmallVector &Copies) { SUnit *CopyFromSU = CreateNewSUnit(NULL); CopyFromSU->CopySrcRC = SrcRC; CopyFromSU->CopyDstRC = DestRC; SUnit *CopyToSU = CreateNewSUnit(NULL); CopyToSU->CopySrcRC = DestRC; CopyToSU->CopyDstRC = SrcRC; // Only copy scheduled successors. Cut them from old node's successor // list and move them over. SmallVector, 4> DelDeps; for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { if (I->isArtificial()) continue; SUnit *SuccSU = I->getSUnit(); if (SuccSU->isScheduled) { SDep D = *I; D.setSUnit(CopyToSU); AddPred(SuccSU, D); DelDeps.push_back(std::make_pair(SuccSU, *I)); } } for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) RemovePred(DelDeps[i].first, DelDeps[i].second); AddPred(CopyFromSU, SDep(SU, SDep::Data, SU->Latency, Reg)); AddPred(CopyToSU, SDep(CopyFromSU, SDep::Data, CopyFromSU->Latency, 0)); AvailableQueue->updateNode(SU); AvailableQueue->addNode(CopyFromSU); AvailableQueue->addNode(CopyToSU); Copies.push_back(CopyFromSU); Copies.push_back(CopyToSU); ++NumPRCopies; } /// getPhysicalRegisterVT - Returns the ValueType of the physical register /// definition of the specified node. /// FIXME: Move to SelectionDAG? static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg, const TargetInstrInfo *TII) { const TargetInstrDesc &TID = TII->get(N->getMachineOpcode()); assert(TID.ImplicitDefs && "Physical reg def must be in implicit def list!"); unsigned NumRes = TID.getNumDefs(); for (const unsigned *ImpDef = TID.getImplicitDefs(); *ImpDef; ++ImpDef) { if (Reg == *ImpDef) break; ++NumRes; } return N->getValueType(NumRes); } /// CheckForLiveRegDef - Return true and update live register vector if the /// specified register def of the specified SUnit clobbers any "live" registers. static bool CheckForLiveRegDef(SUnit *SU, unsigned Reg, std::vector &LiveRegDefs, SmallSet &RegAdded, SmallVector &LRegs, const TargetRegisterInfo *TRI) { bool Added = false; if (LiveRegDefs[Reg] && LiveRegDefs[Reg] != SU) { if (RegAdded.insert(Reg)) { LRegs.push_back(Reg); Added = true; } } for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) if (LiveRegDefs[*Alias] && LiveRegDefs[*Alias] != SU) { if (RegAdded.insert(*Alias)) { LRegs.push_back(*Alias); Added = true; } } return Added; } /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay /// scheduling of the given node to satisfy live physical register dependencies. /// If the specific node is the last one that's available to schedule, do /// whatever is necessary (i.e. backtracking or cloning) to make it possible. bool ScheduleDAGRRList::DelayForLiveRegsBottomUp(SUnit *SU, SmallVector &LRegs){ if (NumLiveRegs == 0) return false; SmallSet RegAdded; // If this node would clobber any "live" register, then it's not ready. for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { if (I->isAssignedRegDep()) CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs, RegAdded, LRegs, TRI); } for (SDNode *Node = SU->getNode(); Node; Node = Node->getFlaggedNode()) { if (Node->getOpcode() == ISD::INLINEASM) { // Inline asm can clobber physical defs. unsigned NumOps = Node->getNumOperands(); if (Node->getOperand(NumOps-1).getValueType() == MVT::Flag) --NumOps; // Ignore the flag operand. for (unsigned i = 2; i != NumOps;) { unsigned Flags = cast(Node->getOperand(i))->getZExtValue(); unsigned NumVals = (Flags & 0xffff) >> 3; ++i; // Skip the ID value. if ((Flags & 7) == 2 || (Flags & 7) == 6) { // Check for def of register or earlyclobber register. for (; NumVals; --NumVals, ++i) { unsigned Reg = cast(Node->getOperand(i))->getReg(); if (TargetRegisterInfo::isPhysicalRegister(Reg)) CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI); } } else i += NumVals; } continue; } if (!Node->isMachineOpcode()) continue; const TargetInstrDesc &TID = TII->get(Node->getMachineOpcode()); if (!TID.ImplicitDefs) continue; for (const unsigned *Reg = TID.ImplicitDefs; *Reg; ++Reg) CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI); } return !LRegs.empty(); } /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up /// schedulers. void ScheduleDAGRRList::ListScheduleBottomUp() { unsigned CurCycle = 0; // Release any predecessors of the special Exit node. ReleasePredecessors(&ExitSU, CurCycle); // Add root to Available queue. if (!SUnits.empty()) { SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()]; assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!"); RootSU->isAvailable = true; AvailableQueue->push(RootSU); } // While Available queue is not empty, grab the node with the highest // priority. If it is not ready put it back. Schedule the node. SmallVector NotReady; DenseMap > LRegsMap; Sequence.reserve(SUnits.size()); while (!AvailableQueue->empty()) { bool Delayed = false; LRegsMap.clear(); SUnit *CurSU = AvailableQueue->pop(); while (CurSU) { SmallVector LRegs; if (!DelayForLiveRegsBottomUp(CurSU, LRegs)) break; Delayed = true; LRegsMap.insert(std::make_pair(CurSU, LRegs)); CurSU->isPending = true; // This SU is not in AvailableQueue right now. NotReady.push_back(CurSU); CurSU = AvailableQueue->pop(); } // All candidates are delayed due to live physical reg dependencies. // Try backtracking, code duplication, or inserting cross class copies // to resolve it. if (Delayed && !CurSU) { for (unsigned i = 0, e = NotReady.size(); i != e; ++i) { SUnit *TrySU = NotReady[i]; SmallVector &LRegs = LRegsMap[TrySU]; // Try unscheduling up to the point where it's safe to schedule // this node. unsigned LiveCycle = CurCycle; for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) { unsigned Reg = LRegs[j]; unsigned LCycle = LiveRegCycles[Reg]; LiveCycle = std::min(LiveCycle, LCycle); } SUnit *OldSU = Sequence[LiveCycle]; if (!WillCreateCycle(TrySU, OldSU)) { BacktrackBottomUp(TrySU, LiveCycle, CurCycle); // Force the current node to be scheduled before the node that // requires the physical reg dep. if (OldSU->isAvailable) { OldSU->isAvailable = false; AvailableQueue->remove(OldSU); } AddPred(TrySU, SDep(OldSU, SDep::Order, /*Latency=*/1, /*Reg=*/0, /*isNormalMemory=*/false, /*isMustAlias=*/false, /*isArtificial=*/true)); // If one or more successors has been unscheduled, then the current // node is no longer avaialable. Schedule a successor that's now // available instead. if (!TrySU->isAvailable) CurSU = AvailableQueue->pop(); else { CurSU = TrySU; TrySU->isPending = false; NotReady.erase(NotReady.begin()+i); } break; } } if (!CurSU) { // Can't backtrack. If it's too expensive to copy the value, then try // duplicate the nodes that produces these "too expensive to copy" // values to break the dependency. In case even that doesn't work, // insert cross class copies. // If it's not too expensive, i.e. cost != -1, issue copies. SUnit *TrySU = NotReady[0]; SmallVector &LRegs = LRegsMap[TrySU]; assert(LRegs.size() == 1 && "Can't handle this yet!"); unsigned Reg = LRegs[0]; SUnit *LRDef = LiveRegDefs[Reg]; MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII); const TargetRegisterClass *RC = TRI->getPhysicalRegisterRegClass(Reg, VT); const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC); // If cross copy register class is null, then it must be possible copy // the value directly. Do not try duplicate the def. SUnit *NewDef = 0; if (DestRC) NewDef = CopyAndMoveSuccessors(LRDef); else DestRC = RC; if (!NewDef) { // Issue copies, these can be expensive cross register class copies. SmallVector Copies; InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies); DOUT << "Adding an edge from SU #" << TrySU->NodeNum << " to SU #" << Copies.front()->NodeNum << "\n"; AddPred(TrySU, SDep(Copies.front(), SDep::Order, /*Latency=*/1, /*Reg=*/0, /*isNormalMemory=*/false, /*isMustAlias=*/false, /*isArtificial=*/true)); NewDef = Copies.back(); } DOUT << "Adding an edge from SU #" << NewDef->NodeNum << " to SU #" << TrySU->NodeNum << "\n"; LiveRegDefs[Reg] = NewDef; AddPred(NewDef, SDep(TrySU, SDep::Order, /*Latency=*/1, /*Reg=*/0, /*isNormalMemory=*/false, /*isMustAlias=*/false, /*isArtificial=*/true)); TrySU->isAvailable = false; CurSU = NewDef; } assert(CurSU && "Unable to resolve live physical register dependencies!"); } // Add the nodes that aren't ready back onto the available list. for (unsigned i = 0, e = NotReady.size(); i != e; ++i) { NotReady[i]->isPending = false; // May no longer be available due to backtracking. if (NotReady[i]->isAvailable) AvailableQueue->push(NotReady[i]); } NotReady.clear(); if (CurSU) ScheduleNodeBottomUp(CurSU, CurCycle); ++CurCycle; } // Reverse the order if it is bottom up. std::reverse(Sequence.begin(), Sequence.end()); #ifndef NDEBUG VerifySchedule(isBottomUp); #endif } //===----------------------------------------------------------------------===// // Top-Down Scheduling //===----------------------------------------------------------------------===// /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to /// the AvailableQueue if the count reaches zero. Also update its cycle bound. void ScheduleDAGRRList::ReleaseSucc(SUnit *SU, const SDep *SuccEdge) { SUnit *SuccSU = SuccEdge->getSUnit(); --SuccSU->NumPredsLeft; #ifndef NDEBUG if (SuccSU->NumPredsLeft < 0) { cerr << "*** Scheduling failed! ***\n"; SuccSU->dump(this); cerr << " has been released too many times!\n"; llvm_unreachable(); } #endif // If all the node's predecessors are scheduled, this node is ready // to be scheduled. Ignore the special ExitSU node. if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) { SuccSU->isAvailable = true; AvailableQueue->push(SuccSU); } } void ScheduleDAGRRList::ReleaseSuccessors(SUnit *SU) { // Top down: release successors for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { assert(!I->isAssignedRegDep() && "The list-tdrr scheduler doesn't yet support physreg dependencies!"); ReleaseSucc(SU, &*I); } } /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending /// count of its successors. If a successor pending count is zero, add it to /// the Available queue. void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) { DOUT << "*** Scheduling [" << CurCycle << "]: "; DEBUG(SU->dump(this)); assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!"); SU->setDepthToAtLeast(CurCycle); Sequence.push_back(SU); ReleaseSuccessors(SU); SU->isScheduled = true; AvailableQueue->ScheduledNode(SU); } /// ListScheduleTopDown - The main loop of list scheduling for top-down /// schedulers. void ScheduleDAGRRList::ListScheduleTopDown() { unsigned CurCycle = 0; // Release any successors of the special Entry node. ReleaseSuccessors(&EntrySU); // All leaves to Available queue. for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { // It is available if it has no predecessors. if (SUnits[i].Preds.empty()) { AvailableQueue->push(&SUnits[i]); SUnits[i].isAvailable = true; } } // While Available queue is not empty, grab the node with the highest // priority. If it is not ready put it back. Schedule the node. Sequence.reserve(SUnits.size()); while (!AvailableQueue->empty()) { SUnit *CurSU = AvailableQueue->pop(); if (CurSU) ScheduleNodeTopDown(CurSU, CurCycle); ++CurCycle; } #ifndef NDEBUG VerifySchedule(isBottomUp); #endif } //===----------------------------------------------------------------------===// // RegReductionPriorityQueue Implementation //===----------------------------------------------------------------------===// // // This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers // to reduce register pressure. // namespace { template class RegReductionPriorityQueue; /// Sorting functions for the Available queue. struct bu_ls_rr_sort : public std::binary_function { RegReductionPriorityQueue *SPQ; bu_ls_rr_sort(RegReductionPriorityQueue *spq) : SPQ(spq) {} bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {} bool operator()(const SUnit* left, const SUnit* right) const; }; struct td_ls_rr_sort : public std::binary_function { RegReductionPriorityQueue *SPQ; td_ls_rr_sort(RegReductionPriorityQueue *spq) : SPQ(spq) {} td_ls_rr_sort(const td_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {} bool operator()(const SUnit* left, const SUnit* right) const; }; } // end anonymous namespace /// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number. /// Smaller number is the higher priority. static unsigned CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector &SUNumbers) { unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum]; if (SethiUllmanNumber != 0) return SethiUllmanNumber; unsigned Extra = 0; for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { if (I->isCtrl()) continue; // ignore chain preds SUnit *PredSU = I->getSUnit(); unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU, SUNumbers); if (PredSethiUllman > SethiUllmanNumber) { SethiUllmanNumber = PredSethiUllman; Extra = 0; } else if (PredSethiUllman == SethiUllmanNumber) ++Extra; } SethiUllmanNumber += Extra; if (SethiUllmanNumber == 0) SethiUllmanNumber = 1; return SethiUllmanNumber; } namespace { template class VISIBILITY_HIDDEN RegReductionPriorityQueue : public SchedulingPriorityQueue { PriorityQueue, SF> Queue; unsigned currentQueueId; protected: // SUnits - The SUnits for the current graph. std::vector *SUnits; const TargetInstrInfo *TII; const TargetRegisterInfo *TRI; ScheduleDAGRRList *scheduleDAG; // SethiUllmanNumbers - The SethiUllman number for each node. std::vector SethiUllmanNumbers; public: RegReductionPriorityQueue(const TargetInstrInfo *tii, const TargetRegisterInfo *tri) : Queue(SF(this)), currentQueueId(0), TII(tii), TRI(tri), scheduleDAG(NULL) {} void initNodes(std::vector &sunits) { SUnits = &sunits; // Add pseudo dependency edges for two-address nodes. AddPseudoTwoAddrDeps(); // Reroute edges to nodes with multiple uses. PrescheduleNodesWithMultipleUses(); // Calculate node priorities. CalculateSethiUllmanNumbers(); } void addNode(const SUnit *SU) { unsigned SUSize = SethiUllmanNumbers.size(); if (SUnits->size() > SUSize) SethiUllmanNumbers.resize(SUSize*2, 0); CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers); } void updateNode(const SUnit *SU) { SethiUllmanNumbers[SU->NodeNum] = 0; CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers); } void releaseState() { SUnits = 0; SethiUllmanNumbers.clear(); } unsigned getNodePriority(const SUnit *SU) const { assert(SU->NodeNum < SethiUllmanNumbers.size()); unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0; if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg) // CopyToReg should be close to its uses to facilitate coalescing and // avoid spilling. return 0; if (Opc == TargetInstrInfo::EXTRACT_SUBREG || Opc == TargetInstrInfo::SUBREG_TO_REG || Opc == TargetInstrInfo::INSERT_SUBREG) // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be // close to their uses to facilitate coalescing. return 0; if (SU->NumSuccs == 0 && SU->NumPreds != 0) // If SU does not have a register use, i.e. it doesn't produce a value // that would be consumed (e.g. store), then it terminates a chain of // computation. Give it a large SethiUllman number so it will be // scheduled right before its predecessors that it doesn't lengthen // their live ranges. return 0xffff; if (SU->NumPreds == 0 && SU->NumSuccs != 0) // If SU does not have a register def, schedule it close to its uses // because it does not lengthen any live ranges. return 0; return SethiUllmanNumbers[SU->NodeNum]; } unsigned size() const { return Queue.size(); } bool empty() const { return Queue.empty(); } void push(SUnit *U) { assert(!U->NodeQueueId && "Node in the queue already"); U->NodeQueueId = ++currentQueueId; Queue.push(U); } void push_all(const std::vector &Nodes) { for (unsigned i = 0, e = Nodes.size(); i != e; ++i) push(Nodes[i]); } SUnit *pop() { if (empty()) return NULL; SUnit *V = Queue.top(); Queue.pop(); V->NodeQueueId = 0; return V; } void remove(SUnit *SU) { assert(!Queue.empty() && "Queue is empty!"); assert(SU->NodeQueueId != 0 && "Not in queue!"); Queue.erase_one(SU); SU->NodeQueueId = 0; } void setScheduleDAG(ScheduleDAGRRList *scheduleDag) { scheduleDAG = scheduleDag; } protected: bool canClobber(const SUnit *SU, const SUnit *Op); void AddPseudoTwoAddrDeps(); void PrescheduleNodesWithMultipleUses(); void CalculateSethiUllmanNumbers(); }; typedef RegReductionPriorityQueue BURegReductionPriorityQueue; typedef RegReductionPriorityQueue TDRegReductionPriorityQueue; } /// closestSucc - Returns the scheduled cycle of the successor which is /// closest to the current cycle. static unsigned closestSucc(const SUnit *SU) { unsigned MaxHeight = 0; for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { if (I->isCtrl()) continue; // ignore chain succs unsigned Height = I->getSUnit()->getHeight(); // If there are bunch of CopyToRegs stacked up, they should be considered // to be at the same position. if (I->getSUnit()->getNode() && I->getSUnit()->getNode()->getOpcode() == ISD::CopyToReg) Height = closestSucc(I->getSUnit())+1; if (Height > MaxHeight) MaxHeight = Height; } return MaxHeight; } /// calcMaxScratches - Returns an cost estimate of the worse case requirement /// for scratch registers, i.e. number of data dependencies. static unsigned calcMaxScratches(const SUnit *SU) { unsigned Scratches = 0; for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { if (I->isCtrl()) continue; // ignore chain preds Scratches++; } return Scratches; } // Bottom up bool bu_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const { unsigned LPriority = SPQ->getNodePriority(left); unsigned RPriority = SPQ->getNodePriority(right); if (LPriority != RPriority) return LPriority > RPriority; // Try schedule def + use closer when Sethi-Ullman numbers are the same. // e.g. // t1 = op t2, c1 // t3 = op t4, c2 // // and the following instructions are both ready. // t2 = op c3 // t4 = op c4 // // Then schedule t2 = op first. // i.e. // t4 = op c4 // t2 = op c3 // t1 = op t2, c1 // t3 = op t4, c2 // // This creates more short live intervals. unsigned LDist = closestSucc(left); unsigned RDist = closestSucc(right); if (LDist != RDist) return LDist < RDist; // How many registers becomes live when the node is scheduled. unsigned LScratch = calcMaxScratches(left); unsigned RScratch = calcMaxScratches(right); if (LScratch != RScratch) return LScratch > RScratch; if (left->getHeight() != right->getHeight()) return left->getHeight() > right->getHeight(); if (left->getDepth() != right->getDepth()) return left->getDepth() < right->getDepth(); assert(left->NodeQueueId && right->NodeQueueId && "NodeQueueId cannot be zero"); return (left->NodeQueueId > right->NodeQueueId); } template bool RegReductionPriorityQueue::canClobber(const SUnit *SU, const SUnit *Op) { if (SU->isTwoAddress) { unsigned Opc = SU->getNode()->getMachineOpcode(); const TargetInstrDesc &TID = TII->get(Opc); unsigned NumRes = TID.getNumDefs(); unsigned NumOps = TID.getNumOperands() - NumRes; for (unsigned i = 0; i != NumOps; ++i) { if (TID.getOperandConstraint(i+NumRes, TOI::TIED_TO) != -1) { SDNode *DU = SU->getNode()->getOperand(i).getNode(); if (DU->getNodeId() != -1 && Op->OrigNode == &(*SUnits)[DU->getNodeId()]) return true; } } } return false; } /// hasCopyToRegUse - Return true if SU has a value successor that is a /// CopyToReg node. static bool hasCopyToRegUse(const SUnit *SU) { for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { if (I->isCtrl()) continue; const SUnit *SuccSU = I->getSUnit(); if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg) return true; } return false; } /// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's /// physical register defs. static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU, const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) { SDNode *N = SuccSU->getNode(); unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs(); const unsigned *ImpDefs = TII->get(N->getMachineOpcode()).getImplicitDefs(); assert(ImpDefs && "Caller should check hasPhysRegDefs"); for (const SDNode *SUNode = SU->getNode(); SUNode; SUNode = SUNode->getFlaggedNode()) { if (!SUNode->isMachineOpcode()) continue; const unsigned *SUImpDefs = TII->get(SUNode->getMachineOpcode()).getImplicitDefs(); if (!SUImpDefs) return false; for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) { MVT VT = N->getValueType(i); if (VT == MVT::Flag || VT == MVT::Other) continue; if (!N->hasAnyUseOfValue(i)) continue; unsigned Reg = ImpDefs[i - NumDefs]; for (;*SUImpDefs; ++SUImpDefs) { unsigned SUReg = *SUImpDefs; if (TRI->regsOverlap(Reg, SUReg)) return true; } } } return false; } /// PrescheduleNodesWithMultipleUses - Nodes with multiple uses /// are not handled well by the general register pressure reduction /// heuristics. When presented with code like this: /// /// N /// / | /// / | /// U store /// | /// ... /// /// the heuristics tend to push the store up, but since the /// operand of the store has another use (U), this would increase /// the length of that other use (the U->N edge). /// /// This function transforms code like the above to route U's /// dependence through the store when possible, like this: /// /// N /// || /// || /// store /// | /// U /// | /// ... /// /// This results in the store being scheduled immediately /// after N, which shortens the U->N live range, reducing /// register pressure. /// template void RegReductionPriorityQueue::PrescheduleNodesWithMultipleUses() { // Visit all the nodes in topological order, working top-down. for (unsigned i = 0, e = SUnits->size(); i != e; ++i) { SUnit *SU = &(*SUnits)[i]; // For now, only look at nodes with no data successors, such as stores. // These are especially important, due to the heuristics in // getNodePriority for nodes with no data successors. if (SU->NumSuccs != 0) continue; // For now, only look at nodes with exactly one data predecessor. if (SU->NumPreds != 1) continue; // Avoid prescheduling copies to virtual registers, which don't behave // like other nodes from the perspective of scheduling heuristics. if (SDNode *N = SU->getNode()) if (N->getOpcode() == ISD::CopyToReg && TargetRegisterInfo::isVirtualRegister (cast(N->getOperand(1))->getReg())) continue; // Locate the single data predecessor. SUnit *PredSU = 0; for (SUnit::const_pred_iterator II = SU->Preds.begin(), EE = SU->Preds.end(); II != EE; ++II) if (!II->isCtrl()) { PredSU = II->getSUnit(); break; } assert(PredSU); // Don't rewrite edges that carry physregs, because that requires additional // support infrastructure. if (PredSU->hasPhysRegDefs) continue; // Short-circuit the case where SU is PredSU's only data successor. if (PredSU->NumSuccs == 1) continue; // Avoid prescheduling to copies from virtual registers, which don't behave // like other nodes from the perspective of scheduling // heuristics. if (SDNode *N = SU->getNode()) if (N->getOpcode() == ISD::CopyFromReg && TargetRegisterInfo::isVirtualRegister (cast(N->getOperand(1))->getReg())) continue; // Perform checks on the successors of PredSU. for (SUnit::const_succ_iterator II = PredSU->Succs.begin(), EE = PredSU->Succs.end(); II != EE; ++II) { SUnit *PredSuccSU = II->getSUnit(); if (PredSuccSU == SU) continue; // If PredSU has another successor with no data successors, for // now don't attempt to choose either over the other. if (PredSuccSU->NumSuccs == 0) goto outer_loop_continue; // Don't break physical register dependencies. if (SU->hasPhysRegClobbers && PredSuccSU->hasPhysRegDefs) if (canClobberPhysRegDefs(PredSuccSU, SU, TII, TRI)) goto outer_loop_continue; // Don't introduce graph cycles. if (scheduleDAG->IsReachable(SU, PredSuccSU)) goto outer_loop_continue; } // Ok, the transformation is safe and the heuristics suggest it is // profitable. Update the graph. DOUT << "Prescheduling SU # " << SU->NodeNum << " next to PredSU # " << PredSU->NodeNum << " to guide scheduling in the presence of multiple uses\n"; for (unsigned i = 0; i != PredSU->Succs.size(); ++i) { SDep Edge = PredSU->Succs[i]; assert(!Edge.isAssignedRegDep()); SUnit *SuccSU = Edge.getSUnit(); if (SuccSU != SU) { Edge.setSUnit(PredSU); scheduleDAG->RemovePred(SuccSU, Edge); scheduleDAG->AddPred(SU, Edge); Edge.setSUnit(SU); scheduleDAG->AddPred(SuccSU, Edge); --i; } } outer_loop_continue:; } } /// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses /// it as a def&use operand. Add a pseudo control edge from it to the other /// node (if it won't create a cycle) so the two-address one will be scheduled /// first (lower in the schedule). If both nodes are two-address, favor the /// one that has a CopyToReg use (more likely to be a loop induction update). /// If both are two-address, but one is commutable while the other is not /// commutable, favor the one that's not commutable. template void RegReductionPriorityQueue::AddPseudoTwoAddrDeps() { for (unsigned i = 0, e = SUnits->size(); i != e; ++i) { SUnit *SU = &(*SUnits)[i]; if (!SU->isTwoAddress) continue; SDNode *Node = SU->getNode(); if (!Node || !Node->isMachineOpcode() || SU->getNode()->getFlaggedNode()) continue; unsigned Opc = Node->getMachineOpcode(); const TargetInstrDesc &TID = TII->get(Opc); unsigned NumRes = TID.getNumDefs(); unsigned NumOps = TID.getNumOperands() - NumRes; for (unsigned j = 0; j != NumOps; ++j) { if (TID.getOperandConstraint(j+NumRes, TOI::TIED_TO) == -1) continue; SDNode *DU = SU->getNode()->getOperand(j).getNode(); if (DU->getNodeId() == -1) continue; const SUnit *DUSU = &(*SUnits)[DU->getNodeId()]; if (!DUSU) continue; for (SUnit::const_succ_iterator I = DUSU->Succs.begin(), E = DUSU->Succs.end(); I != E; ++I) { if (I->isCtrl()) continue; SUnit *SuccSU = I->getSUnit(); if (SuccSU == SU) continue; // Be conservative. Ignore if nodes aren't at roughly the same // depth and height. if (SuccSU->getHeight() < SU->getHeight() && (SU->getHeight() - SuccSU->getHeight()) > 1) continue; // Skip past COPY_TO_REGCLASS nodes, so that the pseudo edge // constrains whatever is using the copy, instead of the copy // itself. In the case that the copy is coalesced, this // preserves the intent of the pseudo two-address heurietics. while (SuccSU->Succs.size() == 1 && SuccSU->getNode()->isMachineOpcode() && SuccSU->getNode()->getMachineOpcode() == TargetInstrInfo::COPY_TO_REGCLASS) SuccSU = SuccSU->Succs.front().getSUnit(); // Don't constrain non-instruction nodes. if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode()) continue; // Don't constrain nodes with physical register defs if the // predecessor can clobber them. if (SuccSU->hasPhysRegDefs && SU->hasPhysRegClobbers) { if (canClobberPhysRegDefs(SuccSU, SU, TII, TRI)) continue; } // Don't constrain EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG; // these may be coalesced away. We want them close to their uses. unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode(); if (SuccOpc == TargetInstrInfo::EXTRACT_SUBREG || SuccOpc == TargetInstrInfo::INSERT_SUBREG || SuccOpc == TargetInstrInfo::SUBREG_TO_REG) continue; if ((!canClobber(SuccSU, DUSU) || (hasCopyToRegUse(SU) && !hasCopyToRegUse(SuccSU)) || (!SU->isCommutable && SuccSU->isCommutable)) && !scheduleDAG->IsReachable(SuccSU, SU)) { DOUT << "Adding a pseudo-two-addr edge from SU # " << SU->NodeNum << " to SU #" << SuccSU->NodeNum << "\n"; scheduleDAG->AddPred(SU, SDep(SuccSU, SDep::Order, /*Latency=*/0, /*Reg=*/0, /*isNormalMemory=*/false, /*isMustAlias=*/false, /*isArtificial=*/true)); } } } } } /// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all /// scheduling units. template void RegReductionPriorityQueue::CalculateSethiUllmanNumbers() { SethiUllmanNumbers.assign(SUnits->size(), 0); for (unsigned i = 0, e = SUnits->size(); i != e; ++i) CalcNodeSethiUllmanNumber(&(*SUnits)[i], SethiUllmanNumbers); } /// LimitedSumOfUnscheduledPredsOfSuccs - Compute the sum of the unscheduled /// predecessors of the successors of the SUnit SU. Stop when the provided /// limit is exceeded. static unsigned LimitedSumOfUnscheduledPredsOfSuccs(const SUnit *SU, unsigned Limit) { unsigned Sum = 0; for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { const SUnit *SuccSU = I->getSUnit(); for (SUnit::const_pred_iterator II = SuccSU->Preds.begin(), EE = SuccSU->Preds.end(); II != EE; ++II) { SUnit *PredSU = II->getSUnit(); if (!PredSU->isScheduled) if (++Sum > Limit) return Sum; } } return Sum; } // Top down bool td_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const { unsigned LPriority = SPQ->getNodePriority(left); unsigned RPriority = SPQ->getNodePriority(right); bool LIsTarget = left->getNode() && left->getNode()->isMachineOpcode(); bool RIsTarget = right->getNode() && right->getNode()->isMachineOpcode(); bool LIsFloater = LIsTarget && left->NumPreds == 0; bool RIsFloater = RIsTarget && right->NumPreds == 0; unsigned LBonus = (LimitedSumOfUnscheduledPredsOfSuccs(left,1) == 1) ? 2 : 0; unsigned RBonus = (LimitedSumOfUnscheduledPredsOfSuccs(right,1) == 1) ? 2 : 0; if (left->NumSuccs == 0 && right->NumSuccs != 0) return false; else if (left->NumSuccs != 0 && right->NumSuccs == 0) return true; if (LIsFloater) LBonus -= 2; if (RIsFloater) RBonus -= 2; if (left->NumSuccs == 1) LBonus += 2; if (right->NumSuccs == 1) RBonus += 2; if (LPriority+LBonus != RPriority+RBonus) return LPriority+LBonus < RPriority+RBonus; if (left->getDepth() != right->getDepth()) return left->getDepth() < right->getDepth(); if (left->NumSuccsLeft != right->NumSuccsLeft) return left->NumSuccsLeft > right->NumSuccsLeft; assert(left->NodeQueueId && right->NodeQueueId && "NodeQueueId cannot be zero"); return (left->NodeQueueId > right->NodeQueueId); } //===----------------------------------------------------------------------===// // Public Constructor Functions //===----------------------------------------------------------------------===// llvm::ScheduleDAGSDNodes * llvm::createBURRListDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) { const TargetMachine &TM = IS->TM; const TargetInstrInfo *TII = TM.getInstrInfo(); const TargetRegisterInfo *TRI = TM.getRegisterInfo(); BURegReductionPriorityQueue *PQ = new BURegReductionPriorityQueue(TII, TRI); ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ); PQ->setScheduleDAG(SD); return SD; } llvm::ScheduleDAGSDNodes * llvm::createTDRRListDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) { const TargetMachine &TM = IS->TM; const TargetInstrInfo *TII = TM.getInstrInfo(); const TargetRegisterInfo *TRI = TM.getRegisterInfo(); TDRegReductionPriorityQueue *PQ = new TDRegReductionPriorityQueue(TII, TRI); ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ); PQ->setScheduleDAG(SD); return SD; }