//===-- StatepointLowering.cpp - SDAGBuilder's statepoint code -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file includes support code use by SelectionDAGBuilder when lowering a // statepoint sequence in SelectionDAG IR. // //===----------------------------------------------------------------------===// #include "StatepointLowering.h" #include "SelectionDAGBuilder.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/FunctionLoweringInfo.h" #include "llvm/CodeGen/GCMetadata.h" #include "llvm/CodeGen/GCStrategy.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/StackMaps.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Statepoint.h" #include "llvm/Target/TargetLowering.h" #include using namespace llvm; #define DEBUG_TYPE "statepoint-lowering" STATISTIC(NumSlotsAllocatedForStatepoints, "Number of stack slots allocated for statepoints"); STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered"); STATISTIC(StatepointMaxSlotsRequired, "Maximum number of stack slots required for a singe statepoint"); void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) { // Consistency check assert(PendingGCRelocateCalls.empty() && "Trying to visit statepoint before finished processing previous one"); Locations.clear(); RelocLocations.clear(); NextSlotToAllocate = 0; // Need to resize this on each safepoint - we need the two to stay in // sync and the clear patterns of a SelectionDAGBuilder have no relation // to FunctionLoweringInfo. AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size()); for (size_t i = 0; i < AllocatedStackSlots.size(); i++) { AllocatedStackSlots[i] = false; } } void StatepointLoweringState::clear() { Locations.clear(); RelocLocations.clear(); AllocatedStackSlots.clear(); assert(PendingGCRelocateCalls.empty() && "cleared before statepoint sequence completed"); } SDValue StatepointLoweringState::allocateStackSlot(EVT ValueType, SelectionDAGBuilder &Builder) { NumSlotsAllocatedForStatepoints++; // The basic scheme here is to first look for a previously created stack slot // which is not in use (accounting for the fact arbitrary slots may already // be reserved), or to create a new stack slot and use it. // If this doesn't succeed in 40000 iterations, something is seriously wrong for (int i = 0; i < 40000; i++) { assert(Builder.FuncInfo.StatepointStackSlots.size() == AllocatedStackSlots.size() && "broken invariant"); const size_t NumSlots = AllocatedStackSlots.size(); assert(NextSlotToAllocate <= NumSlots && "broken invariant"); if (NextSlotToAllocate >= NumSlots) { assert(NextSlotToAllocate == NumSlots); // record stats if (NumSlots + 1 > StatepointMaxSlotsRequired) { StatepointMaxSlotsRequired = NumSlots + 1; } SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType); const unsigned FI = cast(SpillSlot)->getIndex(); Builder.FuncInfo.StatepointStackSlots.push_back(FI); AllocatedStackSlots.push_back(true); return SpillSlot; } if (!AllocatedStackSlots[NextSlotToAllocate]) { const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate]; AllocatedStackSlots[NextSlotToAllocate] = true; return Builder.DAG.getFrameIndex(FI, ValueType); } // Note: We deliberately choose to advance this only on the failing path. // Doing so on the suceeding path involes a bit of complexity that caused a // minor bug previously. Unless performance shows this matters, please // keep this code as simple as possible. NextSlotToAllocate++; } llvm_unreachable("infinite loop?"); } /// Try to find existing copies of the incoming values in stack slots used for /// statepoint spilling. If we can find a spill slot for the incoming value, /// mark that slot as allocated, and reuse the same slot for this safepoint. /// This helps to avoid series of loads and stores that only serve to resuffle /// values on the stack between calls. static void reservePreviousStackSlotForValue(SDValue Incoming, SelectionDAGBuilder &Builder) { if (isa(Incoming) || isa(Incoming)) { // We won't need to spill this, so no need to check for previously // allocated stack slots return; } SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); if (Loc.getNode()) { // duplicates in input return; } // Search back for the load from a stack slot pattern to find the original // slot we allocated for this value. We could extend this to deal with // simple modification patterns, but simple dealing with trivial load/store // sequences helps a lot already. if (LoadSDNode *Load = dyn_cast(Incoming)) { if (auto *FI = dyn_cast(Load->getBasePtr())) { const int Index = FI->getIndex(); auto Itr = std::find(Builder.FuncInfo.StatepointStackSlots.begin(), Builder.FuncInfo.StatepointStackSlots.end(), Index); if (Itr == Builder.FuncInfo.StatepointStackSlots.end()) { // not one of the lowering stack slots, can't reuse! // TODO: Actually, we probably could reuse the stack slot if the value // hasn't changed at all, but we'd need to look for intervening writes return; } else { // This is one of our dedicated lowering slots const int Offset = std::distance(Builder.FuncInfo.StatepointStackSlots.begin(), Itr); if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) { // stack slot already assigned to someone else, can't use it! // TODO: currently we reserve space for gc arguments after doing // normal allocation for deopt arguments. We should reserve for // _all_ deopt and gc arguments, then start allocating. This // will prevent some moves being inserted when vm state changes, // but gc state doesn't between two calls. return; } // Reserve this stack slot Builder.StatepointLowering.reserveStackSlot(Offset); } // Cache this slot so we find it when going through the normal // assignment loop. SDValue Loc = Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType()); Builder.StatepointLowering.setLocation(Incoming, Loc); } } // TODO: handle case where a reloaded value flows through a phi to // another safepoint. e.g. // bb1: // a' = relocated... // bb2: % pred: bb1, bb3, bb4, etc. // a_phi = phi(a', ...) // statepoint ... a_phi // NOTE: This will require reasoning about cross basic block values. This is // decidedly non trivial and this might not be the right place to do it. We // don't really have the information we need here... // TODO: handle simple updates. If a value is modified and the original // value is no longer live, it would be nice to put the modified value in the // same slot. This allows folding of the memory accesses for some // instructions types (like an increment). // statepoint (i) // i1 = i+1 // statepoint (i1) } /// Remove any duplicate (as SDValues) from the derived pointer pairs. This /// is not required for correctness. It's purpose is to reduce the size of /// StackMap section. It has no effect on the number of spill slots required /// or the actual lowering. static void removeDuplicatesGCPtrs(SmallVectorImpl &Bases, SmallVectorImpl &Ptrs, SmallVectorImpl &Relocs, SelectionDAGBuilder &Builder) { // This is horribly ineffecient, but I don't care right now SmallSet Seen; SmallVector NewBases, NewPtrs, NewRelocs; for (size_t i = 0; i < Ptrs.size(); i++) { SDValue SD = Builder.getValue(Ptrs[i]); // Only add non-duplicates if (Seen.count(SD) == 0) { NewBases.push_back(Bases[i]); NewPtrs.push_back(Ptrs[i]); NewRelocs.push_back(Relocs[i]); } Seen.insert(SD); } assert(Bases.size() >= NewBases.size()); assert(Ptrs.size() >= NewPtrs.size()); assert(Relocs.size() >= NewRelocs.size()); Bases = NewBases; Ptrs = NewPtrs; Relocs = NewRelocs; assert(Ptrs.size() == Bases.size()); assert(Ptrs.size() == Relocs.size()); } /// Extract call from statepoint, lower it and return pointer to the /// call node. Also update NodeMap so that getValue(statepoint) will /// reference lowered call result static SDNode *lowerCallFromStatepoint(ImmutableStatepoint StatepointSite, MachineBasicBlock *LandingPad, SelectionDAGBuilder &Builder) { ImmutableCallSite CS(StatepointSite.getCallSite()); // Lower the actual call itself - This is a bit of a hack, but we want to // avoid modifying the actual lowering code. This is similiar in intent to // the LowerCallOperands mechanism used by PATCHPOINT, but is structured // differently. Hopefully, this is slightly more robust w.r.t. calling // convention, return values, and other function attributes. Value *ActualCallee = const_cast(StatepointSite.actualCallee()); std::vector Args; CallInst::const_op_iterator arg_begin = StatepointSite.call_args_begin(); CallInst::const_op_iterator arg_end = StatepointSite.call_args_end(); Args.insert(Args.end(), arg_begin, arg_end); // TODO: remove the creation of a new instruction! We should not be // modifying the IR (even temporarily) at this point. CallInst *Tmp = CallInst::Create(ActualCallee, Args); Tmp->setTailCall(CS.isTailCall()); Tmp->setCallingConv(CS.getCallingConv()); Tmp->setAttributes(CS.getAttributes()); Builder.LowerCallTo(Tmp, Builder.getValue(ActualCallee), false, LandingPad); // Handle the return value of the call iff any. const bool HasDef = !Tmp->getType()->isVoidTy(); if (HasDef) { if (CS.isInvoke()) { // Result value will be used in different basic block for invokes // so we need to export it now. But statepoint call has a different type // than the actuall call. It means that standart exporting mechanism will // create register of the wrong type. So instead we need to create // register with correct type and save value into it manually. // TODO: To eliminate this problem we can remove gc.result intrinsics // completelly and make statepoint call to return a tuple. unsigned reg = Builder.FuncInfo.CreateRegs(Tmp->getType()); Builder.CopyValueToVirtualRegister(Tmp, reg); Builder.FuncInfo.ValueMap[CS.getInstruction()] = reg; } else { // The value of the statepoint itself will be the value of call itself. // We'll replace the actually call node shortly. gc_result will grab // this value. Builder.setValue(CS.getInstruction(), Builder.getValue(Tmp)); } } else { // The token value is never used from here on, just generate a poison value Builder.setValue(CS.getInstruction(), Builder.DAG.getIntPtrConstant(-1)); } // Remove the fake entry we created so we don't have a hanging reference // after we delete this node. Builder.removeValue(Tmp); delete Tmp; Tmp = nullptr; // Search for the call node // The following code is essentially reverse engineering X86's // LowerCallTo. // We are expecting DAG to have the following form: // ch = eh_label (only in case of invoke statepoint) // ch, glue = callseq_start ch // ch, glue = X86::Call ch, glue // ch, glue = callseq_end ch, glue // ch = eh_label ch (only in case of invoke statepoint) // // DAG root will be either last eh_label or callseq_end. SDNode *CallNode = nullptr; // We just emitted a call, so it should be last thing generated SDValue Chain = Builder.DAG.getRoot(); // Find closest CALLSEQ_END walking back through lowered nodes if needed SDNode *CallEnd = Chain.getNode(); int Sanity = 0; while (CallEnd->getOpcode() != ISD::CALLSEQ_END) { assert(CallEnd->getNumOperands() >= 1 && CallEnd->getOperand(0).getValueType() == MVT::Other); CallEnd = CallEnd->getOperand(0).getNode(); assert(Sanity < 20 && "should have found call end already"); Sanity++; } assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "Expected a callseq node."); assert(CallEnd->getGluedNode()); // Step back inside the CALLSEQ CallNode = CallEnd->getGluedNode(); return CallNode; } /// Callect all gc pointers coming into statepoint intrinsic, clean them up, /// and return two arrays: /// Bases - base pointers incoming to this statepoint /// Ptrs - derived pointers incoming to this statepoint /// Relocs - the gc_relocate corresponding to each base/ptr pair /// Elements of this arrays should be in one-to-one correspondence with each /// other i.e Bases[i], Ptrs[i] are from the same gcrelocate call static void getIncomingStatepointGCValues(SmallVectorImpl &Bases, SmallVectorImpl &Ptrs, SmallVectorImpl &Relocs, ImmutableStatepoint StatepointSite, SelectionDAGBuilder &Builder) { for (GCRelocateOperands relocateOpers : StatepointSite.getRelocates(StatepointSite)) { Relocs.push_back(relocateOpers.getUnderlyingCallSite().getInstruction()); Bases.push_back(relocateOpers.basePtr()); Ptrs.push_back(relocateOpers.derivedPtr()); } // Remove any redundant llvm::Values which map to the same SDValue as another // input. Also has the effect of removing duplicates in the original // llvm::Value input list as well. This is a useful optimization for // reducing the size of the StackMap section. It has no other impact. removeDuplicatesGCPtrs(Bases, Ptrs, Relocs, Builder); assert(Bases.size() == Ptrs.size() && Ptrs.size() == Relocs.size()); } /// Spill a value incoming to the statepoint. It might be either part of /// vmstate /// or gcstate. In both cases unconditionally spill it on the stack unless it /// is a null constant. Return pair with first element being frame index /// containing saved value and second element with outgoing chain from the /// emitted store static std::pair spillIncomingStatepointValue(SDValue Incoming, SDValue Chain, SelectionDAGBuilder &Builder) { SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); // Emit new store if we didn't do it for this ptr before if (!Loc.getNode()) { Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(), Builder); assert(isa(Loc)); int Index = cast(Loc)->getIndex(); // We use TargetFrameIndex so that isel will not select it into LEA Loc = Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType()); // TODO: We can create TokenFactor node instead of // chaining stores one after another, this may allow // a bit more optimal scheduling for them Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc, MachinePointerInfo::getFixedStack(Index), false, false, 0); Builder.StatepointLowering.setLocation(Incoming, Loc); } assert(Loc.getNode()); return std::make_pair(Loc, Chain); } /// Lower a single value incoming to a statepoint node. This value can be /// either a deopt value or a gc value, the handling is the same. We special /// case constants and allocas, then fall back to spilling if required. static void lowerIncomingStatepointValue(SDValue Incoming, SmallVectorImpl &Ops, SelectionDAGBuilder &Builder) { SDValue Chain = Builder.getRoot(); if (ConstantSDNode *C = dyn_cast(Incoming)) { // If the original value was a constant, make sure it gets recorded as // such in the stackmap. This is required so that the consumer can // parse any internal format to the deopt state. It also handles null // pointers and other constant pointers in GC states Ops.push_back( Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); Ops.push_back(Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); } else if (FrameIndexSDNode *FI = dyn_cast(Incoming)) { // This handles allocas as arguments to the statepoint const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); Ops.push_back( Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); } else { // Otherwise, locate a spill slot and explicitly spill it so it // can be found by the runtime later. We currently do not support // tracking values through callee saved registers to their eventual // spill location. This would be a useful optimization, but would // need to be optional since it requires a lot of complexity on the // runtime side which not all would support. std::pair Res = spillIncomingStatepointValue(Incoming, Chain, Builder); Ops.push_back(Res.first); Chain = Res.second; } Builder.DAG.setRoot(Chain); } /// Lower deopt state and gc pointer arguments of the statepoint. The actual /// lowering is described in lowerIncomingStatepointValue. This function is /// responsible for lowering everything in the right position and playing some /// tricks to avoid redundant stack manipulation where possible. On /// completion, 'Ops' will contain ready to use operands for machine code /// statepoint. The chain nodes will have already been created and the DAG root /// will be set to the last value spilled (if any were). static void lowerStatepointMetaArgs(SmallVectorImpl &Ops, ImmutableStatepoint StatepointSite, SelectionDAGBuilder &Builder) { // Lower the deopt and gc arguments for this statepoint. Layout will // be: deopt argument length, deopt arguments.., gc arguments... SmallVector Bases, Ptrs, Relocations; getIncomingStatepointGCValues(Bases, Ptrs, Relocations, StatepointSite, Builder); #ifndef NDEBUG // Check that each of the gc pointer and bases we've gotten out of the // safepoint is something the strategy thinks might be a pointer into the GC // heap. This is basically just here to help catch errors during statepoint // insertion. TODO: This should actually be in the Verifier, but we can't get // to the GCStrategy from there (yet). if (Builder.GFI) { GCStrategy &S = Builder.GFI->getStrategy(); for (const Value *V : Bases) { auto Opt = S.isGCManagedPointer(V); if (Opt.hasValue()) { assert(Opt.getValue() && "non gc managed base pointer found in statepoint"); } } for (const Value *V : Ptrs) { auto Opt = S.isGCManagedPointer(V); if (Opt.hasValue()) { assert(Opt.getValue() && "non gc managed derived pointer found in statepoint"); } } for (const Value *V : Relocations) { auto Opt = S.isGCManagedPointer(V); if (Opt.hasValue()) { assert(Opt.getValue() && "non gc managed pointer relocated"); } } } #endif // Before we actually start lowering (and allocating spill slots for values), // reserve any stack slots which we judge to be profitable to reuse for a // particular value. This is purely an optimization over the code below and // doesn't change semantics at all. It is important for performance that we // reserve slots for both deopt and gc values before lowering either. for (auto I = StatepointSite.vm_state_begin() + 1, E = StatepointSite.vm_state_end(); I != E; ++I) { Value *V = *I; SDValue Incoming = Builder.getValue(V); reservePreviousStackSlotForValue(Incoming, Builder); } for (unsigned i = 0; i < Bases.size() * 2; ++i) { // Even elements will contain base, odd elements - derived ptr const Value *V = i % 2 ? Bases[i / 2] : Ptrs[i / 2]; SDValue Incoming = Builder.getValue(V); reservePreviousStackSlotForValue(Incoming, Builder); } // First, prefix the list with the number of unique values to be // lowered. Note that this is the number of *Values* not the // number of SDValues required to lower them. const int NumVMSArgs = StatepointSite.numTotalVMSArgs(); Ops.push_back( Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); Ops.push_back(Builder.DAG.getTargetConstant(NumVMSArgs, MVT::i64)); assert(NumVMSArgs + 1 == std::distance(StatepointSite.vm_state_begin(), StatepointSite.vm_state_end())); // The vm state arguments are lowered in an opaque manner. We do // not know what type of values are contained within. We skip the // first one since that happens to be the total number we lowered // explicitly just above. We could have left it in the loop and // not done it explicitly, but it's far easier to understand this // way. for (auto I = StatepointSite.vm_state_begin() + 1, E = StatepointSite.vm_state_end(); I != E; ++I) { const Value *V = *I; SDValue Incoming = Builder.getValue(V); lowerIncomingStatepointValue(Incoming, Ops, Builder); } // Finally, go ahead and lower all the gc arguments. There's no prefixed // length for this one. After lowering, we'll have the base and pointer // arrays interwoven with each (lowered) base pointer immediately followed by // it's (lowered) derived pointer. i.e // (base[0], ptr[0], base[1], ptr[1], ...) for (unsigned i = 0; i < Bases.size() * 2; ++i) { // Even elements will contain base, odd elements - derived ptr const Value *V = i % 2 ? Bases[i / 2] : Ptrs[i / 2]; SDValue Incoming = Builder.getValue(V); lowerIncomingStatepointValue(Incoming, Ops, Builder); } } void SelectionDAGBuilder::visitStatepoint(const CallInst &CI) { // Check some preconditions for sanity assert(isStatepoint(&CI) && "function called must be the statepoint function"); LowerStatepoint(ImmutableStatepoint(&CI)); } void SelectionDAGBuilder::LowerStatepoint(ImmutableStatepoint ISP, MachineBasicBlock *LandingPad/*=nullptr*/) { // The basic scheme here is that information about both the original call and // the safepoint is encoded in the CallInst. We create a temporary call and // lower it, then reverse engineer the calling sequence. NumOfStatepoints++; // Clear state StatepointLowering.startNewStatepoint(*this); ImmutableCallSite CS(ISP.getCallSite()); #ifndef NDEBUG // Consistency check for (const User *U : CS->users()) { const CallInst *Call = cast(U); if (isGCRelocate(Call)) StatepointLowering.scheduleRelocCall(*Call); } #endif #ifndef NDEBUG // If this is a malformed statepoint, report it early to simplify debugging. // This should catch any IR level mistake that's made when constructing or // transforming statepoints. ISP.verify(); // Check that the associated GCStrategy expects to encounter statepoints. // TODO: This if should become an assert. For now, we allow the GCStrategy // to be optional for backwards compatibility. This will only last a short // period (i.e. a couple of weeks). if (GFI) { assert(GFI->getStrategy().useStatepoints() && "GCStrategy does not expect to encounter statepoints"); } #endif // Lower statepoint vmstate and gcstate arguments SmallVector LoweredArgs; lowerStatepointMetaArgs(LoweredArgs, ISP, *this); // Get call node, we will replace it later with statepoint SDNode *CallNode = lowerCallFromStatepoint(ISP, LandingPad, *this); // Construct the actual STATEPOINT node with all the appropriate arguments // and return values. // TODO: Currently, all of these operands are being marked as read/write in // PrologEpilougeInserter.cpp, we should special case the VMState arguments // and flags to be read-only. SmallVector Ops; // Calculate and push starting position of vmstate arguments // Call Node: Chain, Target, {Args}, RegMask, [Glue] SDValue Glue; if (CallNode->getGluedNode()) { // Glue is always last operand Glue = CallNode->getOperand(CallNode->getNumOperands() - 1); } // Get number of arguments incoming directly into call node unsigned NumCallRegArgs = CallNode->getNumOperands() - (Glue.getNode() ? 4 : 3); Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); // Add call target SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0); Ops.push_back(CallTarget); // Add call arguments // Get position of register mask in the call SDNode::op_iterator RegMaskIt; if (Glue.getNode()) RegMaskIt = CallNode->op_end() - 2; else RegMaskIt = CallNode->op_end() - 1; Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt); // Add a leading constant argument with the Flags and the calling convention // masked together CallingConv::ID CallConv = CS.getCallingConv(); int Flags = dyn_cast(CS.getArgument(2))->getZExtValue(); assert(Flags == 0 && "not expected to be used"); Ops.push_back(DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); Ops.push_back( DAG.getTargetConstant(Flags | ((unsigned)CallConv << 1), MVT::i64)); // Insert all vmstate and gcstate arguments Ops.insert(Ops.end(), LoweredArgs.begin(), LoweredArgs.end()); // Add register mask from call node Ops.push_back(*RegMaskIt); // Add chain Ops.push_back(CallNode->getOperand(0)); // Same for the glue, but we add it only if original call had it if (Glue.getNode()) Ops.push_back(Glue); // Compute return values. Provide a glue output since we consume one as // input. This allows someone else to chain off us as needed. SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); SDNode *StatepointMCNode = DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops); // Replace original call DAG.ReplaceAllUsesWith(CallNode, StatepointMCNode); // This may update Root // Remove originall call node DAG.DeleteNode(CallNode); // DON'T set the root - under the assumption that it's already set past the // inserted node we created. // TODO: A better future implementation would be to emit a single variable // argument, variable return value STATEPOINT node here and then hookup the // return value of each gc.relocate to the respective output of the // previously emitted STATEPOINT value. Unfortunately, this doesn't appear // to actually be possible today. } void SelectionDAGBuilder::visitGCResult(const CallInst &CI) { // The result value of the gc_result is simply the result of the actual // call. We've already emitted this, so just grab the value. Instruction *I = cast(CI.getArgOperand(0)); assert(isStatepoint(I) && "first argument must be a statepoint token"); if (isa(I)) { // For invokes we should have stored call result in a virtual register. // We can not use default getValue() functionality to copy value from this // register because statepoint and actuall call return types can be // different, and getValue() will use CopyFromReg of the wrong type, // which is always i32 in our case. PointerType *CalleeType = cast( ImmutableStatepoint(I).actualCallee()->getType()); Type *RetTy = cast( CalleeType->getElementType())->getReturnType(); SDValue CopyFromReg = getCopyFromRegs(I, RetTy); assert(CopyFromReg.getNode()); setValue(&CI, CopyFromReg); } else { setValue(&CI, getValue(I)); } } void SelectionDAGBuilder::visitGCRelocate(const CallInst &CI) { #ifndef NDEBUG // Consistency check StatepointLowering.relocCallVisited(CI); #endif GCRelocateOperands relocateOpers(&CI); SDValue SD = getValue(relocateOpers.derivedPtr()); if (isa(SD) || isa(SD)) { // We didn't need to spill these special cases (constants and allocas). // See the handling in spillIncomingValueForStatepoint for detail. setValue(&CI, SD); return; } SDValue Loc = StatepointLowering.getRelocLocation(SD); // Emit new load if we did not emit it before if (!Loc.getNode()) { SDValue SpillSlot = StatepointLowering.getLocation(SD); int FI = cast(SpillSlot)->getIndex(); // Be conservative: flush all pending loads // TODO: Probably we can be less restrictive on this, // it may allow more scheduling opprtunities SDValue Chain = getRoot(); Loc = DAG.getLoad(SpillSlot.getValueType(), getCurSDLoc(), Chain, SpillSlot, MachinePointerInfo::getFixedStack(FI), false, false, false, 0); StatepointLowering.setRelocLocation(SD, Loc); // Again, be conservative, don't emit pending loads DAG.setRoot(Loc.getValue(1)); } assert(Loc.getNode()); setValue(&CI, Loc); }