//===- SjLjEHPass.cpp - Eliminate Invoke & Unwind instructions -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This transformation is designed for use by code generators which use SjLj // based exception handling. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "sjljehprepare" #include "llvm/Transforms/Scalar.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Instructions.h" #include "llvm/Intrinsics.h" #include "llvm/LLVMContext.h" #include "llvm/Module.h" #include "llvm/Pass.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetLowering.h" using namespace llvm; STATISTIC(NumInvokes, "Number of invokes replaced"); STATISTIC(NumUnwinds, "Number of unwinds replaced"); STATISTIC(NumSpilled, "Number of registers live across unwind edges"); namespace { class SjLjEHPass : public FunctionPass { const TargetLowering *TLI; const Type *FunctionContextTy; Constant *RegisterFn; Constant *UnregisterFn; Constant *BuiltinSetjmpFn; Constant *FrameAddrFn; Constant *StackAddrFn; Constant *StackRestoreFn; Constant *LSDAAddrFn; Value *PersonalityFn; Constant *SelectorFn; Constant *ExceptionFn; Constant *CallSiteFn; Value *CallSite; public: static char ID; // Pass identification, replacement for typeid explicit SjLjEHPass(const TargetLowering *tli = NULL) : FunctionPass(ID), TLI(tli) { } bool doInitialization(Module &M); bool runOnFunction(Function &F); virtual void getAnalysisUsage(AnalysisUsage &AU) const { } const char *getPassName() const { return "SJLJ Exception Handling preparation"; } private: void insertCallSiteStore(Instruction *I, int Number, Value *CallSite); void markInvokeCallSite(InvokeInst *II, int InvokeNo, Value *CallSite, SwitchInst *CatchSwitch); void splitLiveRangesAcrossInvokes(SmallVector<InvokeInst*,16> &Invokes); bool insertSjLjEHSupport(Function &F); }; } // end anonymous namespace char SjLjEHPass::ID = 0; // Public Interface To the SjLjEHPass pass. FunctionPass *llvm::createSjLjEHPass(const TargetLowering *TLI) { return new SjLjEHPass(TLI); } // doInitialization - Set up decalarations and types needed to process // exceptions. bool SjLjEHPass::doInitialization(Module &M) { // Build the function context structure. // builtin_setjmp uses a five word jbuf const Type *VoidPtrTy = Type::getInt8PtrTy(M.getContext()); const Type *Int32Ty = Type::getInt32Ty(M.getContext()); FunctionContextTy = StructType::get(M.getContext(), VoidPtrTy, // __prev Int32Ty, // call_site ArrayType::get(Int32Ty, 4), // __data VoidPtrTy, // __personality VoidPtrTy, // __lsda ArrayType::get(VoidPtrTy, 5), // __jbuf NULL); RegisterFn = M.getOrInsertFunction("_Unwind_SjLj_Register", Type::getVoidTy(M.getContext()), PointerType::getUnqual(FunctionContextTy), (Type *)0); UnregisterFn = M.getOrInsertFunction("_Unwind_SjLj_Unregister", Type::getVoidTy(M.getContext()), PointerType::getUnqual(FunctionContextTy), (Type *)0); FrameAddrFn = Intrinsic::getDeclaration(&M, Intrinsic::frameaddress); StackAddrFn = Intrinsic::getDeclaration(&M, Intrinsic::stacksave); StackRestoreFn = Intrinsic::getDeclaration(&M, Intrinsic::stackrestore); BuiltinSetjmpFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_setjmp); LSDAAddrFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_lsda); SelectorFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_selector); ExceptionFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_exception); CallSiteFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_callsite); PersonalityFn = 0; return true; } /// insertCallSiteStore - Insert a store of the call-site value to the /// function context void SjLjEHPass::insertCallSiteStore(Instruction *I, int Number, Value *CallSite) { ConstantInt *CallSiteNoC = ConstantInt::get(Type::getInt32Ty(I->getContext()), Number); // Insert a store of the call-site number new StoreInst(CallSiteNoC, CallSite, true, I); // volatile } /// markInvokeCallSite - Insert code to mark the call_site for this invoke void SjLjEHPass::markInvokeCallSite(InvokeInst *II, int InvokeNo, Value *CallSite, SwitchInst *CatchSwitch) { ConstantInt *CallSiteNoC= ConstantInt::get(Type::getInt32Ty(II->getContext()), InvokeNo); // The runtime comes back to the dispatcher with the call_site - 1 in // the context. Odd, but there it is. ConstantInt *SwitchValC = ConstantInt::get(Type::getInt32Ty(II->getContext()), InvokeNo - 1); // If the unwind edge has phi nodes, split the edge. if (isa<PHINode>(II->getUnwindDest()->begin())) { SplitCriticalEdge(II, 1, this); // If there are any phi nodes left, they must have a single predecessor. while (PHINode *PN = dyn_cast<PHINode>(II->getUnwindDest()->begin())) { PN->replaceAllUsesWith(PN->getIncomingValue(0)); PN->eraseFromParent(); } } // Insert the store of the call site value insertCallSiteStore(II, InvokeNo, CallSite); // Record the call site value for the back end so it stays associated with // the invoke. CallInst::Create(CallSiteFn, CallSiteNoC, "", II); // Add a switch case to our unwind block. CatchSwitch->addCase(SwitchValC, II->getUnwindDest()); // We still want this to look like an invoke so we emit the LSDA properly, // so we don't transform the invoke into a call here. } /// MarkBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until /// we reach blocks we've already seen. static void MarkBlocksLiveIn(BasicBlock *BB, std::set<BasicBlock*> &LiveBBs) { if (!LiveBBs.insert(BB).second) return; // already been here. for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) MarkBlocksLiveIn(*PI, LiveBBs); } /// splitLiveRangesAcrossInvokes - Each value that is live across an unwind edge /// we spill into a stack location, guaranteeing that there is nothing live /// across the unwind edge. This process also splits all critical edges /// coming out of invoke's. /// FIXME: Move this function to a common utility file (Local.cpp?) so /// both SjLj and LowerInvoke can use it. void SjLjEHPass:: splitLiveRangesAcrossInvokes(SmallVector<InvokeInst*,16> &Invokes) { // First step, split all critical edges from invoke instructions. for (unsigned i = 0, e = Invokes.size(); i != e; ++i) { InvokeInst *II = Invokes[i]; SplitCriticalEdge(II, 0, this); SplitCriticalEdge(II, 1, this); assert(!isa<PHINode>(II->getNormalDest()) && !isa<PHINode>(II->getUnwindDest()) && "critical edge splitting left single entry phi nodes?"); } Function *F = Invokes.back()->getParent()->getParent(); // To avoid having to handle incoming arguments specially, we lower each arg // to a copy instruction in the entry block. This ensures that the argument // value itself cannot be live across the entry block. BasicBlock::iterator AfterAllocaInsertPt = F->begin()->begin(); while (isa<AllocaInst>(AfterAllocaInsertPt) && isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsertPt)->getArraySize())) ++AfterAllocaInsertPt; for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; ++AI) { const Type *Ty = AI->getType(); // Aggregate types can't be cast, but are legal argument types, so we have // to handle them differently. We use an extract/insert pair as a // lightweight method to achieve the same goal. if (isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) { Instruction *EI = ExtractValueInst::Create(AI, 0, "",AfterAllocaInsertPt); Instruction *NI = InsertValueInst::Create(AI, EI, 0); NI->insertAfter(EI); AI->replaceAllUsesWith(NI); // Set the operand of the instructions back to the AllocaInst. EI->setOperand(0, AI); NI->setOperand(0, AI); } else { // This is always a no-op cast because we're casting AI to AI->getType() // so src and destination types are identical. BitCast is the only // possibility. CastInst *NC = new BitCastInst( AI, AI->getType(), AI->getName()+".tmp", AfterAllocaInsertPt); AI->replaceAllUsesWith(NC); // Set the operand of the cast instruction back to the AllocaInst. // Normally it's forbidden to replace a CastInst's operand because it // could cause the opcode to reflect an illegal conversion. However, // we're replacing it here with the same value it was constructed with. // We do this because the above replaceAllUsesWith() clobbered the // operand, but we want this one to remain. NC->setOperand(0, AI); } } // Finally, scan the code looking for instructions with bad live ranges. for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) { // Ignore obvious cases we don't have to handle. In particular, most // instructions either have no uses or only have a single use inside the // current block. Ignore them quickly. Instruction *Inst = II; if (Inst->use_empty()) continue; if (Inst->hasOneUse() && cast<Instruction>(Inst->use_back())->getParent() == BB && !isa<PHINode>(Inst->use_back())) continue; // If this is an alloca in the entry block, it's not a real register // value. if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst)) if (isa<ConstantInt>(AI->getArraySize()) && BB == F->begin()) continue; // Avoid iterator invalidation by copying users to a temporary vector. SmallVector<Instruction*,16> Users; for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end(); UI != E; ++UI) { Instruction *User = cast<Instruction>(*UI); if (User->getParent() != BB || isa<PHINode>(User)) Users.push_back(User); } // Find all of the blocks that this value is live in. std::set<BasicBlock*> LiveBBs; LiveBBs.insert(Inst->getParent()); while (!Users.empty()) { Instruction *U = Users.back(); Users.pop_back(); if (!isa<PHINode>(U)) { MarkBlocksLiveIn(U->getParent(), LiveBBs); } else { // Uses for a PHI node occur in their predecessor block. PHINode *PN = cast<PHINode>(U); for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (PN->getIncomingValue(i) == Inst) MarkBlocksLiveIn(PN->getIncomingBlock(i), LiveBBs); } } // Now that we know all of the blocks that this thing is live in, see if // it includes any of the unwind locations. bool NeedsSpill = false; for (unsigned i = 0, e = Invokes.size(); i != e; ++i) { BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest(); if (UnwindBlock != BB && LiveBBs.count(UnwindBlock)) { NeedsSpill = true; } } // If we decided we need a spill, do it. // FIXME: Spilling this way is overkill, as it forces all uses of // the value to be reloaded from the stack slot, even those that aren't // in the unwind blocks. We should be more selective. if (NeedsSpill) { ++NumSpilled; DemoteRegToStack(*Inst, true); } } } bool SjLjEHPass::insertSjLjEHSupport(Function &F) { SmallVector<ReturnInst*,16> Returns; SmallVector<UnwindInst*,16> Unwinds; SmallVector<InvokeInst*,16> Invokes; // Look through the terminators of the basic blocks to find invokes, returns // and unwinds. for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { // Remember all return instructions in case we insert an invoke into this // function. Returns.push_back(RI); } else if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) { Invokes.push_back(II); } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) { Unwinds.push_back(UI); } } // If we don't have any invokes or unwinds, there's nothing to do. if (Unwinds.empty() && Invokes.empty()) return false; // Find the eh.selector.*, eh.exception and alloca calls. // // Remember any allocas() that aren't in the entry block, as the // jmpbuf saved SP will need to be updated for them. // // We'll use the first eh.selector to determine the right personality // function to use. For SJLJ, we always use the same personality for the // whole function, not on a per-selector basis. // FIXME: That's a bit ugly. Better way? SmallVector<CallInst*,16> EH_Selectors; SmallVector<CallInst*,16> EH_Exceptions; SmallVector<Instruction*,16> JmpbufUpdatePoints; // Note: Skip the entry block since there's nothing there that interests // us. eh.selector and eh.exception shouldn't ever be there, and we // want to disregard any allocas that are there. for (Function::iterator BB = F.begin(), E = F.end(); ++BB != E;) { for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { if (CallInst *CI = dyn_cast<CallInst>(I)) { if (CI->getCalledFunction() == SelectorFn) { if (!PersonalityFn) PersonalityFn = CI->getArgOperand(1); EH_Selectors.push_back(CI); } else if (CI->getCalledFunction() == ExceptionFn) { EH_Exceptions.push_back(CI); } else if (CI->getCalledFunction() == StackRestoreFn) { JmpbufUpdatePoints.push_back(CI); } } else if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) { JmpbufUpdatePoints.push_back(AI); } } } // If we don't have any eh.selector calls, we can't determine the personality // function. Without a personality function, we can't process exceptions. if (!PersonalityFn) return false; NumInvokes += Invokes.size(); NumUnwinds += Unwinds.size(); if (!Invokes.empty()) { // We have invokes, so we need to add register/unregister calls to get // this function onto the global unwind stack. // // First thing we need to do is scan the whole function for values that are // live across unwind edges. Each value that is live across an unwind edge // we spill into a stack location, guaranteeing that there is nothing live // across the unwind edge. This process also splits all critical edges // coming out of invoke's. splitLiveRangesAcrossInvokes(Invokes); BasicBlock *EntryBB = F.begin(); // Create an alloca for the incoming jump buffer ptr and the new jump buffer // that needs to be restored on all exits from the function. This is an // alloca because the value needs to be added to the global context list. unsigned Align = 4; // FIXME: Should be a TLI check? AllocaInst *FunctionContext = new AllocaInst(FunctionContextTy, 0, Align, "fcn_context", F.begin()->begin()); Value *Idxs[2]; const Type *Int32Ty = Type::getInt32Ty(F.getContext()); Value *Zero = ConstantInt::get(Int32Ty, 0); // We need to also keep around a reference to the call_site field Idxs[0] = Zero; Idxs[1] = ConstantInt::get(Int32Ty, 1); CallSite = GetElementPtrInst::Create(FunctionContext, Idxs, Idxs+2, "call_site", EntryBB->getTerminator()); // The exception selector comes back in context->data[1] Idxs[1] = ConstantInt::get(Int32Ty, 2); Value *FCData = GetElementPtrInst::Create(FunctionContext, Idxs, Idxs+2, "fc_data", EntryBB->getTerminator()); Idxs[1] = ConstantInt::get(Int32Ty, 1); Value *SelectorAddr = GetElementPtrInst::Create(FCData, Idxs, Idxs+2, "exc_selector_gep", EntryBB->getTerminator()); // The exception value comes back in context->data[0] Idxs[1] = Zero; Value *ExceptionAddr = GetElementPtrInst::Create(FCData, Idxs, Idxs+2, "exception_gep", EntryBB->getTerminator()); // The result of the eh.selector call will be replaced with a // a reference to the selector value returned in the function // context. We leave the selector itself so the EH analysis later // can use it. for (int i = 0, e = EH_Selectors.size(); i < e; ++i) { CallInst *I = EH_Selectors[i]; Value *SelectorVal = new LoadInst(SelectorAddr, "select_val", true, I); I->replaceAllUsesWith(SelectorVal); } // eh.exception calls are replaced with references to the proper // location in the context. Unlike eh.selector, the eh.exception // calls are removed entirely. for (int i = 0, e = EH_Exceptions.size(); i < e; ++i) { CallInst *I = EH_Exceptions[i]; // Possible for there to be duplicates, so check to make sure // the instruction hasn't already been removed. if (!I->getParent()) continue; Value *Val = new LoadInst(ExceptionAddr, "exception", true, I); const Type *Ty = Type::getInt8PtrTy(F.getContext()); Val = CastInst::Create(Instruction::IntToPtr, Val, Ty, "", I); I->replaceAllUsesWith(Val); I->eraseFromParent(); } // The entry block changes to have the eh.sjlj.setjmp, with a conditional // branch to a dispatch block for non-zero returns. If we return normally, // we're not handling an exception and just register the function context // and continue. // Create the dispatch block. The dispatch block is basically a big switch // statement that goes to all of the invoke landing pads. BasicBlock *DispatchBlock = BasicBlock::Create(F.getContext(), "eh.sjlj.setjmp.catch", &F); // Insert a load in the Catch block, and a switch on its value. By default, // we go to a block that just does an unwind (which is the correct action // for a standard call). BasicBlock *UnwindBlock = BasicBlock::Create(F.getContext(), "unwindbb", &F); Unwinds.push_back(new UnwindInst(F.getContext(), UnwindBlock)); Value *DispatchLoad = new LoadInst(CallSite, "invoke.num", true, DispatchBlock); SwitchInst *DispatchSwitch = SwitchInst::Create(DispatchLoad, UnwindBlock, Invokes.size(), DispatchBlock); // Split the entry block to insert the conditional branch for the setjmp. BasicBlock *ContBlock = EntryBB->splitBasicBlock(EntryBB->getTerminator(), "eh.sjlj.setjmp.cont"); // Populate the Function Context // 1. LSDA address // 2. Personality function address // 3. jmpbuf (save SP, FP and call eh.sjlj.setjmp) // LSDA address Idxs[0] = Zero; Idxs[1] = ConstantInt::get(Int32Ty, 4); Value *LSDAFieldPtr = GetElementPtrInst::Create(FunctionContext, Idxs, Idxs+2, "lsda_gep", EntryBB->getTerminator()); Value *LSDA = CallInst::Create(LSDAAddrFn, "lsda_addr", EntryBB->getTerminator()); new StoreInst(LSDA, LSDAFieldPtr, true, EntryBB->getTerminator()); Idxs[1] = ConstantInt::get(Int32Ty, 3); Value *PersonalityFieldPtr = GetElementPtrInst::Create(FunctionContext, Idxs, Idxs+2, "lsda_gep", EntryBB->getTerminator()); new StoreInst(PersonalityFn, PersonalityFieldPtr, true, EntryBB->getTerminator()); // Save the frame pointer. Idxs[1] = ConstantInt::get(Int32Ty, 5); Value *JBufPtr = GetElementPtrInst::Create(FunctionContext, Idxs, Idxs+2, "jbuf_gep", EntryBB->getTerminator()); Idxs[1] = ConstantInt::get(Int32Ty, 0); Value *FramePtr = GetElementPtrInst::Create(JBufPtr, Idxs, Idxs+2, "jbuf_fp_gep", EntryBB->getTerminator()); Value *Val = CallInst::Create(FrameAddrFn, ConstantInt::get(Int32Ty, 0), "fp", EntryBB->getTerminator()); new StoreInst(Val, FramePtr, true, EntryBB->getTerminator()); // Save the stack pointer. Idxs[1] = ConstantInt::get(Int32Ty, 2); Value *StackPtr = GetElementPtrInst::Create(JBufPtr, Idxs, Idxs+2, "jbuf_sp_gep", EntryBB->getTerminator()); Val = CallInst::Create(StackAddrFn, "sp", EntryBB->getTerminator()); new StoreInst(Val, StackPtr, true, EntryBB->getTerminator()); // Call the setjmp instrinsic. It fills in the rest of the jmpbuf. Value *SetjmpArg = CastInst::Create(Instruction::BitCast, JBufPtr, Type::getInt8PtrTy(F.getContext()), "", EntryBB->getTerminator()); Value *DispatchVal = CallInst::Create(BuiltinSetjmpFn, SetjmpArg, "dispatch", EntryBB->getTerminator()); // check the return value of the setjmp. non-zero goes to dispatcher. Value *IsNormal = new ICmpInst(EntryBB->getTerminator(), ICmpInst::ICMP_EQ, DispatchVal, Zero, "notunwind"); // Nuke the uncond branch. EntryBB->getTerminator()->eraseFromParent(); // Put in a new condbranch in its place. BranchInst::Create(ContBlock, DispatchBlock, IsNormal, EntryBB); // Register the function context and make sure it's known to not throw CallInst *Register = CallInst::Create(RegisterFn, FunctionContext, "", ContBlock->getTerminator()); Register->setDoesNotThrow(); // At this point, we are all set up, update the invoke instructions // to mark their call_site values, and fill in the dispatch switch // accordingly. for (unsigned i = 0, e = Invokes.size(); i != e; ++i) markInvokeCallSite(Invokes[i], i+1, CallSite, DispatchSwitch); // Mark call instructions that aren't nounwind as no-action // (call_site == -1). Skip the entry block, as prior to then, no function // context has been created for this function and any unexpected exceptions // thrown will go directly to the caller's context, which is what we want // anyway, so no need to do anything here. for (Function::iterator BB = F.begin(), E = F.end(); ++BB != E;) { for (BasicBlock::iterator I = BB->begin(), end = BB->end(); I != end; ++I) if (CallInst *CI = dyn_cast<CallInst>(I)) { // Ignore calls to the EH builtins (eh.selector, eh.exception) Constant *Callee = CI->getCalledFunction(); if (Callee != SelectorFn && Callee != ExceptionFn && !CI->doesNotThrow()) insertCallSiteStore(CI, -1, CallSite); } } // Replace all unwinds with a branch to the unwind handler. // ??? Should this ever happen with sjlj exceptions? for (unsigned i = 0, e = Unwinds.size(); i != e; ++i) { BranchInst::Create(UnwindBlock, Unwinds[i]); Unwinds[i]->eraseFromParent(); } // Following any allocas not in the entry block, update the saved SP // in the jmpbuf to the new value. for (unsigned i = 0, e = JmpbufUpdatePoints.size(); i != e; ++i) { Instruction *AI = JmpbufUpdatePoints[i]; Instruction *StackAddr = CallInst::Create(StackAddrFn, "sp"); StackAddr->insertAfter(AI); Instruction *StoreStackAddr = new StoreInst(StackAddr, StackPtr, true); StoreStackAddr->insertAfter(StackAddr); } // Finally, for any returns from this function, if this function contains an // invoke, add a call to unregister the function context. for (unsigned i = 0, e = Returns.size(); i != e; ++i) CallInst::Create(UnregisterFn, FunctionContext, "", Returns[i]); } return true; } bool SjLjEHPass::runOnFunction(Function &F) { bool Res = insertSjLjEHSupport(F); return Res; }