//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the SplitAnalysis class as well as mutator functions for // live range splitting. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "regalloc" #include "SplitKit.h" #include "LiveRangeEdit.h" #include "VirtRegMap.h" #include "llvm/CodeGen/CalcSpillWeights.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" using namespace llvm; static cl::opt AllowSplit("spiller-splits-edges", cl::desc("Allow critical edge splitting during spilling")); //===----------------------------------------------------------------------===// // Split Analysis //===----------------------------------------------------------------------===// SplitAnalysis::SplitAnalysis(const MachineFunction &mf, const LiveIntervals &lis, const MachineLoopInfo &mli) : mf_(mf), lis_(lis), loops_(mli), tii_(*mf.getTarget().getInstrInfo()), curli_(0) {} void SplitAnalysis::clear() { usingInstrs_.clear(); usingBlocks_.clear(); usingLoops_.clear(); curli_ = 0; } bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) { MachineBasicBlock *T, *F; SmallVector Cond; return !tii_.AnalyzeBranch(const_cast(*MBB), T, F, Cond); } /// analyzeUses - Count instructions, basic blocks, and loops using curli. void SplitAnalysis::analyzeUses() { const MachineRegisterInfo &MRI = mf_.getRegInfo(); for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg); MachineInstr *MI = I.skipInstruction();) { if (MI->isDebugValue() || !usingInstrs_.insert(MI)) continue; MachineBasicBlock *MBB = MI->getParent(); if (usingBlocks_[MBB]++) continue; for (MachineLoop *Loop = loops_.getLoopFor(MBB); Loop; Loop = Loop->getParentLoop()) usingLoops_[Loop]++; } DEBUG(dbgs() << " counted " << usingInstrs_.size() << " instrs, " << usingBlocks_.size() << " blocks, " << usingLoops_.size() << " loops.\n"); } void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const { for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) { unsigned count = usingBlocks_.lookup(*I); OS << " BB#" << (*I)->getNumber(); if (count) OS << '(' << count << ')'; } } // Get three sets of basic blocks surrounding a loop: Blocks inside the loop, // predecessor blocks, and exit blocks. void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) { Blocks.clear(); // Blocks in the loop. Blocks.Loop.insert(Loop->block_begin(), Loop->block_end()); // Predecessor blocks. const MachineBasicBlock *Header = Loop->getHeader(); for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(), E = Header->pred_end(); I != E; ++I) if (!Blocks.Loop.count(*I)) Blocks.Preds.insert(*I); // Exit blocks. for (MachineLoop::block_iterator I = Loop->block_begin(), E = Loop->block_end(); I != E; ++I) { const MachineBasicBlock *MBB = *I; for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) if (!Blocks.Loop.count(*SI)) Blocks.Exits.insert(*SI); } } void SplitAnalysis::print(const LoopBlocks &B, raw_ostream &OS) const { OS << "Loop:"; print(B.Loop, OS); OS << ", preds:"; print(B.Preds, OS); OS << ", exits:"; print(B.Exits, OS); } /// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in /// and around the Loop. SplitAnalysis::LoopPeripheralUse SplitAnalysis:: analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) { LoopPeripheralUse use = ContainedInLoop; for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end(); I != E; ++I) { const MachineBasicBlock *MBB = I->first; // Is this a peripheral block? if (use < MultiPeripheral && (Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) { if (I->second > 1) use = MultiPeripheral; else use = SinglePeripheral; continue; } // Is it a loop block? if (Blocks.Loop.count(MBB)) continue; // It must be an unrelated block. DEBUG(dbgs() << ", outside: BB#" << MBB->getNumber()); return OutsideLoop; } return use; } /// getCriticalExits - It may be necessary to partially break critical edges /// leaving the loop if an exit block has predecessors from outside the loop /// periphery. void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, BlockPtrSet &CriticalExits) { CriticalExits.clear(); // A critical exit block has curli live-in, and has a predecessor that is not // in the loop nor a loop predecessor. For such an exit block, the edges // carrying the new variable must be moved to a new pre-exit block. for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end(); I != E; ++I) { const MachineBasicBlock *Exit = *I; // A single-predecessor exit block is definitely not a critical edge. if (Exit->pred_size() == 1) continue; // This exit may not have curli live in at all. No need to split. if (!lis_.isLiveInToMBB(*curli_, Exit)) continue; // Does this exit block have a predecessor that is not a loop block or loop // predecessor? for (MachineBasicBlock::const_pred_iterator PI = Exit->pred_begin(), PE = Exit->pred_end(); PI != PE; ++PI) { const MachineBasicBlock *Pred = *PI; if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred)) continue; // This is a critical exit block, and we need to split the exit edge. CriticalExits.insert(Exit); break; } } } void SplitAnalysis::getCriticalPreds(const SplitAnalysis::LoopBlocks &Blocks, BlockPtrSet &CriticalPreds) { CriticalPreds.clear(); // A critical predecessor block has curli live-out, and has a successor that // has curli live-in and is not in the loop nor a loop exit block. For such a // predecessor block, we must carry the value in both the 'inside' and // 'outside' registers. for (BlockPtrSet::iterator I = Blocks.Preds.begin(), E = Blocks.Preds.end(); I != E; ++I) { const MachineBasicBlock *Pred = *I; // Definitely not a critical edge. if (Pred->succ_size() == 1) continue; // This block may not have curli live out at all if there is a PHI. if (!lis_.isLiveOutOfMBB(*curli_, Pred)) continue; // Does this block have a successor outside the loop? for (MachineBasicBlock::const_pred_iterator SI = Pred->succ_begin(), SE = Pred->succ_end(); SI != SE; ++SI) { const MachineBasicBlock *Succ = *SI; if (Blocks.Loop.count(Succ) || Blocks.Exits.count(Succ)) continue; if (!lis_.isLiveInToMBB(*curli_, Succ)) continue; // This is a critical predecessor block. CriticalPreds.insert(Pred); break; } } } /// canSplitCriticalExits - Return true if it is possible to insert new exit /// blocks before the blocks in CriticalExits. bool SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, BlockPtrSet &CriticalExits) { // If we don't allow critical edge splitting, require no critical exits. if (!AllowSplit) return CriticalExits.empty(); for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end(); I != E; ++I) { const MachineBasicBlock *Succ = *I; // We want to insert a new pre-exit MBB before Succ, and change all the // in-loop blocks to branch to the pre-exit instead of Succ. // Check that all the in-loop predecessors can be changed. for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(), PE = Succ->pred_end(); PI != PE; ++PI) { const MachineBasicBlock *Pred = *PI; // The external predecessors won't be altered. if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred)) continue; if (!canAnalyzeBranch(Pred)) return false; } // If Succ's layout predecessor falls through, that too must be analyzable. // We need to insert the pre-exit block in the gap. MachineFunction::const_iterator MFI = Succ; if (MFI == mf_.begin()) continue; if (!canAnalyzeBranch(--MFI)) return false; } // No problems found. return true; } void SplitAnalysis::analyze(const LiveInterval *li) { clear(); curli_ = li; analyzeUses(); } const MachineLoop *SplitAnalysis::getBestSplitLoop() { assert(curli_ && "Call analyze() before getBestSplitLoop"); if (usingLoops_.empty()) return 0; LoopPtrSet Loops; LoopBlocks Blocks; BlockPtrSet CriticalExits; // We split around loops where curli is used outside the periphery. for (LoopCountMap::const_iterator I = usingLoops_.begin(), E = usingLoops_.end(); I != E; ++I) { const MachineLoop *Loop = I->first; getLoopBlocks(Loop, Blocks); DEBUG({ dbgs() << " "; print(Blocks, dbgs()); }); switch(analyzeLoopPeripheralUse(Blocks)) { case OutsideLoop: break; case MultiPeripheral: // FIXME: We could split a live range with multiple uses in a peripheral // block and still make progress. However, it is possible that splitting // another live range will insert copies into a peripheral block, and // there is a small chance we can enter an infinity loop, inserting copies // forever. // For safety, stick to splitting live ranges with uses outside the // periphery. DEBUG(dbgs() << ": multiple peripheral uses\n"); break; case ContainedInLoop: DEBUG(dbgs() << ": fully contained\n"); continue; case SinglePeripheral: DEBUG(dbgs() << ": single peripheral use\n"); continue; } // Will it be possible to split around this loop? getCriticalExits(Blocks, CriticalExits); DEBUG(dbgs() << ": " << CriticalExits.size() << " critical exits\n"); if (!canSplitCriticalExits(Blocks, CriticalExits)) continue; // This is a possible split. Loops.insert(Loop); } DEBUG(dbgs() << " getBestSplitLoop found " << Loops.size() << " candidate loops.\n"); if (Loops.empty()) return 0; // Pick the earliest loop. // FIXME: Are there other heuristics to consider? const MachineLoop *Best = 0; SlotIndex BestIdx; for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E; ++I) { SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader()); if (!Best || Idx < BestIdx) Best = *I, BestIdx = Idx; } DEBUG(dbgs() << " getBestSplitLoop found " << *Best); return Best; } //===----------------------------------------------------------------------===// // LiveIntervalMap //===----------------------------------------------------------------------===// // Work around the fact that the std::pair constructors are broken for pointer // pairs in some implementations. makeVV(x, 0) works. static inline std::pair makeVV(const VNInfo *a, VNInfo *b) { return std::make_pair(a, b); } void LiveIntervalMap::reset(LiveInterval *li) { li_ = li; valueMap_.clear(); liveOutCache_.clear(); } bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const { ValueMap::const_iterator i = valueMap_.find(ParentVNI); return i != valueMap_.end() && i->second == 0; } // defValue - Introduce a li_ def for ParentVNI that could be later than // ParentVNI->def. VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) { assert(li_ && "call reset first"); assert(ParentVNI && "Mapping NULL value"); assert(Idx.isValid() && "Invalid SlotIndex"); assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); // Create a new value. VNInfo *VNI = li_->getNextValue(Idx, 0, lis_.getVNInfoAllocator()); // Preserve the PHIDef bit. if (ParentVNI->isPHIDef() && Idx == ParentVNI->def) VNI->setIsPHIDef(true); // Use insert for lookup, so we can add missing values with a second lookup. std::pair InsP = valueMap_.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0)); // This is now a complex def. Mark with a NULL in valueMap. if (!InsP.second) InsP.first->second = 0; return VNI; } // mapValue - Find the mapped value for ParentVNI at Idx. // Potentially create phi-def values. VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx, bool *simple) { assert(li_ && "call reset first"); assert(ParentVNI && "Mapping NULL value"); assert(Idx.isValid() && "Invalid SlotIndex"); assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); // Use insert for lookup, so we can add missing values with a second lookup. std::pair InsP = valueMap_.insert(makeVV(ParentVNI, 0)); // This was an unknown value. Create a simple mapping. if (InsP.second) { if (simple) *simple = true; return InsP.first->second = li_->createValueCopy(ParentVNI, lis_.getVNInfoAllocator()); } // This was a simple mapped value. if (InsP.first->second) { if (simple) *simple = true; return InsP.first->second; } // This is a complex mapped value. There may be multiple defs, and we may need // to create phi-defs. if (simple) *simple = false; MachineBasicBlock *IdxMBB = lis_.getMBBFromIndex(Idx); assert(IdxMBB && "No MBB at Idx"); // Is there a def in the same MBB we can extend? if (VNInfo *VNI = extendTo(IdxMBB, Idx)) return VNI; // Now for the fun part. We know that ParentVNI potentially has multiple defs, // and we may need to create even more phi-defs to preserve VNInfo SSA form. // Perform a search for all predecessor blocks where we know the dominating // VNInfo. Insert phi-def VNInfos along the path back to IdxMBB. DEBUG(dbgs() << "\n Reaching defs for BB#" << IdxMBB->getNumber() << " at " << Idx << " in " << *li_ << '\n'); // Blocks where li_ should be live-in. SmallVector LiveIn; LiveIn.push_back(mdt_[IdxMBB]); // Using liveOutCache_ as a visited set, perform a BFS for all reaching defs. for (unsigned i = 0; i != LiveIn.size(); ++i) { MachineBasicBlock *MBB = LiveIn[i]->getBlock(); for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), PE = MBB->pred_end(); PI != PE; ++PI) { MachineBasicBlock *Pred = *PI; // Is this a known live-out block? std::pair LOIP = liveOutCache_.insert(std::make_pair(Pred, LiveOutPair())); // Yes, we have been here before. if (!LOIP.second) { DEBUG(if (VNInfo *VNI = LOIP.first->second.first) dbgs() << " known valno #" << VNI->id << " at BB#" << Pred->getNumber() << '\n'); continue; } // Does Pred provide a live-out value? SlotIndex Last = lis_.getMBBEndIdx(Pred).getPrevSlot(); if (VNInfo *VNI = extendTo(Pred, Last)) { MachineBasicBlock *DefMBB = lis_.getMBBFromIndex(VNI->def); DEBUG(dbgs() << " found valno #" << VNI->id << " from BB#" << DefMBB->getNumber() << " at BB#" << Pred->getNumber() << '\n'); LiveOutPair &LOP = LOIP.first->second; LOP.first = VNI; LOP.second = mdt_[DefMBB]; continue; } // No, we need a live-in value for Pred as well if (Pred != IdxMBB) LiveIn.push_back(mdt_[Pred]); } } // We may need to add phi-def values to preserve the SSA form. // This is essentially the same iterative algorithm that SSAUpdater uses, // except we already have a dominator tree, so we don't have to recompute it. VNInfo *IdxVNI = 0; unsigned Changes; do { Changes = 0; DEBUG(dbgs() << " Iterating over " << LiveIn.size() << " blocks.\n"); // Propagate live-out values down the dominator tree, inserting phi-defs when // necessary. Since LiveIn was created by a BFS, going backwards makes it more // likely for us to visit immediate dominators before their children. for (unsigned i = LiveIn.size(); i; --i) { MachineDomTreeNode *Node = LiveIn[i-1]; MachineBasicBlock *MBB = Node->getBlock(); MachineDomTreeNode *IDom = Node->getIDom(); LiveOutPair IDomValue; // We need a live-in value to a block with no immediate dominator? // This is probably an unreachable block that has survived somehow. bool needPHI = !IDom; // Get the IDom live-out value. if (!needPHI) { LiveOutMap::iterator I = liveOutCache_.find(IDom->getBlock()); if (I != liveOutCache_.end()) IDomValue = I->second; else // If IDom is outside our set of live-out blocks, there must be new // defs, and we need a phi-def here. needPHI = true; } // IDom dominates all of our predecessors, but it may not be the immediate // dominator. Check if any of them have live-out values that are properly // dominated by IDom. If so, we need a phi-def here. if (!needPHI) { for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), PE = MBB->pred_end(); PI != PE; ++PI) { LiveOutPair Value = liveOutCache_[*PI]; if (!Value.first || Value.first == IDomValue.first) continue; // This predecessor is carrying something other than IDomValue. // It could be because IDomValue hasn't propagated yet, or it could be // because MBB is in the dominance frontier of that value. if (mdt_.dominates(IDom, Value.second)) { needPHI = true; break; } } } // Create a phi-def if required. if (needPHI) { ++Changes; SlotIndex Start = lis_.getMBBStartIdx(MBB); VNInfo *VNI = li_->getNextValue(Start, 0, lis_.getVNInfoAllocator()); VNI->setIsPHIDef(true); DEBUG(dbgs() << " - BB#" << MBB->getNumber() << " phi-def #" << VNI->id << " at " << Start << '\n'); // We no longer need li_ to be live-in. LiveIn.erase(LiveIn.begin()+(i-1)); // Blocks in LiveIn are either IdxMBB, or have a value live-through. if (MBB == IdxMBB) IdxVNI = VNI; // Check if we need to update live-out info. LiveOutMap::iterator I = liveOutCache_.find(MBB); if (I == liveOutCache_.end() || I->second.second == Node) { // We already have a live-out defined in MBB, so this must be IdxMBB. assert(MBB == IdxMBB && "Adding phi-def to known live-out"); li_->addRange(LiveRange(Start, Idx.getNextSlot(), VNI)); } else { // This phi-def is also live-out, so color the whole block. li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); I->second = LiveOutPair(VNI, Node); } } else if (IDomValue.first) { // No phi-def here. Remember incoming value for IdxMBB. if (MBB == IdxMBB) IdxVNI = IDomValue.first; // Propagate IDomValue if needed: // MBB is live-out and doesn't define its own value. LiveOutMap::iterator I = liveOutCache_.find(MBB); if (I != liveOutCache_.end() && I->second.second != Node && I->second.first != IDomValue.first) { ++Changes; I->second = IDomValue; DEBUG(dbgs() << " - BB#" << MBB->getNumber() << " idom valno #" << IDomValue.first->id << " from BB#" << IDom->getBlock()->getNumber() << '\n'); } } } DEBUG(dbgs() << " - made " << Changes << " changes.\n"); } while (Changes); assert(IdxVNI && "Didn't find value for Idx"); #ifndef NDEBUG // Check the liveOutCache_ invariants. for (LiveOutMap::iterator I = liveOutCache_.begin(), E = liveOutCache_.end(); I != E; ++I) { assert(I->first && "Null MBB entry in cache"); assert(I->second.first && "Null VNInfo in cache"); assert(I->second.second && "Null DomTreeNode in cache"); if (I->second.second->getBlock() == I->first) continue; for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(), PE = I->first->pred_end(); PI != PE; ++PI) assert(liveOutCache_.lookup(*PI) == I->second && "Bad invariant"); } #endif // Since we went through the trouble of a full BFS visiting all reaching defs, // the values in LiveIn are now accurate. No more phi-defs are needed // for these blocks, so we can color the live ranges. // This makes the next mapValue call much faster. for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) { MachineBasicBlock *MBB = LiveIn[i]->getBlock(); SlotIndex Start = lis_.getMBBStartIdx(MBB); if (MBB == IdxMBB) { li_->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI)); continue; } // Anything in LiveIn other than IdxMBB is live-through. VNInfo *VNI = liveOutCache_.lookup(MBB).first; assert(VNI && "Missing block value"); li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); } return IdxVNI; } // extendTo - Find the last li_ value defined in MBB at or before Idx. The // parentli_ is assumed to be live at Idx. Extend the live range to Idx. // Return the found VNInfo, or NULL. VNInfo *LiveIntervalMap::extendTo(const MachineBasicBlock *MBB, SlotIndex Idx) { assert(li_ && "call reset first"); LiveInterval::iterator I = std::upper_bound(li_->begin(), li_->end(), Idx); if (I == li_->begin()) return 0; --I; if (I->end <= lis_.getMBBStartIdx(MBB)) return 0; if (I->end <= Idx) I->end = Idx.getNextSlot(); return I->valno; } // addSimpleRange - Add a simple range from parentli_ to li_. // ParentVNI must be live in the [Start;End) interval. void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End, const VNInfo *ParentVNI) { assert(li_ && "call reset first"); bool simple; VNInfo *VNI = mapValue(ParentVNI, Start, &simple); // A simple mapping is easy. if (simple) { li_->addRange(LiveRange(Start, End, VNI)); return; } // ParentVNI is a complex value. We must map per MBB. MachineFunction::iterator MBB = lis_.getMBBFromIndex(Start); MachineFunction::iterator MBBE = lis_.getMBBFromIndex(End.getPrevSlot()); if (MBB == MBBE) { li_->addRange(LiveRange(Start, End, VNI)); return; } // First block. li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); // Run sequence of full blocks. for (++MBB; MBB != MBBE; ++MBB) { Start = lis_.getMBBStartIdx(MBB); li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), mapValue(ParentVNI, Start))); } // Final block. Start = lis_.getMBBStartIdx(MBB); if (Start != End) li_->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start))); } /// addRange - Add live ranges to li_ where [Start;End) intersects parentli_. /// All needed values whose def is not inside [Start;End) must be defined /// beforehand so mapValue will work. void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) { assert(li_ && "call reset first"); LiveInterval::const_iterator B = parentli_.begin(), E = parentli_.end(); LiveInterval::const_iterator I = std::lower_bound(B, E, Start); // Check if --I begins before Start and overlaps. if (I != B) { --I; if (I->end > Start) addSimpleRange(Start, std::min(End, I->end), I->valno); ++I; } // The remaining ranges begin after Start. for (;I != E && I->start < End; ++I) addSimpleRange(I->start, std::min(End, I->end), I->valno); } //===----------------------------------------------------------------------===// // Split Editor //===----------------------------------------------------------------------===// /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm, MachineDominatorTree &mdt, LiveRangeEdit &edit) : sa_(sa), lis_(lis), vrm_(vrm), mri_(vrm.getMachineFunction().getRegInfo()), tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()), tri_(*vrm.getMachineFunction().getTarget().getRegisterInfo()), edit_(edit), dupli_(lis_, mdt, edit.getParent()), openli_(lis_, mdt, edit.getParent()) { // We don't need an AliasAnalysis since we will only be performing // cheap-as-a-copy remats anyway. edit_.anyRematerializable(lis_, tii_, 0); } bool SplitEditor::intervalsLiveAt(SlotIndex Idx) const { for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I) if (*I != dupli_.getLI() && (*I)->liveAt(Idx)) return true; return false; } VNInfo *SplitEditor::defFromParent(LiveIntervalMap &Reg, VNInfo *ParentVNI, SlotIndex UseIdx, MachineBasicBlock &MBB, MachineBasicBlock::iterator I) { VNInfo *VNI = 0; MachineInstr *CopyMI = 0; SlotIndex Def; // Attempt cheap-as-a-copy rematerialization. LiveRangeEdit::Remat RM(ParentVNI); if (edit_.canRematerializeAt(RM, UseIdx, true, lis_)) { Def = edit_.rematerializeAt(MBB, I, Reg.getLI()->reg, RM, lis_, tii_, tri_); } else { // Can't remat, just insert a copy from parent. CopyMI = BuildMI(MBB, I, DebugLoc(), tii_.get(TargetOpcode::COPY), Reg.getLI()->reg).addReg(edit_.getReg()); Def = lis_.InsertMachineInstrInMaps(CopyMI).getDefIndex(); } // Define the value in Reg. VNI = Reg.defValue(ParentVNI, Def); VNI->setCopy(CopyMI); // Add minimal liveness for the new value. if (UseIdx < Def) UseIdx = Def; Reg.getLI()->addRange(LiveRange(Def, UseIdx.getNextSlot(), VNI)); return VNI; } /// Create a new virtual register and live interval. void SplitEditor::openIntv() { assert(!openli_.getLI() && "Previous LI not closed before openIntv"); if (!dupli_.getLI()) dupli_.reset(&edit_.create(mri_, lis_, vrm_)); openli_.reset(&edit_.create(mri_, lis_, vrm_)); } /// enterIntvBefore - Enter openli before the instruction at Idx. If curli is /// not live before Idx, a COPY is not inserted. void SplitEditor::enterIntvBefore(SlotIndex Idx) { assert(openli_.getLI() && "openIntv not called before enterIntvBefore"); Idx = Idx.getUseIndex(); DEBUG(dbgs() << " enterIntvBefore " << Idx); VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx); if (!ParentVNI) { DEBUG(dbgs() << ": not live\n"); return; } DEBUG(dbgs() << ": valno " << ParentVNI->id); truncatedValues.insert(ParentVNI); MachineInstr *MI = lis_.getInstructionFromIndex(Idx); assert(MI && "enterIntvBefore called with invalid index"); defFromParent(openli_, ParentVNI, Idx, *MI->getParent(), MI); DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); } /// enterIntvAtEnd - Enter openli at the end of MBB. void SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { assert(openli_.getLI() && "openIntv not called before enterIntvAtEnd"); SlotIndex End = lis_.getMBBEndIdx(&MBB).getPrevSlot(); DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << End); VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(End); if (!ParentVNI) { DEBUG(dbgs() << ": not live\n"); return; } DEBUG(dbgs() << ": valno " << ParentVNI->id); truncatedValues.insert(ParentVNI); defFromParent(openli_, ParentVNI, End, MBB, MBB.getFirstTerminator()); DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); } /// useIntv - indicate that all instructions in MBB should use openli. void SplitEditor::useIntv(const MachineBasicBlock &MBB) { useIntv(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB)); } void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { assert(openli_.getLI() && "openIntv not called before useIntv"); openli_.addRange(Start, End); DEBUG(dbgs() << " use [" << Start << ';' << End << "): " << *openli_.getLI() << '\n'); } /// leaveIntvAfter - Leave openli after the instruction at Idx. void SplitEditor::leaveIntvAfter(SlotIndex Idx) { assert(openli_.getLI() && "openIntv not called before leaveIntvAfter"); DEBUG(dbgs() << " leaveIntvAfter " << Idx); // The interval must be live beyond the instruction at Idx. Idx = Idx.getBoundaryIndex(); VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx); if (!ParentVNI) { DEBUG(dbgs() << ": not live\n"); return; } DEBUG(dbgs() << ": valno " << ParentVNI->id); MachineBasicBlock::iterator MII = lis_.getInstructionFromIndex(Idx); VNInfo *VNI = defFromParent(dupli_, ParentVNI, Idx, *MII->getParent(), llvm::next(MII)); // Make sure that openli is properly extended from Idx to the new copy. // FIXME: This shouldn't be necessary for remats. openli_.addSimpleRange(Idx, VNI->def, ParentVNI); DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); } /// leaveIntvAtTop - Leave the interval at the top of MBB. /// Currently, only one value can leave the interval. void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { assert(openli_.getLI() && "openIntv not called before leaveIntvAtTop"); SlotIndex Start = lis_.getMBBStartIdx(&MBB); DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Start); if (!ParentVNI) { DEBUG(dbgs() << ": not live\n"); return; } VNInfo *VNI = defFromParent(dupli_, ParentVNI, Start, MBB, MBB.SkipPHIsAndLabels(MBB.begin())); // Finally we must make sure that openli is properly extended from Start to // the new copy. openli_.addSimpleRange(Start, VNI->def, ParentVNI); DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); } /// closeIntv - Indicate that we are done editing the currently open /// LiveInterval, and ranges can be trimmed. void SplitEditor::closeIntv() { assert(openli_.getLI() && "openIntv not called before closeIntv"); DEBUG(dbgs() << " closeIntv cleaning up\n"); DEBUG(dbgs() << " open " << *openli_.getLI() << '\n'); openli_.reset(0); } /// rewrite - Rewrite all uses of reg to use the new registers. void SplitEditor::rewrite(unsigned reg) { for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(reg), RE = mri_.reg_end(); RI != RE;) { MachineOperand &MO = RI.getOperand(); unsigned OpNum = RI.getOperandNo(); MachineInstr *MI = MO.getParent(); ++RI; if (MI->isDebugValue()) { DEBUG(dbgs() << "Zapping " << *MI); // FIXME: We can do much better with debug values. MO.setReg(0); continue; } SlotIndex Idx = lis_.getInstructionIndex(MI); Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex(); LiveInterval *LI = 0; for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I) { LiveInterval *testli = *I; if (testli->liveAt(Idx)) { LI = testli; break; } } DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t'<< Idx); assert(LI && "No register was live at use"); MO.setReg(LI->reg); if (MO.isUse() && !MI->isRegTiedToDefOperand(OpNum)) MO.setIsKill(LI->killedAt(Idx.getDefIndex())); DEBUG(dbgs() << '\t' << *MI); } } void SplitEditor::addTruncSimpleRange(SlotIndex Start, SlotIndex End, VNInfo *VNI) { // Build vector of iterator pairs from the intervals. typedef std::pair IIPair; SmallVector Iters; for (LiveRangeEdit::iterator LI = edit_.begin(), LE = edit_.end(); LI != LE; ++LI) { if (*LI == dupli_.getLI()) continue; LiveInterval::const_iterator I = (*LI)->find(Start); LiveInterval::const_iterator E = (*LI)->end(); if (I != E) Iters.push_back(std::make_pair(I, E)); } SlotIndex sidx = Start; // Break [Start;End) into segments that don't overlap any intervals. for (;;) { SlotIndex next = sidx, eidx = End; // Find overlapping intervals. for (unsigned i = 0; i != Iters.size() && sidx < eidx; ++i) { LiveInterval::const_iterator I = Iters[i].first; // Interval I is overlapping [sidx;eidx). Trim sidx. if (I->start <= sidx) { sidx = I->end; // Move to the next run, remove iters when all are consumed. I = ++Iters[i].first; if (I == Iters[i].second) { Iters.erase(Iters.begin() + i); --i; continue; } } // Trim eidx too if needed. if (I->start >= eidx) continue; eidx = I->start; next = I->end; } // Now, [sidx;eidx) doesn't overlap anything in intervals_. if (sidx < eidx) dupli_.addSimpleRange(sidx, eidx, VNI); // If the interval end was truncated, we can try again from next. if (next <= sidx) break; sidx = next; } } void SplitEditor::computeRemainder() { // First we need to fill in the live ranges in dupli. // If values were redefined, we need a full recoloring with SSA update. // If values were truncated, we only need to truncate the ranges. // If values were partially rematted, we should shrink to uses. // If values were fully rematted, they should be omitted. // FIXME: If a single value is redefined, just move the def and truncate. LiveInterval &parent = edit_.getParent(); // Values that are fully contained in the split intervals. SmallPtrSet deadValues; // Map all curli values that should have live defs in dupli. for (LiveInterval::const_vni_iterator I = parent.vni_begin(), E = parent.vni_end(); I != E; ++I) { const VNInfo *VNI = *I; // Don't transfer unused values to the new intervals. if (VNI->isUnused()) continue; // Original def is contained in the split intervals. if (intervalsLiveAt(VNI->def)) { // Did this value escape? if (dupli_.isMapped(VNI)) truncatedValues.insert(VNI); else deadValues.insert(VNI); continue; } // Add minimal live range at the definition. VNInfo *DVNI = dupli_.defValue(VNI, VNI->def); dupli_.getLI()->addRange(LiveRange(VNI->def, VNI->def.getNextSlot(), DVNI)); } // Add all ranges to dupli. for (LiveInterval::const_iterator I = parent.begin(), E = parent.end(); I != E; ++I) { const LiveRange &LR = *I; if (truncatedValues.count(LR.valno)) { // recolor after removing intervals_. addTruncSimpleRange(LR.start, LR.end, LR.valno); } else if (!deadValues.count(LR.valno)) { // recolor without truncation. dupli_.addSimpleRange(LR.start, LR.end, LR.valno); } } // Extend dupli_ to be live out of any critical loop predecessors. // This means we have multiple registers live out of those blocks. // The alternative would be to split the critical edges. if (criticalPreds_.empty()) return; for (SplitAnalysis::BlockPtrSet::iterator I = criticalPreds_.begin(), E = criticalPreds_.end(); I != E; ++I) dupli_.extendTo(*I, lis_.getMBBEndIdx(*I).getPrevSlot()); criticalPreds_.clear(); } void SplitEditor::finish() { assert(!openli_.getLI() && "Previous LI not closed before rewrite"); assert(dupli_.getLI() && "No dupli for rewrite. Noop spilt?"); // Complete dupli liveness. computeRemainder(); // Get rid of unused values and set phi-kill flags. for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I) (*I)->RenumberValues(lis_); // Rewrite instructions. rewrite(edit_.getReg()); // Now check if any registers were separated into multiple components. ConnectedVNInfoEqClasses ConEQ(lis_); for (unsigned i = 0, e = edit_.size(); i != e; ++i) { // Don't use iterators, they are invalidated by create() below. LiveInterval *li = edit_.get(i); unsigned NumComp = ConEQ.Classify(li); if (NumComp <= 1) continue; DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n'); SmallVector dups; dups.push_back(li); for (unsigned i = 1; i != NumComp; ++i) dups.push_back(&edit_.create(mri_, lis_, vrm_)); ConEQ.Distribute(&dups[0]); // Rewrite uses to the new regs. rewrite(li->reg); } // Calculate spill weight and allocation hints for new intervals. VirtRegAuxInfo vrai(vrm_.getMachineFunction(), lis_, sa_.loops_); for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I){ LiveInterval &li = **I; vrai.CalculateRegClass(li.reg); vrai.CalculateWeightAndHint(li); DEBUG(dbgs() << " new interval " << mri_.getRegClass(li.reg)->getName() << ":" << li << '\n'); } } //===----------------------------------------------------------------------===// // Loop Splitting //===----------------------------------------------------------------------===// void SplitEditor::splitAroundLoop(const MachineLoop *Loop) { SplitAnalysis::LoopBlocks Blocks; sa_.getLoopBlocks(Loop, Blocks); DEBUG({ dbgs() << " splitAround"; sa_.print(Blocks, dbgs()); dbgs() << '\n'; }); // Break critical edges as needed. SplitAnalysis::BlockPtrSet CriticalExits; sa_.getCriticalExits(Blocks, CriticalExits); assert(CriticalExits.empty() && "Cannot break critical exits yet"); // Get critical predecessors so computeRemainder can deal with them. sa_.getCriticalPreds(Blocks, criticalPreds_); // Create new live interval for the loop. openIntv(); // Insert copies in the predecessors. for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(), E = Blocks.Preds.end(); I != E; ++I) { MachineBasicBlock &MBB = const_cast(**I); enterIntvAtEnd(MBB); } // Switch all loop blocks. for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(), E = Blocks.Loop.end(); I != E; ++I) useIntv(**I); // Insert back copies in the exit blocks. for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end(); I != E; ++I) { MachineBasicBlock &MBB = const_cast(**I); leaveIntvAtTop(MBB); } // Done. closeIntv(); finish(); } //===----------------------------------------------------------------------===// // Single Block Splitting //===----------------------------------------------------------------------===// /// getMultiUseBlocks - if curli has more than one use in a basic block, it /// may be an advantage to split curli for the duration of the block. bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) { // If curli is local to one block, there is no point to splitting it. if (usingBlocks_.size() <= 1) return false; // Add blocks with multiple uses. for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end(); I != E; ++I) switch (I->second) { case 0: case 1: continue; case 2: { // When there are only two uses and curli is both live in and live out, // we don't really win anything by isolating the block since we would be // inserting two copies. // The remaing register would still have two uses in the block. (Unless it // separates into disconnected components). if (lis_.isLiveInToMBB(*curli_, I->first) && lis_.isLiveOutOfMBB(*curli_, I->first)) continue; } // Fall through. default: Blocks.insert(I->first); } return !Blocks.empty(); } /// splitSingleBlocks - Split curli into a separate live interval inside each /// basic block in Blocks. void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) { DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n"); // Determine the first and last instruction using curli in each block. typedef std::pair IndexPair; typedef DenseMap IndexPairMap; IndexPairMap MBBRange; for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(), E = sa_.usingInstrs_.end(); I != E; ++I) { const MachineBasicBlock *MBB = (*I)->getParent(); if (!Blocks.count(MBB)) continue; SlotIndex Idx = lis_.getInstructionIndex(*I); DEBUG(dbgs() << " BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I); IndexPair &IP = MBBRange[MBB]; if (!IP.first.isValid() || Idx < IP.first) IP.first = Idx; if (!IP.second.isValid() || Idx > IP.second) IP.second = Idx; } // Create a new interval for each block. for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(), E = Blocks.end(); I != E; ++I) { IndexPair &IP = MBBRange[*I]; DEBUG(dbgs() << " splitting for BB#" << (*I)->getNumber() << ": [" << IP.first << ';' << IP.second << ")\n"); assert(IP.first.isValid() && IP.second.isValid()); openIntv(); enterIntvBefore(IP.first); useIntv(IP.first.getBaseIndex(), IP.second.getBoundaryIndex()); leaveIntvAfter(IP.second); closeIntv(); } finish(); } //===----------------------------------------------------------------------===// // Sub Block Splitting //===----------------------------------------------------------------------===// /// getBlockForInsideSplit - If curli is contained inside a single basic block, /// and it wou pay to subdivide the interval inside that block, return it. /// Otherwise return NULL. The returned block can be passed to /// SplitEditor::splitInsideBlock. const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() { // The interval must be exclusive to one block. if (usingBlocks_.size() != 1) return 0; // Don't to this for less than 4 instructions. We want to be sure that // splitting actually reduces the instruction count per interval. if (usingInstrs_.size() < 4) return 0; return usingBlocks_.begin()->first; } /// splitInsideBlock - Split curli into multiple intervals inside MBB. void SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) { SmallVector Uses; Uses.reserve(sa_.usingInstrs_.size()); for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(), E = sa_.usingInstrs_.end(); I != E; ++I) if ((*I)->getParent() == MBB) Uses.push_back(lis_.getInstructionIndex(*I)); DEBUG(dbgs() << " splitInsideBlock BB#" << MBB->getNumber() << " for " << Uses.size() << " instructions.\n"); assert(Uses.size() >= 3 && "Need at least 3 instructions"); array_pod_sort(Uses.begin(), Uses.end()); // Simple algorithm: Find the largest gap between uses as determined by slot // indices. Create new intervals for instructions before the gap and after the // gap. unsigned bestPos = 0; int bestGap = 0; DEBUG(dbgs() << " dist (" << Uses[0]); for (unsigned i = 1, e = Uses.size(); i != e; ++i) { int g = Uses[i-1].distance(Uses[i]); DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]); if (g > bestGap) bestPos = i, bestGap = g; } DEBUG(dbgs() << "), best: -" << bestGap << "-\n"); // bestPos points to the first use after the best gap. assert(bestPos > 0 && "Invalid gap"); // FIXME: Don't create intervals for low densities. // First interval before the gap. Don't create single-instr intervals. if (bestPos > 1) { openIntv(); enterIntvBefore(Uses.front()); useIntv(Uses.front().getBaseIndex(), Uses[bestPos-1].getBoundaryIndex()); leaveIntvAfter(Uses[bestPos-1]); closeIntv(); } // Second interval after the gap. if (bestPos < Uses.size()-1) { openIntv(); enterIntvBefore(Uses[bestPos]); useIntv(Uses[bestPos].getBaseIndex(), Uses.back().getBoundaryIndex()); leaveIntvAfter(Uses.back()); closeIntv(); } finish(); }