//===-- WinEHPrepare - Prepare exception handling for code generation ---===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass lowers LLVM IR exception handling into something closer to what the // backend wants. It snifs the personality function to see which kind of // preparation is necessary. If the personality function uses the Itanium LSDA, // this pass delegates to the DWARF EH preparation pass. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/Passes.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/TinyPtrVector.h" #include "llvm/Analysis/LibCallSemantics.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Module.h" #include "llvm/IR/PatternMatch.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/Local.h" #include using namespace llvm; using namespace llvm::PatternMatch; #define DEBUG_TYPE "winehprepare" namespace { // This map is used to model frame variable usage during outlining, to // construct a structure type to hold the frame variables in a frame // allocation block, and to remap the frame variable allocas (including // spill locations as needed) to GEPs that get the variable from the // frame allocation structure. typedef MapVector> FrameVarInfoMap; typedef SmallSet VisitedBlockSet; enum ActionType { Catch, Cleanup }; class LandingPadActions; class ActionHandler; class CatchHandler; class CleanupHandler; class LandingPadMap; typedef DenseMap CatchHandlerMapTy; typedef DenseMap CleanupHandlerMapTy; class WinEHPrepare : public FunctionPass { public: static char ID; // Pass identification, replacement for typeid. WinEHPrepare(const TargetMachine *TM = nullptr) : FunctionPass(ID) {} bool runOnFunction(Function &Fn) override; bool doFinalization(Module &M) override; void getAnalysisUsage(AnalysisUsage &AU) const override; const char *getPassName() const override { return "Windows exception handling preparation"; } private: bool prepareExceptionHandlers(Function &F, SmallVectorImpl &LPads); bool outlineHandler(ActionHandler *Action, Function *SrcFn, LandingPadInst *LPad, BasicBlock *StartBB, FrameVarInfoMap &VarInfo); void mapLandingPadBlocks(LandingPadInst *LPad, LandingPadActions &Actions); CatchHandler *findCatchHandler(BasicBlock *BB, BasicBlock *&NextBB, VisitedBlockSet &VisitedBlocks); CleanupHandler *findCleanupHandler(BasicBlock *StartBB, BasicBlock *EndBB); void processSEHCatchHandler(CatchHandler *Handler, BasicBlock *StartBB); // All fields are reset by runOnFunction. EHPersonality Personality; CatchHandlerMapTy CatchHandlerMap; CleanupHandlerMapTy CleanupHandlerMap; DenseMap LPadMaps; }; class WinEHFrameVariableMaterializer : public ValueMaterializer { public: WinEHFrameVariableMaterializer(Function *OutlinedFn, FrameVarInfoMap &FrameVarInfo); ~WinEHFrameVariableMaterializer() {} virtual Value *materializeValueFor(Value *V) override; private: FrameVarInfoMap &FrameVarInfo; IRBuilder<> Builder; }; class LandingPadMap { public: LandingPadMap() : OriginLPad(nullptr) {} void mapLandingPad(const LandingPadInst *LPad); bool isInitialized() { return OriginLPad != nullptr; } bool mapIfEHPtrLoad(const LoadInst *Load) { return mapIfEHLoad(Load, EHPtrStores, EHPtrStoreAddrs); } bool mapIfSelectorLoad(const LoadInst *Load) { return mapIfEHLoad(Load, SelectorStores, SelectorStoreAddrs); } bool isLandingPadSpecificInst(const Instruction *Inst) const; void remapSelector(ValueToValueMapTy &VMap, Value *MappedValue) const; private: bool mapIfEHLoad(const LoadInst *Load, SmallVectorImpl &Stores, SmallVectorImpl &StoreAddrs); const LandingPadInst *OriginLPad; // We will normally only see one of each of these instructions, but // if more than one occurs for some reason we can handle that. TinyPtrVector ExtractedEHPtrs; TinyPtrVector ExtractedSelectors; // In optimized code, there will typically be at most one instance of // each of the following, but in unoptimized IR it is not uncommon // for the values to be stored, loaded and then stored again. In that // case we will create a second entry for each store and store address. SmallVector EHPtrStores; SmallVector SelectorStores; SmallVector EHPtrStoreAddrs; SmallVector SelectorStoreAddrs; }; class WinEHCloningDirectorBase : public CloningDirector { public: WinEHCloningDirectorBase(Function *HandlerFn, FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap) : Materializer(HandlerFn, VarInfo), SelectorIDType(Type::getInt32Ty(HandlerFn->getContext())), Int8PtrType(Type::getInt8PtrTy(HandlerFn->getContext())), LPadMap(LPadMap) {} CloningAction handleInstruction(ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) override; virtual CloningAction handleBeginCatch(ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) = 0; virtual CloningAction handleEndCatch(ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) = 0; virtual CloningAction handleTypeIdFor(ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) = 0; virtual CloningAction handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke, BasicBlock *NewBB) = 0; virtual CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume, BasicBlock *NewBB) = 0; ValueMaterializer *getValueMaterializer() override { return &Materializer; } protected: WinEHFrameVariableMaterializer Materializer; Type *SelectorIDType; Type *Int8PtrType; LandingPadMap &LPadMap; }; class WinEHCatchDirector : public WinEHCloningDirectorBase { public: WinEHCatchDirector(Function *CatchFn, Value *Selector, FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap) : WinEHCloningDirectorBase(CatchFn, VarInfo, LPadMap), CurrentSelector(Selector->stripPointerCasts()), ExceptionObjectVar(nullptr) {} CloningAction handleBeginCatch(ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) override; CloningAction handleEndCatch(ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) override; CloningAction handleTypeIdFor(ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) override; CloningAction handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke, BasicBlock *NewBB) override; CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume, BasicBlock *NewBB) override; const Value *getExceptionVar() { return ExceptionObjectVar; } TinyPtrVector &getReturnTargets() { return ReturnTargets; } private: Value *CurrentSelector; const Value *ExceptionObjectVar; TinyPtrVector ReturnTargets; }; class WinEHCleanupDirector : public WinEHCloningDirectorBase { public: WinEHCleanupDirector(Function *CleanupFn, FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap) : WinEHCloningDirectorBase(CleanupFn, VarInfo, LPadMap) {} CloningAction handleBeginCatch(ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) override; CloningAction handleEndCatch(ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) override; CloningAction handleTypeIdFor(ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) override; CloningAction handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke, BasicBlock *NewBB) override; CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume, BasicBlock *NewBB) override; }; class ActionHandler { public: ActionHandler(BasicBlock *BB, ActionType Type) : StartBB(BB), Type(Type), HandlerBlockOrFunc(nullptr) {} ActionType getType() const { return Type; } BasicBlock *getStartBlock() const { return StartBB; } bool hasBeenProcessed() { return HandlerBlockOrFunc != nullptr; } void setHandlerBlockOrFunc(Constant *F) { HandlerBlockOrFunc = F; } Constant *getHandlerBlockOrFunc() { return HandlerBlockOrFunc; } private: BasicBlock *StartBB; ActionType Type; // Can be either a BlockAddress or a Function depending on the EH personality. Constant *HandlerBlockOrFunc; }; class CatchHandler : public ActionHandler { public: CatchHandler(BasicBlock *BB, Constant *Selector, BasicBlock *NextBB) : ActionHandler(BB, ActionType::Catch), Selector(Selector), NextBB(NextBB), ExceptionObjectVar(nullptr) {} // Method for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ActionHandler *H) { return H->getType() == ActionType::Catch; } Constant *getSelector() const { return Selector; } BasicBlock *getNextBB() const { return NextBB; } const Value *getExceptionVar() { return ExceptionObjectVar; } TinyPtrVector &getReturnTargets() { return ReturnTargets; } void setExceptionVar(const Value *Val) { ExceptionObjectVar = Val; } void setReturnTargets(TinyPtrVector &Targets) { ReturnTargets = Targets; } private: Constant *Selector; BasicBlock *NextBB; const Value *ExceptionObjectVar; TinyPtrVector ReturnTargets; }; class CleanupHandler : public ActionHandler { public: CleanupHandler(BasicBlock *BB) : ActionHandler(BB, ActionType::Cleanup) {} // Method for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ActionHandler *H) { return H->getType() == ActionType::Cleanup; } }; class LandingPadActions { public: LandingPadActions() : HasCleanupHandlers(false) {} void insertCatchHandler(CatchHandler *Action) { Actions.push_back(Action); } void insertCleanupHandler(CleanupHandler *Action) { Actions.push_back(Action); HasCleanupHandlers = true; } bool includesCleanup() const { return HasCleanupHandlers; } SmallVectorImpl::iterator begin() { return Actions.begin(); } SmallVectorImpl::iterator end() { return Actions.end(); } private: // Note that this class does not own the ActionHandler objects in this vector. // The ActionHandlers are owned by the CatchHandlerMap and CleanupHandlerMap // in the WinEHPrepare class. SmallVector Actions; bool HasCleanupHandlers; }; } // end anonymous namespace char WinEHPrepare::ID = 0; INITIALIZE_TM_PASS(WinEHPrepare, "winehprepare", "Prepare Windows exceptions", false, false) FunctionPass *llvm::createWinEHPass(const TargetMachine *TM) { return new WinEHPrepare(TM); } // FIXME: Remove this once the backend can handle the prepared IR. static cl::opt SEHPrepare("sehprepare", cl::Hidden, cl::desc("Prepare functions with SEH personalities")); bool WinEHPrepare::runOnFunction(Function &Fn) { SmallVector LPads; SmallVector Resumes; for (BasicBlock &BB : Fn) { if (auto *LP = BB.getLandingPadInst()) LPads.push_back(LP); if (auto *Resume = dyn_cast(BB.getTerminator())) Resumes.push_back(Resume); } // No need to prepare functions that lack landing pads. if (LPads.empty()) return false; // Classify the personality to see what kind of preparation we need. Personality = classifyEHPersonality(LPads.back()->getPersonalityFn()); // Do nothing if this is not an MSVC personality. if (!isMSVCEHPersonality(Personality)) return false; if (isAsynchronousEHPersonality(Personality) && !SEHPrepare) { // Replace all resume instructions with unreachable. // FIXME: Remove this once the backend can handle the prepared IR. for (ResumeInst *Resume : Resumes) { IRBuilder<>(Resume).CreateUnreachable(); Resume->eraseFromParent(); } return true; } // If there were any landing pads, prepareExceptionHandlers will make changes. prepareExceptionHandlers(Fn, LPads); return true; } bool WinEHPrepare::doFinalization(Module &M) { return false; } void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const {} bool WinEHPrepare::prepareExceptionHandlers( Function &F, SmallVectorImpl &LPads) { // These containers are used to re-map frame variables that are used in // outlined catch and cleanup handlers. They will be populated as the // handlers are outlined. FrameVarInfoMap FrameVarInfo; bool HandlersOutlined = false; Module *M = F.getParent(); LLVMContext &Context = M->getContext(); // Create a new function to receive the handler contents. PointerType *Int8PtrType = Type::getInt8PtrTy(Context); Type *Int32Type = Type::getInt32Ty(Context); Function *ActionIntrin = Intrinsic::getDeclaration(M, Intrinsic::eh_actions); for (LandingPadInst *LPad : LPads) { // Look for evidence that this landingpad has already been processed. bool LPadHasActionList = false; BasicBlock *LPadBB = LPad->getParent(); for (Instruction &Inst : *LPadBB) { if (auto *IntrinCall = dyn_cast(&Inst)) { if (IntrinCall->getIntrinsicID() == Intrinsic::eh_actions) { LPadHasActionList = true; break; } } // FIXME: This is here to help with the development of nested landing pad // outlining. It should be removed when that is finished. if (isa(Inst)) { LPadHasActionList = true; break; } } // If we've already outlined the handlers for this landingpad, // there's nothing more to do here. if (LPadHasActionList) continue; LandingPadActions Actions; mapLandingPadBlocks(LPad, Actions); for (ActionHandler *Action : Actions) { if (Action->hasBeenProcessed()) continue; BasicBlock *StartBB = Action->getStartBlock(); // SEH doesn't do any outlining for catches. Instead, pass the handler // basic block addr to llvm.eh.actions and list the block as a return // target. if (isAsynchronousEHPersonality(Personality)) { if (auto *CatchAction = dyn_cast(Action)) { processSEHCatchHandler(CatchAction, StartBB); HandlersOutlined = true; continue; } } if (outlineHandler(Action, &F, LPad, StartBB, FrameVarInfo)) { HandlersOutlined = true; } } // End for each Action // FIXME: We need a guard against partially outlined functions. if (!HandlersOutlined) continue; // Replace the landing pad with a new llvm.eh.action based landing pad. BasicBlock *NewLPadBB = BasicBlock::Create(Context, "lpad", &F, LPadBB); assert(!isa(LPadBB->begin())); Instruction *NewLPad = LPad->clone(); NewLPadBB->getInstList().push_back(NewLPad); while (!pred_empty(LPadBB)) { auto *pred = *pred_begin(LPadBB); InvokeInst *Invoke = cast(pred->getTerminator()); Invoke->setUnwindDest(NewLPadBB); } // Replace uses of the old lpad in phis with this block and delete the old // block. LPadBB->replaceSuccessorsPhiUsesWith(NewLPadBB); LPadBB->getTerminator()->eraseFromParent(); new UnreachableInst(LPadBB->getContext(), LPadBB); // Add a call to describe the actions for this landing pad. std::vector ActionArgs; for (ActionHandler *Action : Actions) { // Action codes from docs are: 0 cleanup, 1 catch. if (auto *CatchAction = dyn_cast(Action)) { ActionArgs.push_back(ConstantInt::get(Int32Type, 1)); ActionArgs.push_back(CatchAction->getSelector()); Value *EHObj = const_cast(CatchAction->getExceptionVar()); if (EHObj) ActionArgs.push_back(EHObj); else ActionArgs.push_back(ConstantPointerNull::get(Int8PtrType)); } else { ActionArgs.push_back(ConstantInt::get(Int32Type, 0)); } ActionArgs.push_back(Action->getHandlerBlockOrFunc()); } CallInst *Recover = CallInst::Create(ActionIntrin, ActionArgs, "recover", NewLPadBB); // Add an indirect branch listing possible successors of the catch handlers. IndirectBrInst *Branch = IndirectBrInst::Create(Recover, 0, NewLPadBB); for (ActionHandler *Action : Actions) { if (auto *CatchAction = dyn_cast(Action)) { for (auto *Target : CatchAction->getReturnTargets()) { Branch->addDestination(Target); } } } } // End for each landingpad // If nothing got outlined, there is no more processing to be done. if (!HandlersOutlined) return false; // Delete any blocks that were only used by handlers that were outlined above. removeUnreachableBlocks(F); BasicBlock *Entry = &F.getEntryBlock(); IRBuilder<> Builder(F.getParent()->getContext()); Builder.SetInsertPoint(Entry->getFirstInsertionPt()); Function *FrameEscapeFn = Intrinsic::getDeclaration(M, Intrinsic::frameescape); Function *RecoverFrameFn = Intrinsic::getDeclaration(M, Intrinsic::framerecover); // Finally, replace all of the temporary allocas for frame variables used in // the outlined handlers with calls to llvm.framerecover. BasicBlock::iterator II = Entry->getFirstInsertionPt(); Instruction *AllocaInsertPt = II; SmallVector AllocasToEscape; for (auto &VarInfoEntry : FrameVarInfo) { Value *ParentVal = VarInfoEntry.first; TinyPtrVector &Allocas = VarInfoEntry.second; // If the mapped value isn't already an alloca, we need to spill it if it // is a computed value or copy it if it is an argument. AllocaInst *ParentAlloca = dyn_cast(ParentVal); if (!ParentAlloca) { if (auto *Arg = dyn_cast(ParentVal)) { // Lower this argument to a copy and then demote that to the stack. // We can't just use the argument location because the handler needs // it to be in the frame allocation block. // Use 'select i8 true, %arg, undef' to simulate a 'no-op' instruction. Value *TrueValue = ConstantInt::getTrue(Context); Value *UndefValue = UndefValue::get(Arg->getType()); Instruction *SI = SelectInst::Create(TrueValue, Arg, UndefValue, Arg->getName() + ".tmp", AllocaInsertPt); Arg->replaceAllUsesWith(SI); // Reset the select operand, because it was clobbered by the RAUW above. SI->setOperand(1, Arg); ParentAlloca = DemoteRegToStack(*SI, true, SI); } else if (auto *PN = dyn_cast(ParentVal)) { ParentAlloca = DemotePHIToStack(PN, AllocaInsertPt); } else { Instruction *ParentInst = cast(ParentVal); // FIXME: This is a work-around to temporarily handle the case where an // instruction that is only used in handlers is not sunk. // Without uses, DemoteRegToStack would just eliminate the value. // This will fail if ParentInst is an invoke. if (ParentInst->getNumUses() == 0) { BasicBlock::iterator InsertPt = ParentInst; ++InsertPt; ParentAlloca = new AllocaInst(ParentInst->getType(), nullptr, ParentInst->getName() + ".reg2mem", InsertPt); new StoreInst(ParentInst, ParentAlloca, InsertPt); } else { ParentAlloca = DemoteRegToStack(*ParentInst, true, ParentInst); } } } // If the parent alloca is no longer used and only one of the handlers used // it, erase the parent and leave the copy in the outlined handler. if (ParentAlloca->getNumUses() == 0 && Allocas.size() == 1) { ParentAlloca->eraseFromParent(); continue; } // Add this alloca to the list of things to escape. AllocasToEscape.push_back(ParentAlloca); // Next replace all outlined allocas that are mapped to it. for (AllocaInst *TempAlloca : Allocas) { Function *HandlerFn = TempAlloca->getParent()->getParent(); // FIXME: Sink this GEP into the blocks where it is used. Builder.SetInsertPoint(TempAlloca); Builder.SetCurrentDebugLocation(TempAlloca->getDebugLoc()); Value *RecoverArgs[] = { Builder.CreateBitCast(&F, Int8PtrType, ""), &(HandlerFn->getArgumentList().back()), llvm::ConstantInt::get(Int32Type, AllocasToEscape.size() - 1)}; Value *RecoveredAlloca = Builder.CreateCall(RecoverFrameFn, RecoverArgs); // Add a pointer bitcast if the alloca wasn't an i8. if (RecoveredAlloca->getType() != TempAlloca->getType()) { RecoveredAlloca->setName(Twine(TempAlloca->getName()) + ".i8"); RecoveredAlloca = Builder.CreateBitCast(RecoveredAlloca, TempAlloca->getType()); } TempAlloca->replaceAllUsesWith(RecoveredAlloca); TempAlloca->removeFromParent(); RecoveredAlloca->takeName(TempAlloca); delete TempAlloca; } } // End for each FrameVarInfo entry. // Insert 'call void (...)* @llvm.frameescape(...)' at the end of the entry // block. Builder.SetInsertPoint(&F.getEntryBlock().back()); Builder.CreateCall(FrameEscapeFn, AllocasToEscape); // Insert an alloca for the EH state in the entry block. On x86, we will also // insert stores to update the EH state, but on other ISAs, the runtime does // it for us. // FIXME: This record is different on x86. Type *UnwindHelpTy = Type::getInt64Ty(Context); AllocaInst *UnwindHelp = new AllocaInst(UnwindHelpTy, "unwindhelp", &F.getEntryBlock().front()); Builder.CreateStore(llvm::ConstantInt::get(UnwindHelpTy, -2), UnwindHelp); Function *UnwindHelpFn = Intrinsic::getDeclaration(M, Intrinsic::eh_unwindhelp); Builder.CreateCall(UnwindHelpFn, Builder.CreateBitCast(UnwindHelp, Int8PtrType)); // Clean up the handler action maps we created for this function DeleteContainerSeconds(CatchHandlerMap); CatchHandlerMap.clear(); DeleteContainerSeconds(CleanupHandlerMap); CleanupHandlerMap.clear(); return HandlersOutlined; } // This function examines a block to determine whether the block ends with a // conditional branch to a catch handler based on a selector comparison. // This function is used both by the WinEHPrepare::findSelectorComparison() and // WinEHCleanupDirector::handleTypeIdFor(). static bool isSelectorDispatch(BasicBlock *BB, BasicBlock *&CatchHandler, Constant *&Selector, BasicBlock *&NextBB) { ICmpInst::Predicate Pred; BasicBlock *TBB, *FBB; Value *LHS, *RHS; if (!match(BB->getTerminator(), m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TBB, FBB))) return false; if (!match(LHS, m_Intrinsic(m_Constant(Selector))) && !match(RHS, m_Intrinsic(m_Constant(Selector)))) return false; if (Pred == CmpInst::ICMP_EQ) { CatchHandler = TBB; NextBB = FBB; return true; } if (Pred == CmpInst::ICMP_NE) { CatchHandler = FBB; NextBB = TBB; return true; } return false; } bool WinEHPrepare::outlineHandler(ActionHandler *Action, Function *SrcFn, LandingPadInst *LPad, BasicBlock *StartBB, FrameVarInfoMap &VarInfo) { Module *M = SrcFn->getParent(); LLVMContext &Context = M->getContext(); // Create a new function to receive the handler contents. Type *Int8PtrType = Type::getInt8PtrTy(Context); std::vector ArgTys; ArgTys.push_back(Int8PtrType); ArgTys.push_back(Int8PtrType); Function *Handler; if (Action->getType() == Catch) { FunctionType *FnType = FunctionType::get(Int8PtrType, ArgTys, false); Handler = Function::Create(FnType, GlobalVariable::InternalLinkage, SrcFn->getName() + ".catch", M); } else { FunctionType *FnType = FunctionType::get(Type::getVoidTy(Context), ArgTys, false); Handler = Function::Create(FnType, GlobalVariable::InternalLinkage, SrcFn->getName() + ".cleanup", M); } // Generate a standard prolog to setup the frame recovery structure. IRBuilder<> Builder(Context); BasicBlock *Entry = BasicBlock::Create(Context, "entry"); Handler->getBasicBlockList().push_front(Entry); Builder.SetInsertPoint(Entry); Builder.SetCurrentDebugLocation(LPad->getDebugLoc()); std::unique_ptr Director; ValueToValueMapTy VMap; LandingPadMap &LPadMap = LPadMaps[LPad]; if (!LPadMap.isInitialized()) LPadMap.mapLandingPad(LPad); if (auto *CatchAction = dyn_cast(Action)) { Constant *Sel = CatchAction->getSelector(); Director.reset(new WinEHCatchDirector(Handler, Sel, VarInfo, LPadMap)); LPadMap.remapSelector(VMap, ConstantInt::get(Type::getInt32Ty(Context), 1)); } else { Director.reset(new WinEHCleanupDirector(Handler, VarInfo, LPadMap)); } SmallVector Returns; ClonedCodeInfo OutlinedFunctionInfo; // If the start block contains PHI nodes, we need to map them. BasicBlock::iterator II = StartBB->begin(); while (auto *PN = dyn_cast(II)) { bool Mapped = false; // Look for PHI values that we have already mapped (such as the selector). for (Value *Val : PN->incoming_values()) { if (VMap.count(Val)) { VMap[PN] = VMap[Val]; Mapped = true; } } // If we didn't find a match for this value, map it as an undef. if (!Mapped) { VMap[PN] = UndefValue::get(PN->getType()); } ++II; } // Skip over PHIs and, if applicable, landingpad instructions. II = StartBB->getFirstInsertionPt(); CloneAndPruneIntoFromInst(Handler, SrcFn, II, VMap, /*ModuleLevelChanges=*/false, Returns, "", &OutlinedFunctionInfo, Director.get()); // Move all the instructions in the first cloned block into our entry block. BasicBlock *FirstClonedBB = std::next(Function::iterator(Entry)); Entry->getInstList().splice(Entry->end(), FirstClonedBB->getInstList()); FirstClonedBB->eraseFromParent(); if (auto *CatchAction = dyn_cast(Action)) { WinEHCatchDirector *CatchDirector = reinterpret_cast(Director.get()); CatchAction->setExceptionVar(CatchDirector->getExceptionVar()); CatchAction->setReturnTargets(CatchDirector->getReturnTargets()); } Action->setHandlerBlockOrFunc(Handler); return true; } /// This BB must end in a selector dispatch. All we need to do is pass the /// handler block to llvm.eh.actions and list it as a possible indirectbr /// target. void WinEHPrepare::processSEHCatchHandler(CatchHandler *CatchAction, BasicBlock *StartBB) { BasicBlock *HandlerBB; BasicBlock *NextBB; Constant *Selector; bool Res = isSelectorDispatch(StartBB, HandlerBB, Selector, NextBB); if (Res) { // If this was EH dispatch, this must be a conditional branch to the handler // block. // FIXME: Handle instructions in the dispatch block. Currently we drop them, // leading to crashes if some optimization hoists stuff here. assert(CatchAction->getSelector() && HandlerBB && "expected catch EH dispatch"); } else { // This must be a catch-all. Split the block after the landingpad. assert(CatchAction->getSelector()->isNullValue() && "expected catch-all"); HandlerBB = StartBB->splitBasicBlock(StartBB->getFirstInsertionPt(), "catch.all"); } CatchAction->setHandlerBlockOrFunc(BlockAddress::get(HandlerBB)); TinyPtrVector Targets(HandlerBB); CatchAction->setReturnTargets(Targets); } void LandingPadMap::mapLandingPad(const LandingPadInst *LPad) { // Each instance of this class should only ever be used to map a single // landing pad. assert(OriginLPad == nullptr || OriginLPad == LPad); // If the landing pad has already been mapped, there's nothing more to do. if (OriginLPad == LPad) return; OriginLPad = LPad; // The landingpad instruction returns an aggregate value. Typically, its // value will be passed to a pair of extract value instructions and the // results of those extracts are often passed to store instructions. // In unoptimized code the stored value will often be loaded and then stored // again. for (auto *U : LPad->users()) { const ExtractValueInst *Extract = dyn_cast(U); if (!Extract) continue; assert(Extract->getNumIndices() == 1 && "Unexpected operation: extracting both landing pad values"); unsigned int Idx = *(Extract->idx_begin()); assert((Idx == 0 || Idx == 1) && "Unexpected operation: extracting an unknown landing pad element"); if (Idx == 0) { // Element 0 doesn't directly corresponds to anything in the WinEH // scheme. // It will be stored to a memory location, then later loaded and finally // the loaded value will be used as the argument to an // llvm.eh.begincatch // call. We're tracking it here so that we can skip the store and load. ExtractedEHPtrs.push_back(Extract); } else if (Idx == 1) { // Element 1 corresponds to the filter selector. We'll map it to 1 for // matching purposes, but it will also probably be stored to memory and // reloaded, so we need to track the instuction so that we can map the // loaded value too. ExtractedSelectors.push_back(Extract); } // Look for stores of the extracted values. for (auto *EU : Extract->users()) { if (auto *Store = dyn_cast(EU)) { if (Idx == 1) { SelectorStores.push_back(Store); SelectorStoreAddrs.push_back(Store->getPointerOperand()); } else { EHPtrStores.push_back(Store); EHPtrStoreAddrs.push_back(Store->getPointerOperand()); } } } } } bool LandingPadMap::isLandingPadSpecificInst(const Instruction *Inst) const { if (Inst == OriginLPad) return true; for (auto *Extract : ExtractedEHPtrs) { if (Inst == Extract) return true; } for (auto *Extract : ExtractedSelectors) { if (Inst == Extract) return true; } for (auto *Store : EHPtrStores) { if (Inst == Store) return true; } for (auto *Store : SelectorStores) { if (Inst == Store) return true; } return false; } void LandingPadMap::remapSelector(ValueToValueMapTy &VMap, Value *MappedValue) const { // Remap all selector extract instructions to the specified value. for (auto *Extract : ExtractedSelectors) VMap[Extract] = MappedValue; } bool LandingPadMap::mapIfEHLoad(const LoadInst *Load, SmallVectorImpl &Stores, SmallVectorImpl &StoreAddrs) { // This makes the assumption that a store we've previously seen dominates // this load instruction. That might seem like a rather huge assumption, // but given the way that landingpads are constructed its fairly safe. // FIXME: Add debug/assert code that verifies this. const Value *LoadAddr = Load->getPointerOperand(); for (auto *StoreAddr : StoreAddrs) { if (LoadAddr == StoreAddr) { // Handle the common debug scenario where this loaded value is stored // to a different location. for (auto *U : Load->users()) { if (auto *Store = dyn_cast(U)) { Stores.push_back(Store); StoreAddrs.push_back(Store->getPointerOperand()); } } return true; } } return false; } CloningDirector::CloningAction WinEHCloningDirectorBase::handleInstruction( ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { // If this is one of the boilerplate landing pad instructions, skip it. // The instruction will have already been remapped in VMap. if (LPadMap.isLandingPadSpecificInst(Inst)) return CloningDirector::SkipInstruction; if (auto *Load = dyn_cast(Inst)) { // Look for loads of (previously suppressed) landingpad values. // The EHPtr load can be mapped to an undef value as it should only be used // as an argument to llvm.eh.begincatch, but the selector value needs to be // mapped to a constant value of 1. This value will be used to simplify the // branching to always flow to the current handler. if (LPadMap.mapIfSelectorLoad(Load)) { VMap[Inst] = ConstantInt::get(SelectorIDType, 1); return CloningDirector::SkipInstruction; } if (LPadMap.mapIfEHPtrLoad(Load)) { VMap[Inst] = UndefValue::get(Int8PtrType); return CloningDirector::SkipInstruction; } // Any other loads just get cloned. return CloningDirector::CloneInstruction; } // Nested landing pads will be cloned as stubs, with just the // landingpad instruction and an unreachable instruction. When // all landingpads have been outlined, we'll replace this with the // llvm.eh.actions call and indirect branch created when the // landing pad was outlined. if (auto *NestedLPad = dyn_cast(Inst)) { Instruction *NewInst = NestedLPad->clone(); if (NestedLPad->hasName()) NewInst->setName(NestedLPad->getName()); // FIXME: Store this mapping somewhere else also. VMap[NestedLPad] = NewInst; BasicBlock::InstListType &InstList = NewBB->getInstList(); InstList.push_back(NewInst); InstList.push_back(new UnreachableInst(NewBB->getContext())); return CloningDirector::StopCloningBB; } if (auto *Invoke = dyn_cast(Inst)) return handleInvoke(VMap, Invoke, NewBB); if (auto *Resume = dyn_cast(Inst)) return handleResume(VMap, Resume, NewBB); if (match(Inst, m_Intrinsic())) return handleBeginCatch(VMap, Inst, NewBB); if (match(Inst, m_Intrinsic())) return handleEndCatch(VMap, Inst, NewBB); if (match(Inst, m_Intrinsic())) return handleTypeIdFor(VMap, Inst, NewBB); // Continue with the default cloning behavior. return CloningDirector::CloneInstruction; } CloningDirector::CloningAction WinEHCatchDirector::handleBeginCatch( ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { // The argument to the call is some form of the first element of the // landingpad aggregate value, but that doesn't matter. It isn't used // here. // The second argument is an outparameter where the exception object will be // stored. Typically the exception object is a scalar, but it can be an // aggregate when catching by value. // FIXME: Leave something behind to indicate where the exception object lives // for this handler. Should it be part of llvm.eh.actions? assert(ExceptionObjectVar == nullptr && "Multiple calls to " "llvm.eh.begincatch found while " "outlining catch handler."); ExceptionObjectVar = Inst->getOperand(1)->stripPointerCasts(); return CloningDirector::SkipInstruction; } CloningDirector::CloningAction WinEHCatchDirector::handleEndCatch(ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { auto *IntrinCall = dyn_cast(Inst); // It might be interesting to track whether or not we are inside a catch // function, but that might make the algorithm more brittle than it needs // to be. // The end catch call can occur in one of two places: either in a // landingpad block that is part of the catch handlers exception mechanism, // or at the end of the catch block. If it occurs in a landing pad, we must // skip it and continue so that the landing pad gets cloned. // FIXME: This case isn't fully supported yet and shouldn't turn up in any // of the test cases until it is. if (IntrinCall->getParent()->isLandingPad()) return CloningDirector::SkipInstruction; // If an end catch occurs anywhere else the next instruction should be an // unconditional branch instruction that we want to replace with a return // to the the address of the branch target. const BasicBlock *EndCatchBB = IntrinCall->getParent(); const TerminatorInst *Terminator = EndCatchBB->getTerminator(); const BranchInst *Branch = dyn_cast(Terminator); assert(Branch && Branch->isUnconditional()); assert(std::next(BasicBlock::const_iterator(IntrinCall)) == BasicBlock::const_iterator(Branch)); BasicBlock *ContinueLabel = Branch->getSuccessor(0); ReturnInst::Create(NewBB->getContext(), BlockAddress::get(ContinueLabel), NewBB); ReturnTargets.push_back(ContinueLabel); // We just added a terminator to the cloned block. // Tell the caller to stop processing the current basic block so that // the branch instruction will be skipped. return CloningDirector::StopCloningBB; } CloningDirector::CloningAction WinEHCatchDirector::handleTypeIdFor( ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { auto *IntrinCall = dyn_cast(Inst); Value *Selector = IntrinCall->getArgOperand(0)->stripPointerCasts(); // This causes a replacement that will collapse the landing pad CFG based // on the filter function we intend to match. if (Selector == CurrentSelector) VMap[Inst] = ConstantInt::get(SelectorIDType, 1); else VMap[Inst] = ConstantInt::get(SelectorIDType, 0); // Tell the caller not to clone this instruction. return CloningDirector::SkipInstruction; } CloningDirector::CloningAction WinEHCatchDirector::handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke, BasicBlock *NewBB) { return CloningDirector::CloneInstruction; } CloningDirector::CloningAction WinEHCatchDirector::handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume, BasicBlock *NewBB) { // Resume instructions shouldn't be reachable from catch handlers. // We still need to handle it, but it will be pruned. BasicBlock::InstListType &InstList = NewBB->getInstList(); InstList.push_back(new UnreachableInst(NewBB->getContext())); return CloningDirector::StopCloningBB; } CloningDirector::CloningAction WinEHCleanupDirector::handleBeginCatch( ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { // Catch blocks within cleanup handlers will always be unreachable. // We'll insert an unreachable instruction now, but it will be pruned // before the cloning process is complete. BasicBlock::InstListType &InstList = NewBB->getInstList(); InstList.push_back(new UnreachableInst(NewBB->getContext())); return CloningDirector::StopCloningBB; } CloningDirector::CloningAction WinEHCleanupDirector::handleEndCatch( ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { // Catch blocks within cleanup handlers will always be unreachable. // We'll insert an unreachable instruction now, but it will be pruned // before the cloning process is complete. BasicBlock::InstListType &InstList = NewBB->getInstList(); InstList.push_back(new UnreachableInst(NewBB->getContext())); return CloningDirector::StopCloningBB; } CloningDirector::CloningAction WinEHCleanupDirector::handleTypeIdFor( ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { // If we encounter a selector comparison while cloning a cleanup handler, // we want to stop cloning immediately. Anything after the dispatch // will be outlined into a different handler. BasicBlock *CatchHandler; Constant *Selector; BasicBlock *NextBB; if (isSelectorDispatch(const_cast(Inst->getParent()), CatchHandler, Selector, NextBB)) { ReturnInst::Create(NewBB->getContext(), nullptr, NewBB); return CloningDirector::StopCloningBB; } // If eg.typeid.for is called for any other reason, it can be ignored. VMap[Inst] = ConstantInt::get(SelectorIDType, 0); return CloningDirector::SkipInstruction; } CloningDirector::CloningAction WinEHCleanupDirector::handleInvoke( ValueToValueMapTy &VMap, const InvokeInst *Invoke, BasicBlock *NewBB) { // All invokes in cleanup handlers can be replaced with calls. SmallVector CallArgs(Invoke->op_begin(), Invoke->op_end() - 3); // Insert a normal call instruction... CallInst *NewCall = CallInst::Create(const_cast(Invoke->getCalledValue()), CallArgs, Invoke->getName(), NewBB); NewCall->setCallingConv(Invoke->getCallingConv()); NewCall->setAttributes(Invoke->getAttributes()); NewCall->setDebugLoc(Invoke->getDebugLoc()); VMap[Invoke] = NewCall; // Insert an unconditional branch to the normal destination. BranchInst::Create(Invoke->getNormalDest(), NewBB); // The unwind destination won't be cloned into the new function, so // we don't need to clean up its phi nodes. // We just added a terminator to the cloned block. // Tell the caller to stop processing the current basic block. return CloningDirector::StopCloningBB; } CloningDirector::CloningAction WinEHCleanupDirector::handleResume( ValueToValueMapTy &VMap, const ResumeInst *Resume, BasicBlock *NewBB) { ReturnInst::Create(NewBB->getContext(), nullptr, NewBB); // We just added a terminator to the cloned block. // Tell the caller to stop processing the current basic block so that // the branch instruction will be skipped. return CloningDirector::StopCloningBB; } WinEHFrameVariableMaterializer::WinEHFrameVariableMaterializer( Function *OutlinedFn, FrameVarInfoMap &FrameVarInfo) : FrameVarInfo(FrameVarInfo), Builder(OutlinedFn->getContext()) { Builder.SetInsertPoint(&OutlinedFn->getEntryBlock()); } Value *WinEHFrameVariableMaterializer::materializeValueFor(Value *V) { // If we're asked to materialize a value that is an instruction, we // temporarily create an alloca in the outlined function and add this // to the FrameVarInfo map. When all the outlining is complete, we'll // collect these into a structure, spilling non-alloca values in the // parent frame as necessary, and replace these temporary allocas with // GEPs referencing the frame allocation block. // If the value is an alloca, the mapping is direct. if (auto *AV = dyn_cast(V)) { AllocaInst *NewAlloca = dyn_cast(AV->clone()); Builder.Insert(NewAlloca, AV->getName()); FrameVarInfo[AV].push_back(NewAlloca); return NewAlloca; } // For other types of instructions or arguments, we need an alloca based on // the value's type and a load of the alloca. The alloca will be replaced // by a GEP, but the load will stay. In the parent function, the value will // be spilled to a location in the frame allocation block. if (isa(V) || isa(V)) { AllocaInst *NewAlloca = Builder.CreateAlloca(V->getType(), nullptr, "eh.temp.alloca"); FrameVarInfo[V].push_back(NewAlloca); LoadInst *NewLoad = Builder.CreateLoad(NewAlloca, V->getName() + ".reload"); return NewLoad; } // Don't materialize other values. return nullptr; } // This function maps the catch and cleanup handlers that are reachable from the // specified landing pad. The landing pad sequence will have this basic shape: // // // // // // // // // ... // // Any of the cleanup slots may be absent. The cleanup slots may be occupied by // any arbitrary control flow, but all paths through the cleanup code must // eventually reach the next selector comparison and no path can skip to a // different selector comparisons, though some paths may terminate abnormally. // Therefore, we will use a depth first search from the start of any given // cleanup block and stop searching when we find the next selector comparison. // // If the landingpad instruction does not have a catch clause, we will assume // that any instructions other than selector comparisons and catch handlers can // be ignored. In practice, these will only be the boilerplate instructions. // // The catch handlers may also have any control structure, but we are only // interested in the start of the catch handlers, so we don't need to actually // follow the flow of the catch handlers. The start of the catch handlers can // be located from the compare instructions, but they can be skipped in the // flow by following the contrary branch. void WinEHPrepare::mapLandingPadBlocks(LandingPadInst *LPad, LandingPadActions &Actions) { unsigned int NumClauses = LPad->getNumClauses(); unsigned int HandlersFound = 0; BasicBlock *BB = LPad->getParent(); DEBUG(dbgs() << "Mapping landing pad: " << BB->getName() << "\n"); if (NumClauses == 0) { // This landing pad contains only cleanup code. CleanupHandler *Action = new CleanupHandler(BB); CleanupHandlerMap[BB] = Action; Actions.insertCleanupHandler(Action); DEBUG(dbgs() << " Assuming cleanup code in block " << BB->getName() << "\n"); assert(LPad->isCleanup()); return; } VisitedBlockSet VisitedBlocks; while (HandlersFound != NumClauses) { BasicBlock *NextBB = nullptr; // See if the clause we're looking for is a catch-all. // If so, the catch begins immediately. if (isa(LPad->getClause(HandlersFound))) { // The catch all must occur last. assert(HandlersFound == NumClauses - 1); // For C++ EH, check if there is any interesting cleanup code before we // begin the catch. This is important because cleanups cannot rethrow // exceptions but code called from catches can. For SEH, it isn't // important if some finally code before a catch-all is executed out of // line or after recovering from the exception. if (Personality == EHPersonality::MSVC_CXX) { if (auto *CleanupAction = findCleanupHandler(BB, BB)) { // Add a cleanup entry to the list Actions.insertCleanupHandler(CleanupAction); DEBUG(dbgs() << " Found cleanup code in block " << CleanupAction->getStartBlock()->getName() << "\n"); } } // Add the catch handler to the action list. CatchHandler *Action = new CatchHandler(BB, LPad->getClause(HandlersFound), nullptr); CatchHandlerMap[BB] = Action; Actions.insertCatchHandler(Action); DEBUG(dbgs() << " Catch all handler at block " << BB->getName() << "\n"); ++HandlersFound; // Once we reach a catch-all, don't expect to hit a resume instruction. BB = nullptr; break; } CatchHandler *CatchAction = findCatchHandler(BB, NextBB, VisitedBlocks); // See if there is any interesting code executed before the dispatch. if (auto *CleanupAction = findCleanupHandler(BB, CatchAction->getStartBlock())) { // Add a cleanup entry to the list Actions.insertCleanupHandler(CleanupAction); DEBUG(dbgs() << " Found cleanup code in block " << CleanupAction->getStartBlock()->getName() << "\n"); } assert(CatchAction); ++HandlersFound; // Add the catch handler to the action list. Actions.insertCatchHandler(CatchAction); DEBUG(dbgs() << " Found catch dispatch in block " << CatchAction->getStartBlock()->getName() << "\n"); // Move on to the block after the catch handler. BB = NextBB; } // If we didn't wind up in a catch-all, see if there is any interesting code // executed before the resume. if (auto *CleanupAction = findCleanupHandler(BB, BB)) { // Add a cleanup entry to the list Actions.insertCleanupHandler(CleanupAction); DEBUG(dbgs() << " Found cleanup code in block " << CleanupAction->getStartBlock()->getName() << "\n"); } // It's possible that some optimization moved code into a landingpad that // wasn't // previously being used for cleanup. If that happens, we need to execute // that // extra code from a cleanup handler. if (Actions.includesCleanup() && !LPad->isCleanup()) LPad->setCleanup(true); } // This function searches starting with the input block for the next // block that terminates with a branch whose condition is based on a selector // comparison. This may be the input block. See the mapLandingPadBlocks // comments for a discussion of control flow assumptions. // CatchHandler *WinEHPrepare::findCatchHandler(BasicBlock *BB, BasicBlock *&NextBB, VisitedBlockSet &VisitedBlocks) { // See if we've already found a catch handler use it. // Call count() first to avoid creating a null entry for blocks // we haven't seen before. if (CatchHandlerMap.count(BB) && CatchHandlerMap[BB] != nullptr) { CatchHandler *Action = cast(CatchHandlerMap[BB]); NextBB = Action->getNextBB(); return Action; } // VisitedBlocks applies only to the current search. We still // need to consider blocks that we've visited while mapping other // landing pads. VisitedBlocks.insert(BB); BasicBlock *CatchBlock = nullptr; Constant *Selector = nullptr; // If this is the first time we've visited this block from any landing pad // look to see if it is a selector dispatch block. if (!CatchHandlerMap.count(BB)) { if (isSelectorDispatch(BB, CatchBlock, Selector, NextBB)) { CatchHandler *Action = new CatchHandler(BB, Selector, NextBB); CatchHandlerMap[BB] = Action; return Action; } } // Visit each successor, looking for the dispatch. // FIXME: We expect to find the dispatch quickly, so this will probably // work better as a breadth first search. for (BasicBlock *Succ : successors(BB)) { if (VisitedBlocks.count(Succ)) continue; CatchHandler *Action = findCatchHandler(Succ, NextBB, VisitedBlocks); if (Action) return Action; } return nullptr; } // These are helper functions to combine repeated code from findCleanupHandler. static CleanupHandler *createCleanupHandler(CleanupHandlerMapTy &CleanupHandlerMap, BasicBlock *BB) { CleanupHandler *Action = new CleanupHandler(BB); CleanupHandlerMap[BB] = Action; return Action; } // This function searches starting with the input block for the next block that // contains code that is not part of a catch handler and would not be eliminated // during handler outlining. // CleanupHandler *WinEHPrepare::findCleanupHandler(BasicBlock *StartBB, BasicBlock *EndBB) { // Here we will skip over the following: // // landing pad prolog: // // Unconditional branches // // Selector dispatch // // Resume pattern // // Anything else marks the start of an interesting block BasicBlock *BB = StartBB; // Anything other than an unconditional branch will kick us out of this loop // one way or another. while (BB) { // If we've already scanned this block, don't scan it again. If it is // a cleanup block, there will be an action in the CleanupHandlerMap. // If we've scanned it and it is not a cleanup block, there will be a // nullptr in the CleanupHandlerMap. If we have not scanned it, there will // be no entry in the CleanupHandlerMap. We must call count() first to // avoid creating a null entry for blocks we haven't scanned. if (CleanupHandlerMap.count(BB)) { if (auto *Action = CleanupHandlerMap[BB]) { return cast(Action); } else { // Here we handle the case where the cleanup handler map contains a // value for this block but the value is a nullptr. This means that // we have previously analyzed the block and determined that it did // not contain any cleanup code. Based on the earlier analysis, we // know the the block must end in either an unconditional branch, a // resume or a conditional branch that is predicated on a comparison // with a selector. Either the resume or the selector dispatch // would terminate the search for cleanup code, so the unconditional // branch is the only case for which we might need to continue // searching. if (BB == EndBB) return nullptr; BasicBlock *SuccBB; if (!match(BB->getTerminator(), m_UnconditionalBr(SuccBB))) return nullptr; BB = SuccBB; continue; } } // Create an entry in the cleanup handler map for this block. Initially // we create an entry that says this isn't a cleanup block. If we find // cleanup code, the caller will replace this entry. CleanupHandlerMap[BB] = nullptr; TerminatorInst *Terminator = BB->getTerminator(); // Landing pad blocks have extra instructions we need to accept. LandingPadMap *LPadMap = nullptr; if (BB->isLandingPad()) { LandingPadInst *LPad = BB->getLandingPadInst(); LPadMap = &LPadMaps[LPad]; if (!LPadMap->isInitialized()) LPadMap->mapLandingPad(LPad); } // Look for the bare resume pattern: // %exn2 = load i8** %exn.slot // %sel2 = load i32* %ehselector.slot // %lpad.val1 = insertvalue { i8*, i32 } undef, i8* %exn2, 0 // %lpad.val2 = insertvalue { i8*, i32 } %lpad.val1, i32 %sel2, 1 // resume { i8*, i32 } %lpad.val2 if (auto *Resume = dyn_cast(Terminator)) { InsertValueInst *Insert1 = nullptr; InsertValueInst *Insert2 = nullptr; Value *ResumeVal = Resume->getOperand(0); // If there is only one landingpad, we may use the lpad directly with no // insertions. if (isa(ResumeVal)) return nullptr; if (!isa(ResumeVal)) { Insert2 = dyn_cast(ResumeVal); if (!Insert2) return createCleanupHandler(CleanupHandlerMap, BB); Insert1 = dyn_cast(Insert2->getAggregateOperand()); if (!Insert1) return createCleanupHandler(CleanupHandlerMap, BB); } for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end(); II != IE; ++II) { Instruction *Inst = II; if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst)) continue; if (Inst == Insert1 || Inst == Insert2 || Inst == Resume) continue; if (!Inst->hasOneUse() || (Inst->user_back() != Insert1 && Inst->user_back() != Insert2)) { return createCleanupHandler(CleanupHandlerMap, BB); } } return nullptr; } BranchInst *Branch = dyn_cast(Terminator); if (Branch) { if (Branch->isConditional()) { // Look for the selector dispatch. // %sel = load i32* %ehselector.slot // %2 = call i32 @llvm.eh.typeid.for(i8* bitcast (i8** @_ZTIf to i8*)) // %matches = icmp eq i32 %sel12, %2 // br i1 %matches, label %catch14, label %eh.resume CmpInst *Compare = dyn_cast(Branch->getCondition()); if (!Compare || !Compare->isEquality()) return createCleanupHandler(CleanupHandlerMap, BB); for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end(); II != IE; ++II) { Instruction *Inst = II; if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst)) continue; if (Inst == Compare || Inst == Branch) continue; if (!Inst->hasOneUse() || (Inst->user_back() != Compare)) return createCleanupHandler(CleanupHandlerMap, BB); if (match(Inst, m_Intrinsic())) continue; if (!isa(Inst)) return createCleanupHandler(CleanupHandlerMap, BB); } // The selector dispatch block should always terminate our search. assert(BB == EndBB); return nullptr; } else { // Look for empty blocks with unconditional branches. for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end(); II != IE; ++II) { Instruction *Inst = II; if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst)) continue; if (Inst == Branch) continue; if (match(Inst, m_Intrinsic())) continue; // Anything else makes this interesting cleanup code. return createCleanupHandler(CleanupHandlerMap, BB); } if (BB == EndBB) return nullptr; // The branch was unconditional. BB = Branch->getSuccessor(0); continue; } // End else of if branch was conditional } // End if Branch // Anything else makes this interesting cleanup code. return createCleanupHandler(CleanupHandlerMap, BB); } return nullptr; }