//===- FuzzerDFSan.cpp - DFSan-based fuzzer mutator -----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // DataFlowSanitizer (DFSan) is a tool for // generalised dynamic data flow (taint) analysis: // http://clang.llvm.org/docs/DataFlowSanitizer.html . // // This file implements a mutation algorithm based on taint // analysis feedback from DFSan. // // The approach has some similarity to "Taint-based Directed Whitebox Fuzzing" // by Vijay Ganesh & Tim Leek & Martin Rinard: // http://dspace.mit.edu/openaccess-disseminate/1721.1/59320, // but it uses a full blown LLVM IR taint analysis and separate instrumentation // to analyze all of the "attack points" at once. // // Workflow: // * lib/Fuzzer/Fuzzer*.cpp is compiled w/o any instrumentation. // * The code under test is compiled with DFSan *and* with special extra hooks // that are inserted before dfsan. Currently supported hooks: // - __sanitizer_cov_trace_cmp: inserted before every ICMP instruction, // receives the type, size and arguments of ICMP. // * Every call to HOOK(a,b) is replaced by DFSan with // __dfsw_HOOK(a, b, label(a), label(b)) so that __dfsw_HOOK // gets all the taint labels for the arguments. // * At the Fuzzer startup we assign a unique DFSan label // to every byte of the input string (Fuzzer::CurrentUnit) so that for any // chunk of data we know which input bytes it has derived from. // * The __dfsw_* functions (implemented in this file) record the // parameters (i.e. the application data and the corresponding taint labels) // in a global state. // * Fuzzer::MutateWithDFSan() tries to use the data recorded by __dfsw_* // hooks to guide the fuzzing towards new application states. // For example if 4 bytes of data that derive from input bytes {4,5,6,7} // are compared with a constant 12345 and the comparison always yields // the same result, we try to insert 12345, 12344, 12346 into bytes // {4,5,6,7} of the next fuzzed inputs. // // This code does not function when DFSan is not linked in. // Instead of using ifdefs and thus requiring a separate build of lib/Fuzzer // we redeclare the dfsan_* interface functions as weak and check if they // are nullptr before calling. // If this approach proves to be useful we may add attribute(weak) to the // dfsan declarations in dfsan_interface.h // // This module is in the "proof of concept" stage. // It is capable of solving only the simplest puzzles // like test/dfsan/DFSanSimpleCmpTest.cpp. //===----------------------------------------------------------------------===// /* Example of manual usage: ( cd $LLVM/lib/Fuzzer/ clang -fPIC -c -g -O2 -std=c++11 Fuzzer*.cpp clang++ -O0 -std=c++11 -fsanitize-coverage=3 \ -mllvm -sanitizer-coverage-experimental-trace-compares=1 \ -fsanitize=dataflow -fsanitize-blacklist=./dfsan_fuzzer_abi.list \ test/dfsan/DFSanSimpleCmpTest.cpp Fuzzer*.o ./a.out ) */ #include "FuzzerInternal.h" #include #include #include #include extern "C" { __attribute__((weak)) dfsan_label dfsan_create_label(const char *desc, void *userdata); __attribute__((weak)) void dfsan_set_label(dfsan_label label, void *addr, size_t size); __attribute__((weak)) void dfsan_add_label(dfsan_label label, void *addr, size_t size); __attribute__((weak)) const struct dfsan_label_info *dfsan_get_label_info(dfsan_label label); } // extern "C" namespace { // These values are copied from include/llvm/IR/InstrTypes.h. // We do not include the LLVM headers here to remain independent. // If these values ever change, an assertion in ComputeCmp will fail. enum Predicate { ICMP_EQ = 32, ///< equal ICMP_NE = 33, ///< not equal ICMP_UGT = 34, ///< unsigned greater than ICMP_UGE = 35, ///< unsigned greater or equal ICMP_ULT = 36, ///< unsigned less than ICMP_ULE = 37, ///< unsigned less or equal ICMP_SGT = 38, ///< signed greater than ICMP_SGE = 39, ///< signed greater or equal ICMP_SLT = 40, ///< signed less than ICMP_SLE = 41, ///< signed less or equal }; template bool ComputeCmp(size_t CmpType, U Arg1, U Arg2) { switch(CmpType) { case ICMP_EQ : return Arg1 == Arg2; case ICMP_NE : return Arg1 != Arg2; case ICMP_UGT: return Arg1 > Arg2; case ICMP_UGE: return Arg1 >= Arg2; case ICMP_ULT: return Arg1 < Arg2; case ICMP_ULE: return Arg1 <= Arg2; case ICMP_SGT: return (S)Arg1 > (S)Arg2; case ICMP_SGE: return (S)Arg1 >= (S)Arg2; case ICMP_SLT: return (S)Arg1 < (S)Arg2; case ICMP_SLE: return (S)Arg1 <= (S)Arg2; default: assert(0 && "unsupported CmpType"); } return false; } static bool ComputeCmp(size_t CmpSize, size_t CmpType, uint64_t Arg1, uint64_t Arg2) { if (CmpSize == 8) return ComputeCmp(CmpType, Arg1, Arg2); if (CmpSize == 4) return ComputeCmp(CmpType, Arg1, Arg2); if (CmpSize == 2) return ComputeCmp(CmpType, Arg1, Arg2); if (CmpSize == 1) return ComputeCmp(CmpType, Arg1, Arg2); assert(0 && "unsupported type size"); return true; } // As a simplification we use the range of input bytes instead of a set of input // bytes. struct LabelRange { uint16_t Beg, End; // Range is [Beg, End), thus Beg==End is an empty range. LabelRange(uint16_t Beg = 0, uint16_t End = 0) : Beg(Beg), End(End) {} static LabelRange Join(LabelRange LR1, LabelRange LR2) { if (LR1.Beg == LR1.End) return LR2; if (LR2.Beg == LR2.End) return LR1; return {std::min(LR1.Beg, LR2.Beg), std::max(LR1.End, LR2.End)}; } LabelRange &Join(LabelRange LR) { return *this = Join(*this, LR); } static LabelRange Singleton(const dfsan_label_info *LI) { uint16_t Idx = (uint16_t)(uintptr_t)LI->userdata; assert(Idx > 0); return {(uint16_t)(Idx - 1), Idx}; } }; std::ostream &operator<<(std::ostream &os, const LabelRange &LR) { return os << "[" << LR.Beg << "," << LR.End << ")"; } class DFSanState { public: DFSanState(const fuzzer::Fuzzer::FuzzingOptions &Options) : Options(Options) {} struct CmpSiteInfo { size_t ResCounters[2] = {0, 0}; size_t CmpSize = 0; LabelRange LR; std::unordered_map CountedConstants; }; LabelRange GetLabelRange(dfsan_label L); void DFSanCmpCallback(uintptr_t PC, size_t CmpSize, size_t CmpType, uint64_t Arg1, uint64_t Arg2, dfsan_label L1, dfsan_label L2); bool Mutate(fuzzer::Unit *U); private: std::unordered_map PcToCmpSiteInfoMap; LabelRange LabelRanges[1 << (sizeof(dfsan_label) * 8)] = {}; const fuzzer::Fuzzer::FuzzingOptions &Options; }; LabelRange DFSanState::GetLabelRange(dfsan_label L) { LabelRange &LR = LabelRanges[L]; if (LR.Beg < LR.End || L == 0) return LR; const dfsan_label_info *LI = dfsan_get_label_info(L); if (LI->l1 || LI->l2) return LR = LabelRange::Join(GetLabelRange(LI->l1), GetLabelRange(LI->l2)); return LR = LabelRange::Singleton(LI); } void DFSanState::DFSanCmpCallback(uintptr_t PC, size_t CmpSize, size_t CmpType, uint64_t Arg1, uint64_t Arg2, dfsan_label L1, dfsan_label L2) { if (L1 == 0 && L2 == 0) return; // Not actionable. if (L1 != 0 && L2 != 0) return; // Probably still actionable. bool Res = ComputeCmp(CmpSize, CmpType, Arg1, Arg2); CmpSiteInfo &CSI = PcToCmpSiteInfoMap[PC]; CSI.CmpSize = CmpSize; CSI.LR.Join(GetLabelRange(L1)).Join(GetLabelRange(L2)); if (!L1) CSI.CountedConstants[Arg1]++; if (!L2) CSI.CountedConstants[Arg2]++; size_t Counter = CSI.ResCounters[Res]++; if (Options.Verbosity >= 2 && (Counter & (Counter - 1)) == 0 && CSI.ResCounters[!Res] == 0) std::cerr << "DFSAN:" << " PC " << std::hex << PC << std::dec << " S " << CmpSize << " T " << CmpType << " A1 " << Arg1 << " A2 " << Arg2 << " R " << Res << " L" << L1 << GetLabelRange(L1) << " L" << L2 << GetLabelRange(L2) << " LR " << CSI.LR << "\n"; } bool DFSanState::Mutate(fuzzer::Unit *U) { for (auto &PCToCmp : PcToCmpSiteInfoMap) { auto &CSI = PCToCmp.second; if (CSI.ResCounters[0] * CSI.ResCounters[1] != 0) continue; if (CSI.ResCounters[0] + CSI.ResCounters[1] < 1000) continue; if (CSI.CountedConstants.size() != 1) continue; uintptr_t C = CSI.CountedConstants.begin()->first; if (U->size() >= CSI.CmpSize) { size_t RangeSize = CSI.LR.End - CSI.LR.Beg; size_t Idx = CSI.LR.Beg + rand() % RangeSize; if (Idx + CSI.CmpSize > U->size()) continue; C += rand() % 5 - 2; memcpy(U->data() + Idx, &C, CSI.CmpSize); return true; } } return false; } static DFSanState *DFSan; } // namespace namespace fuzzer { bool Fuzzer::MutateWithDFSan(Unit *U) { if (!&dfsan_create_label || !DFSan) return false; return DFSan->Mutate(U); } void Fuzzer::InitializeDFSan() { if (!&dfsan_create_label || !Options.UseDFSan) return; DFSan = new DFSanState(Options); CurrentUnit.resize(Options.MaxLen); for (size_t i = 0; i < static_cast(Options.MaxLen); i++) { dfsan_label L = dfsan_create_label("input", (void*)(i + 1)); // We assume that no one else has called dfsan_create_label before. assert(L == i + 1); dfsan_set_label(L, &CurrentUnit[i], 1); } } } // namespace fuzzer extern "C" { void __dfsw___sanitizer_cov_trace_cmp(uint64_t SizeAndType, uint64_t Arg1, uint64_t Arg2, dfsan_label L0, dfsan_label L1, dfsan_label L2) { assert(L0 == 0); uintptr_t PC = reinterpret_cast(__builtin_return_address(0)); uint64_t CmpSize = (SizeAndType >> 32) / 8; uint64_t Type = (SizeAndType << 32) >> 32; DFSan->DFSanCmpCallback(PC, CmpSize, Type, Arg1, Arg2, L1, L2); } } // extern "C"