//===- FuzzerLoop.cpp - Fuzzer's main loop --------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // Fuzzer's main loop. //===----------------------------------------------------------------------===// #include "FuzzerInternal.h" #include #include #include namespace fuzzer { // Only one Fuzzer per process. static Fuzzer *F; Fuzzer::Fuzzer(UserCallback Callback, FuzzingOptions Options) : Callback(Callback), Options(Options) { SetDeathCallback(); InitializeDFSan(); assert(!F); F = this; } void Fuzzer::SetDeathCallback() { __sanitizer_set_death_callback(StaticDeathCallback); } void Fuzzer::PrintUnitInASCIIOrTokens(const Unit &U, const char *PrintAfter) { if (Options.Tokens.empty()) { PrintASCII(U, PrintAfter); } else { auto T = SubstituteTokens(U); T.push_back(0); std::cerr << T.data(); std::cerr << PrintAfter; } } void Fuzzer::StaticDeathCallback() { assert(F); F->DeathCallback(); } void Fuzzer::DeathCallback() { std::cerr << "DEATH: " << std::endl; Print(CurrentUnit, "\n"); PrintUnitInASCIIOrTokens(CurrentUnit, "\n"); WriteToCrash(CurrentUnit, "crash-"); } void Fuzzer::StaticAlarmCallback() { assert(F); F->AlarmCallback(); } void Fuzzer::AlarmCallback() { size_t Seconds = duration_cast(system_clock::now() - UnitStartTime).count(); std::cerr << "ALARM: working on the last Unit for " << Seconds << " seconds" << std::endl; if (Seconds >= 3) { Print(CurrentUnit, "\n"); PrintUnitInASCIIOrTokens(CurrentUnit, "\n"); WriteToCrash(CurrentUnit, "timeout-"); } exit(1); } void Fuzzer::PrintStats(const char *Where, size_t Cov, const char *End) { if (!Options.Verbosity) return; size_t Seconds = secondsSinceProcessStartUp(); size_t ExecPerSec = (Seconds ? TotalNumberOfRuns / Seconds : 0); std::cerr << "#" << TotalNumberOfRuns << "\t" << Where << " cov " << Cov << " bits " << TotalBits() << " units " << Corpus.size() << " exec/s " << ExecPerSec << End; } void Fuzzer::ShuffleAndMinimize() { size_t MaxCov = 0; bool PreferSmall = (Options.PreferSmallDuringInitialShuffle == 1 || (Options.PreferSmallDuringInitialShuffle == -1 && rand() % 2)); if (Options.Verbosity) std::cerr << "PreferSmall: " << PreferSmall << "\n"; PrintStats("READ ", 0); std::vector NewCorpus; std::random_shuffle(Corpus.begin(), Corpus.end()); if (PreferSmall) std::stable_sort( Corpus.begin(), Corpus.end(), [](const Unit &A, const Unit &B) { return A.size() < B.size(); }); Unit &U = CurrentUnit; for (const auto &C : Corpus) { for (size_t First = 0; First < 1; First++) { U.clear(); size_t Last = std::min(First + Options.MaxLen, C.size()); U.insert(U.begin(), C.begin() + First, C.begin() + Last); size_t NewCoverage = RunOne(U); if (NewCoverage) { MaxCov = NewCoverage; NewCorpus.push_back(U); if (Options.Verbosity >= 2) std::cerr << "NEW0: " << NewCoverage << " L " << U.size() << "\n"; } } } Corpus = NewCorpus; PrintStats("INITED", MaxCov); } size_t Fuzzer::RunOne(const Unit &U) { UnitStartTime = system_clock::now(); TotalNumberOfRuns++; size_t Res = 0; if (Options.UseFullCoverageSet) Res = RunOneMaximizeFullCoverageSet(U); else if (Options.UseCoveragePairs) Res = RunOneMaximizeCoveragePairs(U); else Res = RunOneMaximizeTotalCoverage(U); auto UnitStopTime = system_clock::now(); auto TimeOfUnit = duration_cast(UnitStopTime - UnitStartTime).count(); if (TimeOfUnit > TimeOfLongestUnitInSeconds) { TimeOfLongestUnitInSeconds = TimeOfUnit; std::cerr << "Longest unit: " << TimeOfLongestUnitInSeconds << " s:\n"; Print(U, "\n"); } return Res; } static uintptr_t HashOfArrayOfPCs(uintptr_t *PCs, uintptr_t NumPCs) { uintptr_t Res = 0; for (uintptr_t i = 0; i < NumPCs; i++) { Res = (Res + PCs[i]) * 7; } return Res; } Unit Fuzzer::SubstituteTokens(const Unit &U) const { Unit Res; for (auto Idx : U) { if (Idx < Options.Tokens.size()) { std::string Token = Options.Tokens[Idx]; Res.insert(Res.end(), Token.begin(), Token.end()); } else { Res.push_back(' '); } } // FIXME: Apply DFSan labels. return Res; } void Fuzzer::ExecuteCallback(const Unit &U) { if (Options.Tokens.empty()) { Callback(U.data(), U.size()); } else { auto T = SubstituteTokens(U); Callback(T.data(), T.size()); } } // Experimental. Does not yet scale. // Fuly reset the current coverage state, run a single unit, // collect all coverage pairs and return non-zero if a new pair is observed. size_t Fuzzer::RunOneMaximizeCoveragePairs(const Unit &U) { __sanitizer_reset_coverage(); ExecuteCallback(U); uintptr_t *PCs; uintptr_t NumPCs = __sanitizer_get_coverage_guards(&PCs); bool HasNewPairs = false; for (uintptr_t i = 0; i < NumPCs; i++) { if (!PCs[i]) continue; for (uintptr_t j = 0; j < NumPCs; j++) { if (!PCs[j]) continue; uint64_t Pair = (i << 32) | j; HasNewPairs |= CoveragePairs.insert(Pair).second; } } if (HasNewPairs) return CoveragePairs.size(); return 0; } // Experimental. // Fuly reset the current coverage state, run a single unit, // compute a hash function from the full coverage set, // return non-zero if the hash value is new. // This produces tons of new units and as is it's only suitable for small tests, // e.g. test/FullCoverageSetTest.cpp. FIXME: make it scale. size_t Fuzzer::RunOneMaximizeFullCoverageSet(const Unit &U) { __sanitizer_reset_coverage(); ExecuteCallback(U); uintptr_t *PCs; uintptr_t NumPCs =__sanitizer_get_coverage_guards(&PCs); if (FullCoverageSets.insert(HashOfArrayOfPCs(PCs, NumPCs)).second) return FullCoverageSets.size(); return 0; } size_t Fuzzer::RunOneMaximizeTotalCoverage(const Unit &U) { size_t NumCounters = __sanitizer_get_number_of_counters(); if (Options.UseCounters) { CounterBitmap.resize(NumCounters); __sanitizer_update_counter_bitset_and_clear_counters(0); } size_t OldCoverage = __sanitizer_get_total_unique_coverage(); ExecuteCallback(U); size_t NewCoverage = __sanitizer_get_total_unique_coverage(); size_t NumNewBits = 0; if (Options.UseCounters) NumNewBits = __sanitizer_update_counter_bitset_and_clear_counters( CounterBitmap.data()); if (!(TotalNumberOfRuns & (TotalNumberOfRuns - 1)) && Options.Verbosity) PrintStats("pulse ", NewCoverage); if (NewCoverage > OldCoverage || NumNewBits) return NewCoverage; return 0; } void Fuzzer::WriteToOutputCorpus(const Unit &U) { if (Options.OutputCorpus.empty()) return; std::string Path = DirPlusFile(Options.OutputCorpus, Hash(U)); WriteToFile(U, Path); if (Options.Verbosity >= 2) std::cerr << "Written to " << Path << std::endl; } void Fuzzer::WriteToCrash(const Unit &U, const char *Prefix) { std::string Path = Prefix + Hash(U); WriteToFile(U, Path); std::cerr << "CRASHED; file written to " << Path << std::endl; } void Fuzzer::SaveCorpus() { if (Options.OutputCorpus.empty()) return; for (const auto &U : Corpus) WriteToFile(U, DirPlusFile(Options.OutputCorpus, Hash(U))); if (Options.Verbosity) std::cerr << "Written corpus of " << Corpus.size() << " files to " << Options.OutputCorpus << "\n"; } size_t Fuzzer::MutateAndTestOne(Unit *U) { size_t NewUnits = 0; for (int i = 0; i < Options.MutateDepth; i++) { if (TotalNumberOfRuns >= Options.MaxNumberOfRuns) return NewUnits; MutateWithDFSan(U); Mutate(U, Options.MaxLen); size_t NewCoverage = RunOne(*U); if (NewCoverage) { Corpus.push_back(*U); NewUnits++; PrintStats("NEW ", NewCoverage, ""); if (Options.Verbosity) { std::cerr << " L: " << U->size(); if (U->size() < 30) { std::cerr << " "; PrintUnitInASCIIOrTokens(*U, "\t"); Print(*U); } std::cerr << "\n"; } WriteToOutputCorpus(*U); if (Options.ExitOnFirst) exit(0); } } return NewUnits; } size_t Fuzzer::Loop(size_t NumIterations) { size_t NewUnits = 0; for (size_t i = 1; i <= NumIterations; i++) { for (size_t J1 = 0; J1 < Corpus.size(); J1++) { if (TotalNumberOfRuns >= Options.MaxNumberOfRuns) return NewUnits; // First, simply mutate the unit w/o doing crosses. CurrentUnit = Corpus[J1]; NewUnits += MutateAndTestOne(&CurrentUnit); // Now, cross with others. if (Options.DoCrossOver) { for (size_t J2 = 0; J2 < Corpus.size(); J2++) { CurrentUnit.clear(); CrossOver(Corpus[J1], Corpus[J2], &CurrentUnit, Options.MaxLen); NewUnits += MutateAndTestOne(&CurrentUnit); } } } } return NewUnits; } } // namespace fuzzer