//===-- Attribute.cpp - Implement AttributesList -------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Attribute, AttributeImpl, AttrBuilder, // AttributeSetImpl, and AttributeSet classes. // //===----------------------------------------------------------------------===// #include "llvm/IR/Attributes.h" #include "AttributeImpl.h" #include "LLVMContextImpl.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/StringExtras.h" #include "llvm/IR/Type.h" #include "llvm/Support/Atomic.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/Mutex.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; //===----------------------------------------------------------------------===// // Attribute Implementation //===----------------------------------------------------------------------===// Attribute Attribute::get(LLVMContext &Context, ArrayRef Kinds) { AttrBuilder B; for (ArrayRef::iterator I = Kinds.begin(), E = Kinds.end(); I != E; ++I) B.addAttribute(*I); return Attribute::get(Context, B); } Attribute Attribute::get(LLVMContext &Context, AttrBuilder &B) { // If there are no attributes, return an empty Attribute class. if (!B.hasAttributes()) return Attribute(); // Otherwise, build a key to look up the existing attributes. LLVMContextImpl *pImpl = Context.pImpl; FoldingSetNodeID ID; ID.AddInteger(B.Raw()); void *InsertPoint; AttributeImpl *PA = pImpl->AttrsSet.FindNodeOrInsertPos(ID, InsertPoint); if (!PA) { // If we didn't find any existing attributes of the same shape then create a // new one and insert it. PA = new AttributeImpl(Context, B.Raw()); pImpl->AttrsSet.InsertNode(PA, InsertPoint); } // Return the AttributesList that we found or created. return Attribute(PA); } Attribute Attribute::getWithAlignment(LLVMContext &Context, uint64_t Align) { AttrBuilder B; return get(Context, B.addAlignmentAttr(Align)); } Attribute Attribute::getWithStackAlignment(LLVMContext &Context, uint64_t Align) { AttrBuilder B; return get(Context, B.addStackAlignmentAttr(Align)); } bool Attribute::hasAttribute(AttrKind Val) const { return pImpl && pImpl->hasAttribute(Val); } bool Attribute::hasAttributes() const { return pImpl && pImpl->hasAttributes(); } /// This returns the alignment field of an attribute as a byte alignment value. unsigned Attribute::getAlignment() const { if (!hasAttribute(Attribute::Alignment)) return 0; return pImpl->getAlignment(); } /// This returns the stack alignment field of an attribute as a byte alignment /// value. unsigned Attribute::getStackAlignment() const { if (!hasAttribute(Attribute::StackAlignment)) return 0; return pImpl->getStackAlignment(); } bool Attribute::operator==(AttrKind K) const { return pImpl && *pImpl == K; } bool Attribute::operator!=(AttrKind K) const { return !(*this == K); } bool Attribute::operator<(Attribute A) const { if (!pImpl && !A.pImpl) return false; if (!pImpl) return true; if (!A.pImpl) return false; return *pImpl < *A.pImpl; } uint64_t Attribute::Raw() const { return pImpl ? pImpl->Raw() : 0; } std::string Attribute::getAsString() const { std::string Result; if (hasAttribute(Attribute::ZExt)) Result += "zeroext "; if (hasAttribute(Attribute::SExt)) Result += "signext "; if (hasAttribute(Attribute::NoReturn)) Result += "noreturn "; if (hasAttribute(Attribute::NoUnwind)) Result += "nounwind "; if (hasAttribute(Attribute::UWTable)) Result += "uwtable "; if (hasAttribute(Attribute::ReturnsTwice)) Result += "returns_twice "; if (hasAttribute(Attribute::InReg)) Result += "inreg "; if (hasAttribute(Attribute::NoAlias)) Result += "noalias "; if (hasAttribute(Attribute::NoCapture)) Result += "nocapture "; if (hasAttribute(Attribute::StructRet)) Result += "sret "; if (hasAttribute(Attribute::ByVal)) Result += "byval "; if (hasAttribute(Attribute::Nest)) Result += "nest "; if (hasAttribute(Attribute::ReadNone)) Result += "readnone "; if (hasAttribute(Attribute::ReadOnly)) Result += "readonly "; if (hasAttribute(Attribute::OptimizeForSize)) Result += "optsize "; if (hasAttribute(Attribute::NoInline)) Result += "noinline "; if (hasAttribute(Attribute::InlineHint)) Result += "inlinehint "; if (hasAttribute(Attribute::AlwaysInline)) Result += "alwaysinline "; if (hasAttribute(Attribute::StackProtect)) Result += "ssp "; if (hasAttribute(Attribute::StackProtectReq)) Result += "sspreq "; if (hasAttribute(Attribute::StackProtectStrong)) Result += "sspstrong "; if (hasAttribute(Attribute::NoRedZone)) Result += "noredzone "; if (hasAttribute(Attribute::NoImplicitFloat)) Result += "noimplicitfloat "; if (hasAttribute(Attribute::Naked)) Result += "naked "; if (hasAttribute(Attribute::NonLazyBind)) Result += "nonlazybind "; if (hasAttribute(Attribute::AddressSafety)) Result += "address_safety "; if (hasAttribute(Attribute::MinSize)) Result += "minsize "; if (hasAttribute(Attribute::StackAlignment)) { Result += "alignstack("; Result += utostr(getStackAlignment()); Result += ") "; } if (hasAttribute(Attribute::Alignment)) { Result += "align "; Result += utostr(getAlignment()); Result += " "; } if (hasAttribute(Attribute::NoDuplicate)) Result += "noduplicate "; // Trim the trailing space. assert(!Result.empty() && "Unknown attribute!"); Result.erase(Result.end()-1); return Result; } //===----------------------------------------------------------------------===// // AttrBuilder Method Implementations //===----------------------------------------------------------------------===// AttrBuilder::AttrBuilder(AttributeSet AS, unsigned Idx) : Alignment(0), StackAlignment(0) { AttributeSetImpl *pImpl = AS.pImpl; if (!pImpl) return; ArrayRef AttrList = pImpl->getAttributes(); const AttributeWithIndex *AWI = 0; for (unsigned I = 0, E = AttrList.size(); I != E; ++I) if (AttrList[I].Index == Idx) { AWI = &AttrList[I]; break; } if (!AWI) return; uint64_t Mask = AWI->Attrs.Raw(); for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; I = Attribute::AttrKind(I + 1)) { if (uint64_t A = (Mask & AttributeImpl::getAttrMask(I))) { Attrs.insert(I); if (I == Attribute::Alignment) Alignment = 1ULL << ((A >> 16) - 1); else if (I == Attribute::StackAlignment) StackAlignment = 1ULL << ((A >> 26)-1); } } } void AttrBuilder::clear() { Attrs.clear(); Alignment = StackAlignment = 0; } AttrBuilder &AttrBuilder::addAttribute(Attribute::AttrKind Val) { Attrs.insert(Val); return *this; } AttrBuilder &AttrBuilder::removeAttribute(Attribute::AttrKind Val) { Attrs.erase(Val); if (Val == Attribute::Alignment) Alignment = 0; else if (Val == Attribute::StackAlignment) StackAlignment = 0; return *this; } AttrBuilder &AttrBuilder::addAlignmentAttr(unsigned Align) { if (Align == 0) return *this; assert(isPowerOf2_32(Align) && "Alignment must be a power of two."); assert(Align <= 0x40000000 && "Alignment too large."); Attrs.insert(Attribute::Alignment); Alignment = Align; return *this; } AttrBuilder &AttrBuilder::addStackAlignmentAttr(unsigned Align) { // Default alignment, allow the target to define how to align it. if (Align == 0) return *this; assert(isPowerOf2_32(Align) && "Alignment must be a power of two."); assert(Align <= 0x100 && "Alignment too large."); Attrs.insert(Attribute::StackAlignment); StackAlignment = Align; return *this; } AttrBuilder &AttrBuilder::addRawValue(uint64_t Val) { for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; I = Attribute::AttrKind(I + 1)) { if (uint64_t A = (Val & AttributeImpl::getAttrMask(I))) { Attrs.insert(I); if (I == Attribute::Alignment) Alignment = 1ULL << ((A >> 16) - 1); else if (I == Attribute::StackAlignment) StackAlignment = 1ULL << ((A >> 26)-1); } } return *this; } AttrBuilder &AttrBuilder::addAttributes(const Attribute &Attr) { uint64_t Mask = Attr.Raw(); for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; I = Attribute::AttrKind(I + 1)) if ((Mask & AttributeImpl::getAttrMask(I)) != 0) Attrs.insert(I); if (Attr.getAlignment()) Alignment = Attr.getAlignment(); if (Attr.getStackAlignment()) StackAlignment = Attr.getStackAlignment(); return *this; } AttrBuilder &AttrBuilder::removeAttributes(const Attribute &A){ uint64_t Mask = A.Raw(); for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; I = Attribute::AttrKind(I + 1)) { if (Mask & AttributeImpl::getAttrMask(I)) { Attrs.erase(I); if (I == Attribute::Alignment) Alignment = 0; else if (I == Attribute::StackAlignment) StackAlignment = 0; } } return *this; } bool AttrBuilder::contains(Attribute::AttrKind A) const { return Attrs.count(A); } bool AttrBuilder::hasAttributes() const { return !Attrs.empty(); } bool AttrBuilder::hasAttributes(const Attribute &A) const { return Raw() & A.Raw(); } bool AttrBuilder::hasAlignmentAttr() const { return Alignment != 0; } uint64_t AttrBuilder::Raw() const { uint64_t Mask = 0; for (DenseSet::const_iterator I = Attrs.begin(), E = Attrs.end(); I != E; ++I) { Attribute::AttrKind Kind = *I; if (Kind == Attribute::Alignment) Mask |= (Log2_32(Alignment) + 1) << 16; else if (Kind == Attribute::StackAlignment) Mask |= (Log2_32(StackAlignment) + 1) << 26; else Mask |= AttributeImpl::getAttrMask(Kind); } return Mask; } bool AttrBuilder::operator==(const AttrBuilder &B) { SmallVector This(Attrs.begin(), Attrs.end()); SmallVector That(B.Attrs.begin(), B.Attrs.end()); return This == That; } //===----------------------------------------------------------------------===// // AttributeImpl Definition //===----------------------------------------------------------------------===// AttributeImpl::AttributeImpl(LLVMContext &C, uint64_t data) : Context(C) { Data = ConstantInt::get(Type::getInt64Ty(C), data); } AttributeImpl::AttributeImpl(LLVMContext &C, Attribute::AttrKind data) : Context(C) { Data = ConstantInt::get(Type::getInt64Ty(C), data); } AttributeImpl::AttributeImpl(LLVMContext &C, Attribute::AttrKind data, ArrayRef values) : Context(C) { Data = ConstantInt::get(Type::getInt64Ty(C), data); Vals.reserve(values.size()); Vals.append(values.begin(), values.end()); } AttributeImpl::AttributeImpl(LLVMContext &C, StringRef data) : Context(C) { Data = ConstantDataArray::getString(C, data); } bool AttributeImpl::operator==(Attribute::AttrKind Kind) const { if (ConstantInt *CI = dyn_cast(Data)) return CI->getZExtValue() == Kind; return false; } bool AttributeImpl::operator!=(Attribute::AttrKind Kind) const { return !(*this == Kind); } bool AttributeImpl::operator==(StringRef Kind) const { if (ConstantDataArray *CDA = dyn_cast(Data)) if (CDA->isString()) return CDA->getAsString() == Kind; return false; } bool AttributeImpl::operator!=(StringRef Kind) const { return !(*this == Kind); } bool AttributeImpl::operator<(const AttributeImpl &AI) const { if (!Data && !AI.Data) return false; if (!Data && AI.Data) return true; if (Data && !AI.Data) return false; ConstantInt *ThisCI = dyn_cast(Data); ConstantInt *ThatCI = dyn_cast(AI.Data); ConstantDataArray *ThisCDA = dyn_cast(Data); ConstantDataArray *ThatCDA = dyn_cast(AI.Data); if (ThisCI && ThatCI) return ThisCI->getZExtValue() < ThatCI->getZExtValue(); if (ThisCI && ThatCDA) return true; if (ThisCDA && ThatCI) return false; return ThisCDA->getAsString() < ThatCDA->getAsString(); } uint64_t AttributeImpl::Raw() const { // FIXME: Remove this. return cast(Data)->getZExtValue(); } uint64_t AttributeImpl::getAttrMask(Attribute::AttrKind Val) { switch (Val) { case Attribute::EndAttrKinds: case Attribute::AttrKindEmptyKey: case Attribute::AttrKindTombstoneKey: llvm_unreachable("Synthetic enumerators which should never get here"); case Attribute::None: return 0; case Attribute::ZExt: return 1 << 0; case Attribute::SExt: return 1 << 1; case Attribute::NoReturn: return 1 << 2; case Attribute::InReg: return 1 << 3; case Attribute::StructRet: return 1 << 4; case Attribute::NoUnwind: return 1 << 5; case Attribute::NoAlias: return 1 << 6; case Attribute::ByVal: return 1 << 7; case Attribute::Nest: return 1 << 8; case Attribute::ReadNone: return 1 << 9; case Attribute::ReadOnly: return 1 << 10; case Attribute::NoInline: return 1 << 11; case Attribute::AlwaysInline: return 1 << 12; case Attribute::OptimizeForSize: return 1 << 13; case Attribute::StackProtect: return 1 << 14; case Attribute::StackProtectReq: return 1 << 15; case Attribute::Alignment: return 31 << 16; case Attribute::NoCapture: return 1 << 21; case Attribute::NoRedZone: return 1 << 22; case Attribute::NoImplicitFloat: return 1 << 23; case Attribute::Naked: return 1 << 24; case Attribute::InlineHint: return 1 << 25; case Attribute::StackAlignment: return 7 << 26; case Attribute::ReturnsTwice: return 1 << 29; case Attribute::UWTable: return 1 << 30; case Attribute::NonLazyBind: return 1U << 31; case Attribute::AddressSafety: return 1ULL << 32; case Attribute::MinSize: return 1ULL << 33; case Attribute::NoDuplicate: return 1ULL << 34; case Attribute::StackProtectStrong: return 1ULL << 35; } llvm_unreachable("Unsupported attribute type"); } bool AttributeImpl::hasAttribute(Attribute::AttrKind A) const { return (Raw() & getAttrMask(A)) != 0; } bool AttributeImpl::hasAttributes() const { return Raw() != 0; } uint64_t AttributeImpl::getAlignment() const { uint64_t Mask = Raw() & getAttrMask(Attribute::Alignment); return 1ULL << ((Mask >> 16) - 1); } uint64_t AttributeImpl::getStackAlignment() const { uint64_t Mask = Raw() & getAttrMask(Attribute::StackAlignment); return 1ULL << ((Mask >> 26) - 1); } void AttributeImpl::Profile(FoldingSetNodeID &ID, Constant *Data, ArrayRef Vals) { ID.AddInteger(cast(Data)->getZExtValue()); #if 0 // FIXME: Not yet supported. for (ArrayRef::iterator I = Vals.begin(), E = Vals.end(); I != E; ++I) ID.AddPointer(*I); #endif } //===----------------------------------------------------------------------===// // AttributeSetNode Definition //===----------------------------------------------------------------------===// AttributeSetNode *AttributeSetNode::get(LLVMContext &C, ArrayRef Attrs) { if (Attrs.empty()) return 0; // Otherwise, build a key to look up the existing attributes. LLVMContextImpl *pImpl = C.pImpl; FoldingSetNodeID ID; SmallVector SortedAttrs(Attrs.begin(), Attrs.end()); std::sort(SortedAttrs.begin(), SortedAttrs.end()); for (SmallVectorImpl::iterator I = SortedAttrs.begin(), E = SortedAttrs.end(); I != E; ++I) I->Profile(ID); void *InsertPoint; AttributeSetNode *PA = pImpl->AttrsSetNodes.FindNodeOrInsertPos(ID, InsertPoint); // If we didn't find any existing attributes of the same shape then create a // new one and insert it. if (!PA) { PA = new AttributeSetNode(SortedAttrs); pImpl->AttrsSetNodes.InsertNode(PA, InsertPoint); } // Return the AttributesListNode that we found or created. return PA; } //===----------------------------------------------------------------------===// // AttributeSetImpl Definition //===----------------------------------------------------------------------===// AttributeSetImpl:: AttributeSetImpl(LLVMContext &C, ArrayRef attrs) : Context(C), AttrList(attrs.begin(), attrs.end()) { for (unsigned I = 0, E = attrs.size(); I != E; ++I) { const AttributeWithIndex &AWI = attrs[I]; uint64_t Mask = AWI.Attrs.Raw(); SmallVector Attrs; for (Attribute::AttrKind II = Attribute::None; II != Attribute::EndAttrKinds; II = Attribute::AttrKind(II + 1)) { if (uint64_t A = (Mask & AttributeImpl::getAttrMask(II))) { AttrBuilder B; if (II == Attribute::Alignment) B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); else if (II == Attribute::StackAlignment) B.addStackAlignmentAttr(1ULL << ((A >> 26) - 1)); else B.addAttribute(II); Attrs.push_back(Attribute::get(C, B)); } } AttrNodes.push_back(std::make_pair(AWI.Index, AttributeSetNode::get(C, Attrs))); } assert(AttrNodes.size() == AttrList.size() && "Number of attributes is different between lists!"); #ifndef NDEBUG for (unsigned I = 0, E = AttrNodes.size(); I != E; ++I) assert((I == 0 || AttrNodes[I - 1].first < AttrNodes[I].first) && "Attributes not in ascending order!"); #endif } uint64_t AttributeSetImpl::Raw(uint64_t Index) const { for (unsigned I = 0, E = getNumAttributes(); I != E; ++I) { if (getSlotIndex(I) != Index) continue; const AttributeSetNode *ASN = AttrNodes[I].second; AttrBuilder B; for (AttributeSetNode::const_iterator II = ASN->begin(), IE = ASN->end(); II != IE; ++II) B.addAttributes(*II); assert(B.Raw() == AttrList[I].Attrs.Raw() && "Attributes aren't the same!"); return B.Raw(); } return 0; } //===----------------------------------------------------------------------===// // AttributeSet Method Implementations //===----------------------------------------------------------------------===// AttributeSet AttributeSet::getParamAttributes(unsigned Idx) const { // FIXME: Remove. return pImpl && hasAttributes(Idx) ? AttributeSet::get(pImpl->getContext(), AttributeWithIndex::get(Idx, getAttributes(Idx))) : AttributeSet(); } AttributeSet AttributeSet::getRetAttributes() const { // FIXME: Remove. return pImpl && hasAttributes(ReturnIndex) ? AttributeSet::get(pImpl->getContext(), AttributeWithIndex::get(ReturnIndex, getAttributes(ReturnIndex))) : AttributeSet(); } AttributeSet AttributeSet::getFnAttributes() const { // FIXME: Remove. return pImpl && hasAttributes(FunctionIndex) ? AttributeSet::get(pImpl->getContext(), AttributeWithIndex::get(FunctionIndex, getAttributes(FunctionIndex))) : AttributeSet(); } AttributeSet AttributeSet::get(LLVMContext &C, ArrayRef Attrs) { // If there are no attributes then return a null AttributesList pointer. if (Attrs.empty()) return AttributeSet(); #ifndef NDEBUG for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { assert(Attrs[i].Attrs.hasAttributes() && "Pointless attribute!"); assert((!i || Attrs[i-1].Index < Attrs[i].Index) && "Misordered AttributesList!"); } #endif // Otherwise, build a key to look up the existing attributes. LLVMContextImpl *pImpl = C.pImpl; FoldingSetNodeID ID; AttributeSetImpl::Profile(ID, Attrs); void *InsertPoint; AttributeSetImpl *PA = pImpl->AttrsLists.FindNodeOrInsertPos(ID, InsertPoint); // If we didn't find any existing attributes of the same shape then // create a new one and insert it. if (!PA) { PA = new AttributeSetImpl(C, Attrs); pImpl->AttrsLists.InsertNode(PA, InsertPoint); } // Return the AttributesList that we found or created. return AttributeSet(PA); } AttributeSet AttributeSet::get(LLVMContext &C, unsigned Idx, AttrBuilder &B) { // FIXME: This should be implemented as a loop that creates the // AttributeWithIndexes that then are used to create the AttributeSet. if (!B.hasAttributes()) return AttributeSet(); return get(C, AttributeWithIndex::get(Idx, Attribute::get(C, B))); } AttributeSet AttributeSet::get(LLVMContext &C, unsigned Idx, ArrayRef Kind) { // FIXME: This is temporary. Ultimately, the AttributeWithIndex will be // replaced by an object that holds multiple Attribute::AttrKinds. AttrBuilder B; for (ArrayRef::iterator I = Kind.begin(), E = Kind.end(); I != E; ++I) B.addAttribute(*I); return get(C, Idx, B); } AttributeSet AttributeSet::get(LLVMContext &C, ArrayRef Attrs) { SmallVector AttrList; for (ArrayRef::iterator I = Attrs.begin(), E = Attrs.end(); I != E; ++I) { AttributeSet AS = *I; if (!AS.pImpl) continue; AttrList.append(AS.pImpl->AttrList.begin(), AS.pImpl->AttrList.end()); } return get(C, AttrList); } /// \brief Return the number of slots used in this attribute list. This is the /// number of arguments that have an attribute set on them (including the /// function itself). unsigned AttributeSet::getNumSlots() const { return pImpl ? pImpl->getNumAttributes() : 0; } uint64_t AttributeSet::getSlotIndex(unsigned Slot) const { assert(pImpl && Slot < pImpl->getNumAttributes() && "Slot # out of range!"); return pImpl->getSlotIndex(Slot); } AttributeSet AttributeSet::getSlotAttributes(unsigned Slot) const { assert(pImpl && Slot < pImpl->getNumAttributes() && "Slot # out of range!"); return pImpl->getSlotAttributes(Slot); } bool AttributeSet::hasAttribute(unsigned Index, Attribute::AttrKind Kind) const{ return getAttributes(Index).hasAttribute(Kind); } bool AttributeSet::hasAttributes(unsigned Index) const { return getAttributes(Index).hasAttributes(); } std::string AttributeSet::getAsString(unsigned Index) const { return getAttributes(Index).getAsString(); } unsigned AttributeSet::getParamAlignment(unsigned Idx) const { return getAttributes(Idx).getAlignment(); } unsigned AttributeSet::getStackAlignment(unsigned Index) const { return getAttributes(Index).getStackAlignment(); } uint64_t AttributeSet::Raw(unsigned Index) const { // FIXME: Remove this. return pImpl ? pImpl->Raw(Index) : 0; } /// getAttributes - The attributes for the specified index are returned. Attribute AttributeSet::getAttributes(unsigned Idx) const { if (pImpl == 0) return Attribute(); ArrayRef Attrs = pImpl->getAttributes(); for (unsigned i = 0, e = Attrs.size(); i != e && Attrs[i].Index <= Idx; ++i) if (Attrs[i].Index == Idx) return Attrs[i].Attrs; return Attribute(); } /// hasAttrSomewhere - Return true if the specified attribute is set for at /// least one parameter or for the return value. bool AttributeSet::hasAttrSomewhere(Attribute::AttrKind Attr) const { if (pImpl == 0) return false; ArrayRef Attrs = pImpl->getAttributes(); for (unsigned i = 0, e = Attrs.size(); i != e; ++i) if (Attrs[i].Attrs.hasAttribute(Attr)) return true; return false; } AttributeSet AttributeSet::addAttribute(LLVMContext &C, unsigned Idx, Attribute::AttrKind Attr) const { return addAttr(C, Idx, Attribute::get(C, Attr)); } AttributeSet AttributeSet::addAttributes(LLVMContext &C, unsigned Idx, AttributeSet Attrs) const { return addAttr(C, Idx, Attrs.getAttributes(Idx)); } AttributeSet AttributeSet::addAttr(LLVMContext &C, unsigned Idx, Attribute Attrs) const { Attribute OldAttrs = getAttributes(Idx); #ifndef NDEBUG // FIXME it is not obvious how this should work for alignment. // For now, say we can't change a known alignment. unsigned OldAlign = OldAttrs.getAlignment(); unsigned NewAlign = Attrs.getAlignment(); assert((!OldAlign || !NewAlign || OldAlign == NewAlign) && "Attempt to change alignment!"); #endif AttrBuilder NewAttrs = AttrBuilder(OldAttrs).addAttributes(Attrs); if (NewAttrs == AttrBuilder(OldAttrs)) return *this; SmallVector NewAttrList; if (pImpl == 0) NewAttrList.push_back(AttributeWithIndex::get(Idx, Attrs)); else { ArrayRef OldAttrList = pImpl->getAttributes(); unsigned i = 0, e = OldAttrList.size(); // Copy attributes for arguments before this one. for (; i != e && OldAttrList[i].Index < Idx; ++i) NewAttrList.push_back(OldAttrList[i]); // If there are attributes already at this index, merge them in. if (i != e && OldAttrList[i].Index == Idx) { Attrs = Attribute::get(C, AttrBuilder(Attrs). addAttributes(OldAttrList[i].Attrs)); ++i; } NewAttrList.push_back(AttributeWithIndex::get(Idx, Attrs)); // Copy attributes for arguments after this one. NewAttrList.insert(NewAttrList.end(), OldAttrList.begin()+i, OldAttrList.end()); } return get(C, NewAttrList); } AttributeSet AttributeSet::removeAttribute(LLVMContext &C, unsigned Idx, Attribute::AttrKind Attr) const { return removeAttr(C, Idx, Attribute::get(C, Attr)); } AttributeSet AttributeSet::removeAttributes(LLVMContext &C, unsigned Idx, AttributeSet Attrs) const { return removeAttr(C, Idx, Attrs.getAttributes(Idx)); } AttributeSet AttributeSet::removeAttr(LLVMContext &C, unsigned Idx, Attribute Attrs) const { #ifndef NDEBUG // FIXME it is not obvious how this should work for alignment. // For now, say we can't pass in alignment, which no current use does. assert(!Attrs.hasAttribute(Attribute::Alignment) && "Attempt to exclude alignment!"); #endif if (pImpl == 0) return AttributeSet(); Attribute OldAttrs = getAttributes(Idx); AttrBuilder NewAttrs = AttrBuilder(OldAttrs).removeAttributes(Attrs); if (NewAttrs == AttrBuilder(OldAttrs)) return *this; SmallVector NewAttrList; ArrayRef OldAttrList = pImpl->getAttributes(); unsigned i = 0, e = OldAttrList.size(); // Copy attributes for arguments before this one. for (; i != e && OldAttrList[i].Index < Idx; ++i) NewAttrList.push_back(OldAttrList[i]); // If there are attributes already at this index, merge them in. assert(OldAttrList[i].Index == Idx && "Attribute isn't set?"); Attrs = Attribute::get(C, AttrBuilder(OldAttrList[i].Attrs). removeAttributes(Attrs)); ++i; if (Attrs.hasAttributes()) // If any attributes left for this param, add them. NewAttrList.push_back(AttributeWithIndex::get(Idx, Attrs)); // Copy attributes for arguments after this one. NewAttrList.insert(NewAttrList.end(), OldAttrList.begin()+i, OldAttrList.end()); return get(C, NewAttrList); } void AttributeSet::dump() const { dbgs() << "PAL[ "; for (unsigned i = 0; i < getNumSlots(); ++i) { uint64_t Index = getSlotIndex(i); dbgs() << " { "; if (Index == ~0U) dbgs() << "~0U"; else dbgs() << Index; dbgs() << " => " << getAsString(Index) << " }\n"; } dbgs() << "]\n"; } //===----------------------------------------------------------------------===// // AttributeFuncs Function Defintions //===----------------------------------------------------------------------===// Attribute AttributeFuncs::typeIncompatible(Type *Ty) { AttrBuilder Incompatible; if (!Ty->isIntegerTy()) // Attribute that only apply to integers. Incompatible.addAttribute(Attribute::SExt) .addAttribute(Attribute::ZExt); if (!Ty->isPointerTy()) // Attribute that only apply to pointers. Incompatible.addAttribute(Attribute::ByVal) .addAttribute(Attribute::Nest) .addAttribute(Attribute::NoAlias) .addAttribute(Attribute::NoCapture) .addAttribute(Attribute::StructRet); return Attribute::get(Ty->getContext(), Incompatible); } /// encodeLLVMAttributesForBitcode - This returns an integer containing an /// encoding of all the LLVM attributes found in the given attribute bitset. /// Any change to this encoding is a breaking change to bitcode compatibility. uint64_t AttributeFuncs::encodeLLVMAttributesForBitcode(AttributeSet Attrs, unsigned Index) { // FIXME: It doesn't make sense to store the alignment information as an // expanded out value, we should store it as a log2 value. However, we can't // just change that here without breaking bitcode compatibility. If this ever // becomes a problem in practice, we should introduce new tag numbers in the // bitcode file and have those tags use a more efficiently encoded alignment // field. // Store the alignment in the bitcode as a 16-bit raw value instead of a 5-bit // log2 encoded value. Shift the bits above the alignment up by 11 bits. uint64_t EncodedAttrs = Attrs.Raw(Index) & 0xffff; if (Attrs.hasAttribute(Index, Attribute::Alignment)) EncodedAttrs |= Attrs.getParamAlignment(Index) << 16; EncodedAttrs |= (Attrs.Raw(Index) & (0xffffULL << 21)) << 11; return EncodedAttrs; } /// decodeLLVMAttributesForBitcode - This returns an attribute bitset containing /// the LLVM attributes that have been decoded from the given integer. This /// function must stay in sync with 'encodeLLVMAttributesForBitcode'. Attribute AttributeFuncs::decodeLLVMAttributesForBitcode(LLVMContext &C, uint64_t EncodedAttrs){ // The alignment is stored as a 16-bit raw value from bits 31--16. We shift // the bits above 31 down by 11 bits. unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; assert((!Alignment || isPowerOf2_32(Alignment)) && "Alignment must be a power of two."); AttrBuilder B(EncodedAttrs & 0xffff); if (Alignment) B.addAlignmentAttr(Alignment); B.addRawValue((EncodedAttrs & (0xffffULL << 32)) >> 11); return Attribute::get(C, B); }