//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LLVM module linker. // //===----------------------------------------------------------------------===// #include "llvm/Linker/Linker.h" #include "llvm-c/Linker.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallString.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/DiagnosticPrinter.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IR/TypeFinder.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/Cloning.h" #include #include using namespace llvm; //===----------------------------------------------------------------------===// // TypeMap implementation. //===----------------------------------------------------------------------===// namespace { typedef SmallPtrSet TypeSet; class TypeMapTy : public ValueMapTypeRemapper { /// This is a mapping from a source type to a destination type to use. DenseMap MappedTypes; /// When checking to see if two subgraphs are isomorphic, we speculatively /// add types to MappedTypes, but keep track of them here in case we need to /// roll back. SmallVector SpeculativeTypes; /// This is a list of non-opaque structs in the source module that are mapped /// to an opaque struct in the destination module. SmallVector SrcDefinitionsToResolve; /// This is the set of opaque types in the destination modules who are /// getting a body from the source module. SmallPtrSet DstResolvedOpaqueTypes; public: TypeMapTy(TypeSet &Set) : DstStructTypesSet(Set) {} TypeSet &DstStructTypesSet; /// Indicate that the specified type in the destination module is conceptually /// equivalent to the specified type in the source module. void addTypeMapping(Type *DstTy, Type *SrcTy); /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest /// module from a type definition in the source module. void linkDefinedTypeBodies(); /// Return the mapped type to use for the specified input type from the /// source module. Type *get(Type *SrcTy); FunctionType *get(FunctionType *T) {return cast(get((Type*)T));} /// Dump out the type map for debugging purposes. void dump() const { for (DenseMap::const_iterator I = MappedTypes.begin(), E = MappedTypes.end(); I != E; ++I) { dbgs() << "TypeMap: "; I->first->print(dbgs()); dbgs() << " => "; I->second->print(dbgs()); dbgs() << '\n'; } } private: Type *getImpl(Type *T); /// Implement the ValueMapTypeRemapper interface. Type *remapType(Type *SrcTy) override { return get(SrcTy); } bool areTypesIsomorphic(Type *DstTy, Type *SrcTy); }; } void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) { Type *&Entry = MappedTypes[SrcTy]; if (Entry) return; if (DstTy == SrcTy) { Entry = DstTy; return; } // Check to see if these types are recursively isomorphic and establish a // mapping between them if so. if (!areTypesIsomorphic(DstTy, SrcTy)) { // Oops, they aren't isomorphic. Just discard this request by rolling out // any speculative mappings we've established. for (unsigned i = 0, e = SpeculativeTypes.size(); i != e; ++i) MappedTypes.erase(SpeculativeTypes[i]); } SpeculativeTypes.clear(); } /// Recursively walk this pair of types, returning true if they are isomorphic, /// false if they are not. bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) { // Two types with differing kinds are clearly not isomorphic. if (DstTy->getTypeID() != SrcTy->getTypeID()) return false; // If we have an entry in the MappedTypes table, then we have our answer. Type *&Entry = MappedTypes[SrcTy]; if (Entry) return Entry == DstTy; // Two identical types are clearly isomorphic. Remember this // non-speculatively. if (DstTy == SrcTy) { Entry = DstTy; return true; } // Okay, we have two types with identical kinds that we haven't seen before. // If this is an opaque struct type, special case it. if (StructType *SSTy = dyn_cast(SrcTy)) { // Mapping an opaque type to any struct, just keep the dest struct. if (SSTy->isOpaque()) { Entry = DstTy; SpeculativeTypes.push_back(SrcTy); return true; } // Mapping a non-opaque source type to an opaque dest. If this is the first // type that we're mapping onto this destination type then we succeed. Keep // the dest, but fill it in later. This doesn't need to be speculative. If // this is the second (different) type that we're trying to map onto the // same opaque type then we fail. if (cast(DstTy)->isOpaque()) { // We can only map one source type onto the opaque destination type. if (!DstResolvedOpaqueTypes.insert(cast(DstTy)).second) return false; SrcDefinitionsToResolve.push_back(SSTy); Entry = DstTy; return true; } } // If the number of subtypes disagree between the two types, then we fail. if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes()) return false; // Fail if any of the extra properties (e.g. array size) of the type disagree. if (isa(DstTy)) return false; // bitwidth disagrees. if (PointerType *PT = dyn_cast(DstTy)) { if (PT->getAddressSpace() != cast(SrcTy)->getAddressSpace()) return false; } else if (FunctionType *FT = dyn_cast(DstTy)) { if (FT->isVarArg() != cast(SrcTy)->isVarArg()) return false; } else if (StructType *DSTy = dyn_cast(DstTy)) { StructType *SSTy = cast(SrcTy); if (DSTy->isLiteral() != SSTy->isLiteral() || DSTy->isPacked() != SSTy->isPacked()) return false; } else if (ArrayType *DATy = dyn_cast(DstTy)) { if (DATy->getNumElements() != cast(SrcTy)->getNumElements()) return false; } else if (VectorType *DVTy = dyn_cast(DstTy)) { if (DVTy->getNumElements() != cast(SrcTy)->getNumElements()) return false; } // Otherwise, we speculate that these two types will line up and recursively // check the subelements. Entry = DstTy; SpeculativeTypes.push_back(SrcTy); for (unsigned i = 0, e = SrcTy->getNumContainedTypes(); i != e; ++i) if (!areTypesIsomorphic(DstTy->getContainedType(i), SrcTy->getContainedType(i))) return false; // If everything seems to have lined up, then everything is great. return true; } /// Produce a body for an opaque type in the dest module from a type definition /// in the source module. void TypeMapTy::linkDefinedTypeBodies() { SmallVector Elements; SmallString<16> TmpName; // Note that processing entries in this loop (calling 'get') can add new // entries to the SrcDefinitionsToResolve vector. while (!SrcDefinitionsToResolve.empty()) { StructType *SrcSTy = SrcDefinitionsToResolve.pop_back_val(); StructType *DstSTy = cast(MappedTypes[SrcSTy]); // TypeMap is a many-to-one mapping, if there were multiple types that // provide a body for DstSTy then previous iterations of this loop may have // already handled it. Just ignore this case. if (!DstSTy->isOpaque()) continue; assert(!SrcSTy->isOpaque() && "Not resolving a definition?"); // Map the body of the source type over to a new body for the dest type. Elements.resize(SrcSTy->getNumElements()); for (unsigned i = 0, e = Elements.size(); i != e; ++i) Elements[i] = getImpl(SrcSTy->getElementType(i)); DstSTy->setBody(Elements, SrcSTy->isPacked()); // If DstSTy has no name or has a longer name than STy, then viciously steal // STy's name. if (!SrcSTy->hasName()) continue; StringRef SrcName = SrcSTy->getName(); if (!DstSTy->hasName() || DstSTy->getName().size() > SrcName.size()) { TmpName.insert(TmpName.end(), SrcName.begin(), SrcName.end()); SrcSTy->setName(""); DstSTy->setName(TmpName.str()); TmpName.clear(); } } DstResolvedOpaqueTypes.clear(); } Type *TypeMapTy::get(Type *Ty) { Type *Result = getImpl(Ty); // If this caused a reference to any struct type, resolve it before returning. if (!SrcDefinitionsToResolve.empty()) linkDefinedTypeBodies(); return Result; } /// This is the recursive version of get(). Type *TypeMapTy::getImpl(Type *Ty) { // If we already have an entry for this type, return it. Type **Entry = &MappedTypes[Ty]; if (*Entry) return *Entry; // If this is not a named struct type, then just map all of the elements and // then rebuild the type from inside out. if (!isa(Ty) || cast(Ty)->isLiteral()) { // If there are no element types to map, then the type is itself. This is // true for the anonymous {} struct, things like 'float', integers, etc. if (Ty->getNumContainedTypes() == 0) return *Entry = Ty; // Remap all of the elements, keeping track of whether any of them change. bool AnyChange = false; SmallVector ElementTypes; ElementTypes.resize(Ty->getNumContainedTypes()); for (unsigned i = 0, e = Ty->getNumContainedTypes(); i != e; ++i) { ElementTypes[i] = getImpl(Ty->getContainedType(i)); AnyChange |= ElementTypes[i] != Ty->getContainedType(i); } // If we found our type while recursively processing stuff, just use it. Entry = &MappedTypes[Ty]; if (*Entry) return *Entry; // If all of the element types mapped directly over, then the type is usable // as-is. if (!AnyChange) return *Entry = Ty; // Otherwise, rebuild a modified type. switch (Ty->getTypeID()) { default: llvm_unreachable("unknown derived type to remap"); case Type::ArrayTyID: return *Entry = ArrayType::get(ElementTypes[0], cast(Ty)->getNumElements()); case Type::VectorTyID: return *Entry = VectorType::get(ElementTypes[0], cast(Ty)->getNumElements()); case Type::PointerTyID: return *Entry = PointerType::get(ElementTypes[0], cast(Ty)->getAddressSpace()); case Type::FunctionTyID: return *Entry = FunctionType::get(ElementTypes[0], makeArrayRef(ElementTypes).slice(1), cast(Ty)->isVarArg()); case Type::StructTyID: // Note that this is only reached for anonymous structs. return *Entry = StructType::get(Ty->getContext(), ElementTypes, cast(Ty)->isPacked()); } } // Otherwise, this is an unmapped named struct. If the struct can be directly // mapped over, just use it as-is. This happens in a case when the linked-in // module has something like: // %T = type {%T*, i32} // @GV = global %T* null // where T does not exist at all in the destination module. // // The other case we watch for is when the type is not in the destination // module, but that it has to be rebuilt because it refers to something that // is already mapped. For example, if the destination module has: // %A = type { i32 } // and the source module has something like // %A' = type { i32 } // %B = type { %A'* } // @GV = global %B* null // then we want to create a new type: "%B = type { %A*}" and have it take the // pristine "%B" name from the source module. // // To determine which case this is, we have to recursively walk the type graph // speculating that we'll be able to reuse it unmodified. Only if this is // safe would we map the entire thing over. Because this is an optimization, // and is not required for the prettiness of the linked module, we just skip // it and always rebuild a type here. StructType *STy = cast(Ty); // If the type is opaque, we can just use it directly. if (STy->isOpaque()) { // A named structure type from src module is used. Add it to the Set of // identified structs in the destination module. DstStructTypesSet.insert(STy); return *Entry = STy; } // Otherwise we create a new type and resolve its body later. This will be // resolved by the top level of get(). SrcDefinitionsToResolve.push_back(STy); StructType *DTy = StructType::create(STy->getContext()); // A new identified structure type was created. Add it to the set of // identified structs in the destination module. DstStructTypesSet.insert(DTy); DstResolvedOpaqueTypes.insert(DTy); return *Entry = DTy; } //===----------------------------------------------------------------------===// // ModuleLinker implementation. //===----------------------------------------------------------------------===// namespace { class ModuleLinker; /// Creates prototypes for functions that are lazily linked on the fly. This /// speeds up linking for modules with many/ lazily linked functions of which /// few get used. class ValueMaterializerTy : public ValueMaterializer { TypeMapTy &TypeMap; Module *DstM; std::vector &LazilyLinkFunctions; public: ValueMaterializerTy(TypeMapTy &TypeMap, Module *DstM, std::vector &LazilyLinkFunctions) : ValueMaterializer(), TypeMap(TypeMap), DstM(DstM), LazilyLinkFunctions(LazilyLinkFunctions) { } Value *materializeValueFor(Value *V) override; }; namespace { class LinkDiagnosticInfo : public DiagnosticInfo { const Twine &Msg; public: LinkDiagnosticInfo(DiagnosticSeverity Severity, const Twine &Msg); void print(DiagnosticPrinter &DP) const override; }; LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity, const Twine &Msg) : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {} void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } } /// This is an implementation class for the LinkModules function, which is the /// entrypoint for this file. class ModuleLinker { Module *DstM, *SrcM; TypeMapTy TypeMap; ValueMaterializerTy ValMaterializer; /// Mapping of values from what they used to be in Src, to what they are now /// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead /// due to the use of Value handles which the Linker doesn't actually need, /// but this allows us to reuse the ValueMapper code. ValueToValueMapTy ValueMap; struct AppendingVarInfo { GlobalVariable *NewGV; // New aggregate global in dest module. const Constant *DstInit; // Old initializer from dest module. const Constant *SrcInit; // Old initializer from src module. }; std::vector AppendingVars; // Set of items not to link in from source. SmallPtrSet DoNotLinkFromSource; // Vector of functions to lazily link in. std::vector LazilyLinkFunctions; Linker::DiagnosticHandlerFunction DiagnosticHandler; public: ModuleLinker(Module *dstM, TypeSet &Set, Module *srcM, Linker::DiagnosticHandlerFunction DiagnosticHandler) : DstM(dstM), SrcM(srcM), TypeMap(Set), ValMaterializer(TypeMap, DstM, LazilyLinkFunctions), DiagnosticHandler(DiagnosticHandler) {} bool run(); private: bool shouldLinkFromSource(bool &LinkFromSrc, const GlobalValue &Dest, const GlobalValue &Src); /// Helper method for setting a message and returning an error code. bool emitError(const Twine &Message) { DiagnosticHandler(LinkDiagnosticInfo(DS_Error, Message)); return true; } void emitWarning(const Twine &Message) { DiagnosticHandler(LinkDiagnosticInfo(DS_Warning, Message)); } bool getComdatLeader(Module *M, StringRef ComdatName, const GlobalVariable *&GVar); bool computeResultingSelectionKind(StringRef ComdatName, Comdat::SelectionKind Src, Comdat::SelectionKind Dst, Comdat::SelectionKind &Result, bool &LinkFromSrc); std::map> ComdatsChosen; bool getComdatResult(const Comdat *SrcC, Comdat::SelectionKind &SK, bool &LinkFromSrc); /// Given a global in the source module, return the global in the /// destination module that is being linked to, if any. GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) { // If the source has no name it can't link. If it has local linkage, // there is no name match-up going on. if (!SrcGV->hasName() || SrcGV->hasLocalLinkage()) return nullptr; // Otherwise see if we have a match in the destination module's symtab. GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName()); if (!DGV) return nullptr; // If we found a global with the same name in the dest module, but it has // internal linkage, we are really not doing any linkage here. if (DGV->hasLocalLinkage()) return nullptr; // Otherwise, we do in fact link to the destination global. return DGV; } void computeTypeMapping(); void upgradeMismatchedGlobalArray(StringRef Name); void upgradeMismatchedGlobals(); bool linkAppendingVarProto(GlobalVariable *DstGV, const GlobalVariable *SrcGV); bool linkGlobalValueProto(GlobalValue *GV); GlobalValue *linkGlobalVariableProto(const GlobalVariable *SGVar, GlobalValue *DGV, bool LinkFromSrc); GlobalValue *linkFunctionProto(const Function *SF, GlobalValue *DGV, bool LinkFromSrc); GlobalValue *linkGlobalAliasProto(const GlobalAlias *SGA, GlobalValue *DGV, bool LinkFromSrc); bool linkModuleFlagsMetadata(); void linkAppendingVarInit(const AppendingVarInfo &AVI); void linkGlobalInits(); void linkFunctionBody(Function *Dst, Function *Src); void linkAliasBodies(); void linkNamedMDNodes(); }; } /// The LLVM SymbolTable class autorenames globals that conflict in the symbol /// table. This is good for all clients except for us. Go through the trouble /// to force this back. static void forceRenaming(GlobalValue *GV, StringRef Name) { // If the global doesn't force its name or if it already has the right name, // there is nothing for us to do. if (GV->hasLocalLinkage() || GV->getName() == Name) return; Module *M = GV->getParent(); // If there is a conflict, rename the conflict. if (GlobalValue *ConflictGV = M->getNamedValue(Name)) { GV->takeName(ConflictGV); ConflictGV->setName(Name); // This will cause ConflictGV to get renamed assert(ConflictGV->getName() != Name && "forceRenaming didn't work"); } else { GV->setName(Name); // Force the name back } } /// copy additional attributes (those not needed to construct a GlobalValue) /// from the SrcGV to the DestGV. static void copyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) { // Use the maximum alignment, rather than just copying the alignment of SrcGV. auto *DestGO = dyn_cast(DestGV); unsigned Alignment; if (DestGO) Alignment = std::max(DestGO->getAlignment(), SrcGV->getAlignment()); DestGV->copyAttributesFrom(SrcGV); if (DestGO) DestGO->setAlignment(Alignment); forceRenaming(DestGV, SrcGV->getName()); } static bool isLessConstraining(GlobalValue::VisibilityTypes a, GlobalValue::VisibilityTypes b) { if (a == GlobalValue::HiddenVisibility) return false; if (b == GlobalValue::HiddenVisibility) return true; if (a == GlobalValue::ProtectedVisibility) return false; if (b == GlobalValue::ProtectedVisibility) return true; return false; } Value *ValueMaterializerTy::materializeValueFor(Value *V) { Function *SF = dyn_cast(V); if (!SF) return nullptr; Function *DF = Function::Create(TypeMap.get(SF->getFunctionType()), SF->getLinkage(), SF->getName(), DstM); copyGVAttributes(DF, SF); if (Comdat *SC = SF->getComdat()) { Comdat *DC = DstM->getOrInsertComdat(SC->getName()); DF->setComdat(DC); } LazilyLinkFunctions.push_back(SF); return DF; } bool ModuleLinker::getComdatLeader(Module *M, StringRef ComdatName, const GlobalVariable *&GVar) { const GlobalValue *GVal = M->getNamedValue(ComdatName); if (const auto *GA = dyn_cast_or_null(GVal)) { GVal = GA->getBaseObject(); if (!GVal) // We cannot resolve the size of the aliasee yet. return emitError("Linking COMDATs named '" + ComdatName + "': COMDAT key involves incomputable alias size."); } GVar = dyn_cast_or_null(GVal); if (!GVar) return emitError( "Linking COMDATs named '" + ComdatName + "': GlobalVariable required for data dependent selection!"); return false; } bool ModuleLinker::computeResultingSelectionKind(StringRef ComdatName, Comdat::SelectionKind Src, Comdat::SelectionKind Dst, Comdat::SelectionKind &Result, bool &LinkFromSrc) { // The ability to mix Comdat::SelectionKind::Any with // Comdat::SelectionKind::Largest is a behavior that comes from COFF. bool DstAnyOrLargest = Dst == Comdat::SelectionKind::Any || Dst == Comdat::SelectionKind::Largest; bool SrcAnyOrLargest = Src == Comdat::SelectionKind::Any || Src == Comdat::SelectionKind::Largest; if (DstAnyOrLargest && SrcAnyOrLargest) { if (Dst == Comdat::SelectionKind::Largest || Src == Comdat::SelectionKind::Largest) Result = Comdat::SelectionKind::Largest; else Result = Comdat::SelectionKind::Any; } else if (Src == Dst) { Result = Dst; } else { return emitError("Linking COMDATs named '" + ComdatName + "': invalid selection kinds!"); } switch (Result) { case Comdat::SelectionKind::Any: // Go with Dst. LinkFromSrc = false; break; case Comdat::SelectionKind::NoDuplicates: return emitError("Linking COMDATs named '" + ComdatName + "': noduplicates has been violated!"); case Comdat::SelectionKind::ExactMatch: case Comdat::SelectionKind::Largest: case Comdat::SelectionKind::SameSize: { const GlobalVariable *DstGV; const GlobalVariable *SrcGV; if (getComdatLeader(DstM, ComdatName, DstGV) || getComdatLeader(SrcM, ComdatName, SrcGV)) return true; const DataLayout *DstDL = DstM->getDataLayout(); const DataLayout *SrcDL = SrcM->getDataLayout(); if (!DstDL || !SrcDL) { return emitError( "Linking COMDATs named '" + ComdatName + "': can't do size dependent selection without DataLayout!"); } uint64_t DstSize = DstDL->getTypeAllocSize(DstGV->getType()->getPointerElementType()); uint64_t SrcSize = SrcDL->getTypeAllocSize(SrcGV->getType()->getPointerElementType()); if (Result == Comdat::SelectionKind::ExactMatch) { if (SrcGV->getInitializer() != DstGV->getInitializer()) return emitError("Linking COMDATs named '" + ComdatName + "': ExactMatch violated!"); LinkFromSrc = false; } else if (Result == Comdat::SelectionKind::Largest) { LinkFromSrc = SrcSize > DstSize; } else if (Result == Comdat::SelectionKind::SameSize) { if (SrcSize != DstSize) return emitError("Linking COMDATs named '" + ComdatName + "': SameSize violated!"); LinkFromSrc = false; } else { llvm_unreachable("unknown selection kind"); } break; } } return false; } bool ModuleLinker::getComdatResult(const Comdat *SrcC, Comdat::SelectionKind &Result, bool &LinkFromSrc) { Comdat::SelectionKind SSK = SrcC->getSelectionKind(); StringRef ComdatName = SrcC->getName(); Module::ComdatSymTabType &ComdatSymTab = DstM->getComdatSymbolTable(); Module::ComdatSymTabType::iterator DstCI = ComdatSymTab.find(ComdatName); if (DstCI == ComdatSymTab.end()) { // Use the comdat if it is only available in one of the modules. LinkFromSrc = true; Result = SSK; return false; } const Comdat *DstC = &DstCI->second; Comdat::SelectionKind DSK = DstC->getSelectionKind(); return computeResultingSelectionKind(ComdatName, SSK, DSK, Result, LinkFromSrc); } bool ModuleLinker::shouldLinkFromSource(bool &LinkFromSrc, const GlobalValue &Dest, const GlobalValue &Src) { // We always have to add Src if it has appending linkage. if (Src.hasAppendingLinkage()) { LinkFromSrc = true; return false; } bool SrcIsDeclaration = Src.isDeclarationForLinker(); bool DestIsDeclaration = Dest.isDeclarationForLinker(); if (SrcIsDeclaration) { // If Src is external or if both Src & Dest are external.. Just link the // external globals, we aren't adding anything. if (Src.hasDLLImportStorageClass()) { // If one of GVs is marked as DLLImport, result should be dllimport'ed. LinkFromSrc = DestIsDeclaration; return false; } // If the Dest is weak, use the source linkage. LinkFromSrc = Dest.hasExternalWeakLinkage(); return false; } if (DestIsDeclaration) { // If Dest is external but Src is not: LinkFromSrc = true; return false; } if (Src.hasCommonLinkage()) { if (Dest.hasLinkOnceLinkage() || Dest.hasWeakLinkage()) { LinkFromSrc = true; return false; } if (!Dest.hasCommonLinkage()) { LinkFromSrc = false; return false; } // FIXME: Make datalayout mandatory and just use getDataLayout(). DataLayout DL(Dest.getParent()); uint64_t DestSize = DL.getTypeAllocSize(Dest.getType()->getElementType()); uint64_t SrcSize = DL.getTypeAllocSize(Src.getType()->getElementType()); LinkFromSrc = SrcSize > DestSize; return false; } if (Src.isWeakForLinker()) { assert(!Dest.hasExternalWeakLinkage()); assert(!Dest.hasAvailableExternallyLinkage()); if (Dest.hasLinkOnceLinkage() && Src.hasWeakLinkage()) { LinkFromSrc = true; return false; } LinkFromSrc = false; return false; } if (Dest.isWeakForLinker()) { assert(Src.hasExternalLinkage()); LinkFromSrc = true; return false; } assert(!Src.hasExternalWeakLinkage()); assert(!Dest.hasExternalWeakLinkage()); assert(Dest.hasExternalLinkage() && Src.hasExternalLinkage() && "Unexpected linkage type!"); return emitError("Linking globals named '" + Src.getName() + "': symbol multiply defined!"); } /// Loop over all of the linked values to compute type mappings. For example, /// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct /// types 'Foo' but one got renamed when the module was loaded into the same /// LLVMContext. void ModuleLinker::computeTypeMapping() { // Incorporate globals. for (Module::global_iterator I = SrcM->global_begin(), E = SrcM->global_end(); I != E; ++I) { GlobalValue *DGV = getLinkedToGlobal(I); if (!DGV) continue; if (!DGV->hasAppendingLinkage() || !I->hasAppendingLinkage()) { TypeMap.addTypeMapping(DGV->getType(), I->getType()); continue; } // Unify the element type of appending arrays. ArrayType *DAT = cast(DGV->getType()->getElementType()); ArrayType *SAT = cast(I->getType()->getElementType()); TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType()); } // Incorporate functions. for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I) { if (GlobalValue *DGV = getLinkedToGlobal(I)) TypeMap.addTypeMapping(DGV->getType(), I->getType()); } // Incorporate types by name, scanning all the types in the source module. // At this point, the destination module may have a type "%foo = { i32 }" for // example. When the source module got loaded into the same LLVMContext, if // it had the same type, it would have been renamed to "%foo.42 = { i32 }". TypeFinder SrcStructTypes; SrcStructTypes.run(*SrcM, true); SmallPtrSet SrcStructTypesSet(SrcStructTypes.begin(), SrcStructTypes.end()); for (unsigned i = 0, e = SrcStructTypes.size(); i != e; ++i) { StructType *ST = SrcStructTypes[i]; if (!ST->hasName()) continue; // Check to see if there is a dot in the name followed by a digit. size_t DotPos = ST->getName().rfind('.'); if (DotPos == 0 || DotPos == StringRef::npos || ST->getName().back() == '.' || !isdigit(static_cast(ST->getName()[DotPos+1]))) continue; // Check to see if the destination module has a struct with the prefix name. if (StructType *DST = DstM->getTypeByName(ST->getName().substr(0, DotPos))) // Don't use it if this actually came from the source module. They're in // the same LLVMContext after all. Also don't use it unless the type is // actually used in the destination module. This can happen in situations // like this: // // Module A Module B // -------- -------- // %Z = type { %A } %B = type { %C.1 } // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* } // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] } // %C = type { i8* } %B.3 = type { %C.1 } // // When we link Module B with Module A, the '%B' in Module B is // used. However, that would then use '%C.1'. But when we process '%C.1', // we prefer to take the '%C' version. So we are then left with both // '%C.1' and '%C' being used for the same types. This leads to some // variables using one type and some using the other. if (!SrcStructTypesSet.count(DST) && TypeMap.DstStructTypesSet.count(DST)) TypeMap.addTypeMapping(DST, ST); } // Don't bother incorporating aliases, they aren't generally typed well. // Now that we have discovered all of the type equivalences, get a body for // any 'opaque' types in the dest module that are now resolved. TypeMap.linkDefinedTypeBodies(); } static void upgradeGlobalArray(GlobalVariable *GV) { ArrayType *ATy = cast(GV->getType()->getElementType()); StructType *OldTy = cast(ATy->getElementType()); assert(OldTy->getNumElements() == 2 && "Expected to upgrade from 2 elements"); // Get the upgraded 3 element type. PointerType *VoidPtrTy = Type::getInt8Ty(GV->getContext())->getPointerTo(); Type *Tys[3] = {OldTy->getElementType(0), OldTy->getElementType(1), VoidPtrTy}; StructType *NewTy = StructType::get(GV->getContext(), Tys, false); // Build new constants with a null third field filled in. Constant *OldInitC = GV->getInitializer(); ConstantArray *OldInit = dyn_cast(OldInitC); if (!OldInit && !isa(OldInitC)) // Invalid initializer; give up. return; std::vector Initializers; if (OldInit && OldInit->getNumOperands()) { Value *Null = Constant::getNullValue(VoidPtrTy); for (Use &U : OldInit->operands()) { ConstantStruct *Init = cast(U.get()); Initializers.push_back(ConstantStruct::get( NewTy, Init->getOperand(0), Init->getOperand(1), Null, nullptr)); } } assert(Initializers.size() == ATy->getNumElements() && "Failed to copy all array elements"); // Replace the old GV with a new one. ATy = ArrayType::get(NewTy, Initializers.size()); Constant *NewInit = ConstantArray::get(ATy, Initializers); GlobalVariable *NewGV = new GlobalVariable( *GV->getParent(), ATy, GV->isConstant(), GV->getLinkage(), NewInit, "", GV, GV->getThreadLocalMode(), GV->getType()->getAddressSpace(), GV->isExternallyInitialized()); NewGV->copyAttributesFrom(GV); NewGV->takeName(GV); assert(GV->use_empty() && "program cannot use initializer list"); GV->eraseFromParent(); } void ModuleLinker::upgradeMismatchedGlobalArray(StringRef Name) { // Look for the global arrays. auto *DstGV = dyn_cast_or_null(DstM->getNamedValue(Name)); if (!DstGV) return; auto *SrcGV = dyn_cast_or_null(SrcM->getNamedValue(Name)); if (!SrcGV) return; // Check if the types already match. auto *DstTy = cast(DstGV->getType()->getElementType()); auto *SrcTy = cast(TypeMap.get(SrcGV->getType()->getElementType())); if (DstTy == SrcTy) return; // Grab the element types. We can only upgrade an array of a two-field // struct. Only bother if the other one has three-fields. auto *DstEltTy = cast(DstTy->getElementType()); auto *SrcEltTy = cast(SrcTy->getElementType()); if (DstEltTy->getNumElements() == 2 && SrcEltTy->getNumElements() == 3) { upgradeGlobalArray(DstGV); return; } if (DstEltTy->getNumElements() == 3 && SrcEltTy->getNumElements() == 2) upgradeGlobalArray(SrcGV); // We can't upgrade any other differences. } void ModuleLinker::upgradeMismatchedGlobals() { upgradeMismatchedGlobalArray("llvm.global_ctors"); upgradeMismatchedGlobalArray("llvm.global_dtors"); } /// If there were any appending global variables, link them together now. /// Return true on error. bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV, const GlobalVariable *SrcGV) { if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage()) return emitError("Linking globals named '" + SrcGV->getName() + "': can only link appending global with another appending global!"); ArrayType *DstTy = cast(DstGV->getType()->getElementType()); ArrayType *SrcTy = cast(TypeMap.get(SrcGV->getType()->getElementType())); Type *EltTy = DstTy->getElementType(); // Check to see that they two arrays agree on type. if (EltTy != SrcTy->getElementType()) return emitError("Appending variables with different element types!"); if (DstGV->isConstant() != SrcGV->isConstant()) return emitError("Appending variables linked with different const'ness!"); if (DstGV->getAlignment() != SrcGV->getAlignment()) return emitError( "Appending variables with different alignment need to be linked!"); if (DstGV->getVisibility() != SrcGV->getVisibility()) return emitError( "Appending variables with different visibility need to be linked!"); if (DstGV->hasUnnamedAddr() != SrcGV->hasUnnamedAddr()) return emitError( "Appending variables with different unnamed_addr need to be linked!"); if (StringRef(DstGV->getSection()) != SrcGV->getSection()) return emitError( "Appending variables with different section name need to be linked!"); uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements(); ArrayType *NewType = ArrayType::get(EltTy, NewSize); // Create the new global variable. GlobalVariable *NG = new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(), DstGV->getLinkage(), /*init*/nullptr, /*name*/"", DstGV, DstGV->getThreadLocalMode(), DstGV->getType()->getAddressSpace()); // Propagate alignment, visibility and section info. copyGVAttributes(NG, DstGV); AppendingVarInfo AVI; AVI.NewGV = NG; AVI.DstInit = DstGV->getInitializer(); AVI.SrcInit = SrcGV->getInitializer(); AppendingVars.push_back(AVI); // Replace any uses of the two global variables with uses of the new // global. ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType())); DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType())); DstGV->eraseFromParent(); // Track the source variable so we don't try to link it. DoNotLinkFromSource.insert(SrcGV); return false; } bool ModuleLinker::linkGlobalValueProto(GlobalValue *SGV) { GlobalValue *DGV = getLinkedToGlobal(SGV); // Handle the ultra special appending linkage case first. if (DGV && DGV->hasAppendingLinkage()) return linkAppendingVarProto(cast(DGV), cast(SGV)); bool LinkFromSrc = true; Comdat *C = nullptr; GlobalValue::VisibilityTypes Visibility = SGV->getVisibility(); bool HasUnnamedAddr = SGV->hasUnnamedAddr(); if (const Comdat *SC = SGV->getComdat()) { Comdat::SelectionKind SK; std::tie(SK, LinkFromSrc) = ComdatsChosen[SC]; C = DstM->getOrInsertComdat(SC->getName()); C->setSelectionKind(SK); } else if (DGV) { if (shouldLinkFromSource(LinkFromSrc, *DGV, *SGV)) return true; } if (!LinkFromSrc) { // Track the source global so that we don't attempt to copy it over when // processing global initializers. DoNotLinkFromSource.insert(SGV); if (DGV) // Make sure to remember this mapping. ValueMap[SGV] = ConstantExpr::getBitCast(DGV, TypeMap.get(SGV->getType())); } if (DGV) { Visibility = isLessConstraining(Visibility, DGV->getVisibility()) ? DGV->getVisibility() : Visibility; HasUnnamedAddr = HasUnnamedAddr && DGV->hasUnnamedAddr(); } if (!LinkFromSrc && !DGV) return false; GlobalValue *NewGV; if (auto *SGVar = dyn_cast(SGV)) { NewGV = linkGlobalVariableProto(SGVar, DGV, LinkFromSrc); if (!NewGV) return true; } else if (auto *SF = dyn_cast(SGV)) { NewGV = linkFunctionProto(SF, DGV, LinkFromSrc); } else { NewGV = linkGlobalAliasProto(cast(SGV), DGV, LinkFromSrc); } if (NewGV) { if (NewGV != DGV) copyGVAttributes(NewGV, SGV); NewGV->setUnnamedAddr(HasUnnamedAddr); NewGV->setVisibility(Visibility); if (auto *NewGO = dyn_cast(NewGV)) { if (C) NewGO->setComdat(C); } // Make sure to remember this mapping. if (NewGV != DGV) { if (DGV) { DGV->replaceAllUsesWith( ConstantExpr::getBitCast(NewGV, DGV->getType())); DGV->eraseFromParent(); } ValueMap[SGV] = NewGV; } } return false; } /// Loop through the global variables in the src module and merge them into the /// dest module. GlobalValue *ModuleLinker::linkGlobalVariableProto(const GlobalVariable *SGVar, GlobalValue *DGV, bool LinkFromSrc) { unsigned Alignment = 0; bool ClearConstant = false; if (DGV) { if (DGV->hasCommonLinkage() && SGVar->hasCommonLinkage()) Alignment = std::max(SGVar->getAlignment(), DGV->getAlignment()); auto *DGVar = dyn_cast(DGV); if (!SGVar->isConstant() || (DGVar && !DGVar->isConstant())) ClearConstant = true; } if (!LinkFromSrc) { if (auto *NewGVar = dyn_cast(DGV)) { if (Alignment) NewGVar->setAlignment(Alignment); if (NewGVar->isDeclaration() && ClearConstant) NewGVar->setConstant(false); } return DGV; } // No linking to be performed or linking from the source: simply create an // identical version of the symbol over in the dest module... the // initializer will be filled in later by LinkGlobalInits. GlobalVariable *NewDGV = new GlobalVariable( *DstM, TypeMap.get(SGVar->getType()->getElementType()), SGVar->isConstant(), SGVar->getLinkage(), /*init*/ nullptr, SGVar->getName(), /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(), SGVar->getType()->getAddressSpace()); if (Alignment) NewDGV->setAlignment(Alignment); return NewDGV; } /// Link the function in the source module into the destination module if /// needed, setting up mapping information. GlobalValue *ModuleLinker::linkFunctionProto(const Function *SF, GlobalValue *DGV, bool LinkFromSrc) { if (!LinkFromSrc) return DGV; // If the function is to be lazily linked, don't create it just yet. // The ValueMaterializerTy will deal with creating it if it's used. if (!DGV && (SF->hasLocalLinkage() || SF->hasLinkOnceLinkage() || SF->hasAvailableExternallyLinkage())) { DoNotLinkFromSource.insert(SF); return nullptr; } // If there is no linkage to be performed or we are linking from the source, // bring SF over. return Function::Create(TypeMap.get(SF->getFunctionType()), SF->getLinkage(), SF->getName(), DstM); } /// Set up prototypes for any aliases that come over from the source module. GlobalValue *ModuleLinker::linkGlobalAliasProto(const GlobalAlias *SGA, GlobalValue *DGV, bool LinkFromSrc) { if (!LinkFromSrc) return DGV; // If there is no linkage to be performed or we're linking from the source, // bring over SGA. auto *PTy = cast(TypeMap.get(SGA->getType())); return GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), SGA->getLinkage(), SGA->getName(), DstM); } static void getArrayElements(const Constant *C, SmallVectorImpl &Dest) { unsigned NumElements = cast(C->getType())->getNumElements(); for (unsigned i = 0; i != NumElements; ++i) Dest.push_back(C->getAggregateElement(i)); } void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) { // Merge the initializer. SmallVector DstElements; getArrayElements(AVI.DstInit, DstElements); SmallVector SrcElements; getArrayElements(AVI.SrcInit, SrcElements); ArrayType *NewType = cast(AVI.NewGV->getType()->getElementType()); StringRef Name = AVI.NewGV->getName(); bool IsNewStructor = (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") && cast(NewType->getElementType())->getNumElements() == 3; for (auto *V : SrcElements) { if (IsNewStructor) { Constant *Key = V->getAggregateElement(2); if (DoNotLinkFromSource.count(Key)) continue; } DstElements.push_back( MapValue(V, ValueMap, RF_None, &TypeMap, &ValMaterializer)); } if (IsNewStructor) { NewType = ArrayType::get(NewType->getElementType(), DstElements.size()); AVI.NewGV->mutateType(PointerType::get(NewType, 0)); } AVI.NewGV->setInitializer(ConstantArray::get(NewType, DstElements)); } /// Update the initializers in the Dest module now that all globals that may be /// referenced are in Dest. void ModuleLinker::linkGlobalInits() { // Loop over all of the globals in the src module, mapping them over as we go for (Module::const_global_iterator I = SrcM->global_begin(), E = SrcM->global_end(); I != E; ++I) { // Only process initialized GV's or ones not already in dest. if (!I->hasInitializer() || DoNotLinkFromSource.count(I)) continue; // Grab destination global variable. GlobalVariable *DGV = cast(ValueMap[I]); // Figure out what the initializer looks like in the dest module. DGV->setInitializer(MapValue(I->getInitializer(), ValueMap, RF_None, &TypeMap, &ValMaterializer)); } } /// Copy the source function over into the dest function and fix up references /// to values. At this point we know that Dest is an external function, and /// that Src is not. void ModuleLinker::linkFunctionBody(Function *Dst, Function *Src) { assert(Src && Dst && Dst->isDeclaration() && !Src->isDeclaration()); // Go through and convert function arguments over, remembering the mapping. Function::arg_iterator DI = Dst->arg_begin(); for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end(); I != E; ++I, ++DI) { DI->setName(I->getName()); // Copy the name over. // Add a mapping to our mapping. ValueMap[I] = DI; } // Splice the body of the source function into the dest function. Dst->getBasicBlockList().splice(Dst->end(), Src->getBasicBlockList()); // At this point, all of the instructions and values of the function are now // copied over. The only problem is that they are still referencing values in // the Source function as operands. Loop through all of the operands of the // functions and patch them up to point to the local versions. for (Function::iterator BB = Dst->begin(), BE = Dst->end(); BB != BE; ++BB) for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) RemapInstruction(I, ValueMap, RF_IgnoreMissingEntries, &TypeMap, &ValMaterializer); // There is no need to map the arguments anymore. for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end(); I != E; ++I) ValueMap.erase(I); } /// Insert all of the aliases in Src into the Dest module. void ModuleLinker::linkAliasBodies() { for (Module::alias_iterator I = SrcM->alias_begin(), E = SrcM->alias_end(); I != E; ++I) { if (DoNotLinkFromSource.count(I)) continue; if (Constant *Aliasee = I->getAliasee()) { GlobalAlias *DA = cast(ValueMap[I]); Constant *Val = MapValue(Aliasee, ValueMap, RF_None, &TypeMap, &ValMaterializer); DA->setAliasee(Val); } } } /// Insert all of the named MDNodes in Src into the Dest module. void ModuleLinker::linkNamedMDNodes() { const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata(); for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(), E = SrcM->named_metadata_end(); I != E; ++I) { // Don't link module flags here. Do them separately. if (&*I == SrcModFlags) continue; NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName()); // Add Src elements into Dest node. for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) DestNMD->addOperand(MapValue(I->getOperand(i), ValueMap, RF_None, &TypeMap, &ValMaterializer)); } } /// Merge the linker flags in Src into the Dest module. bool ModuleLinker::linkModuleFlagsMetadata() { // If the source module has no module flags, we are done. const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata(); if (!SrcModFlags) return false; // If the destination module doesn't have module flags yet, then just copy // over the source module's flags. NamedMDNode *DstModFlags = DstM->getOrInsertModuleFlagsMetadata(); if (DstModFlags->getNumOperands() == 0) { for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) DstModFlags->addOperand(SrcModFlags->getOperand(I)); return false; } // First build a map of the existing module flags and requirements. DenseMap Flags; SmallSetVector Requirements; for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) { MDNode *Op = DstModFlags->getOperand(I); ConstantInt *Behavior = cast(Op->getOperand(0)); MDString *ID = cast(Op->getOperand(1)); if (Behavior->getZExtValue() == Module::Require) { Requirements.insert(cast(Op->getOperand(2))); } else { Flags[ID] = Op; } } // Merge in the flags from the source module, and also collect its set of // requirements. bool HasErr = false; for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) { MDNode *SrcOp = SrcModFlags->getOperand(I); ConstantInt *SrcBehavior = cast(SrcOp->getOperand(0)); MDString *ID = cast(SrcOp->getOperand(1)); MDNode *DstOp = Flags.lookup(ID); unsigned SrcBehaviorValue = SrcBehavior->getZExtValue(); // If this is a requirement, add it and continue. if (SrcBehaviorValue == Module::Require) { // If the destination module does not already have this requirement, add // it. if (Requirements.insert(cast(SrcOp->getOperand(2)))) { DstModFlags->addOperand(SrcOp); } continue; } // If there is no existing flag with this ID, just add it. if (!DstOp) { Flags[ID] = SrcOp; DstModFlags->addOperand(SrcOp); continue; } // Otherwise, perform a merge. ConstantInt *DstBehavior = cast(DstOp->getOperand(0)); unsigned DstBehaviorValue = DstBehavior->getZExtValue(); // If either flag has override behavior, handle it first. if (DstBehaviorValue == Module::Override) { // Diagnose inconsistent flags which both have override behavior. if (SrcBehaviorValue == Module::Override && SrcOp->getOperand(2) != DstOp->getOperand(2)) { HasErr |= emitError("linking module flags '" + ID->getString() + "': IDs have conflicting override values"); } continue; } else if (SrcBehaviorValue == Module::Override) { // Update the destination flag to that of the source. DstOp->replaceOperandWith(0, SrcBehavior); DstOp->replaceOperandWith(2, SrcOp->getOperand(2)); continue; } // Diagnose inconsistent merge behavior types. if (SrcBehaviorValue != DstBehaviorValue) { HasErr |= emitError("linking module flags '" + ID->getString() + "': IDs have conflicting behaviors"); continue; } // Perform the merge for standard behavior types. switch (SrcBehaviorValue) { case Module::Require: case Module::Override: llvm_unreachable("not possible"); case Module::Error: { // Emit an error if the values differ. if (SrcOp->getOperand(2) != DstOp->getOperand(2)) { HasErr |= emitError("linking module flags '" + ID->getString() + "': IDs have conflicting values"); } continue; } case Module::Warning: { // Emit a warning if the values differ. if (SrcOp->getOperand(2) != DstOp->getOperand(2)) { emitWarning("linking module flags '" + ID->getString() + "': IDs have conflicting values"); } continue; } case Module::Append: { MDNode *DstValue = cast(DstOp->getOperand(2)); MDNode *SrcValue = cast(SrcOp->getOperand(2)); unsigned NumOps = DstValue->getNumOperands() + SrcValue->getNumOperands(); Value **VP, **Values = VP = new Value*[NumOps]; for (unsigned i = 0, e = DstValue->getNumOperands(); i != e; ++i, ++VP) *VP = DstValue->getOperand(i); for (unsigned i = 0, e = SrcValue->getNumOperands(); i != e; ++i, ++VP) *VP = SrcValue->getOperand(i); DstOp->replaceOperandWith(2, MDNode::get(DstM->getContext(), ArrayRef(Values, NumOps))); delete[] Values; break; } case Module::AppendUnique: { SmallSetVector Elts; MDNode *DstValue = cast(DstOp->getOperand(2)); MDNode *SrcValue = cast(SrcOp->getOperand(2)); for (unsigned i = 0, e = DstValue->getNumOperands(); i != e; ++i) Elts.insert(DstValue->getOperand(i)); for (unsigned i = 0, e = SrcValue->getNumOperands(); i != e; ++i) Elts.insert(SrcValue->getOperand(i)); DstOp->replaceOperandWith(2, MDNode::get(DstM->getContext(), ArrayRef(Elts.begin(), Elts.end()))); break; } } } // Check all of the requirements. for (unsigned I = 0, E = Requirements.size(); I != E; ++I) { MDNode *Requirement = Requirements[I]; MDString *Flag = cast(Requirement->getOperand(0)); Value *ReqValue = Requirement->getOperand(1); MDNode *Op = Flags[Flag]; if (!Op || Op->getOperand(2) != ReqValue) { HasErr |= emitError("linking module flags '" + Flag->getString() + "': does not have the required value"); continue; } } return HasErr; } bool ModuleLinker::run() { assert(DstM && "Null destination module"); assert(SrcM && "Null source module"); // Inherit the target data from the source module if the destination module // doesn't have one already. if (!DstM->getDataLayout() && SrcM->getDataLayout()) DstM->setDataLayout(SrcM->getDataLayout()); // Copy the target triple from the source to dest if the dest's is empty. if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty()) DstM->setTargetTriple(SrcM->getTargetTriple()); if (SrcM->getDataLayout() && DstM->getDataLayout() && *SrcM->getDataLayout() != *DstM->getDataLayout()) { emitWarning("Linking two modules of different data layouts: '" + SrcM->getModuleIdentifier() + "' is '" + SrcM->getDataLayoutStr() + "' whereas '" + DstM->getModuleIdentifier() + "' is '" + DstM->getDataLayoutStr() + "'\n"); } if (!SrcM->getTargetTriple().empty() && DstM->getTargetTriple() != SrcM->getTargetTriple()) { emitWarning("Linking two modules of different target triples: " + SrcM->getModuleIdentifier() + "' is '" + SrcM->getTargetTriple() + "' whereas '" + DstM->getModuleIdentifier() + "' is '" + DstM->getTargetTriple() + "'\n"); } // Append the module inline asm string. if (!SrcM->getModuleInlineAsm().empty()) { if (DstM->getModuleInlineAsm().empty()) DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm()); else DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+ SrcM->getModuleInlineAsm()); } // Loop over all of the linked values to compute type mappings. computeTypeMapping(); ComdatsChosen.clear(); for (const auto &SMEC : SrcM->getComdatSymbolTable()) { const Comdat &C = SMEC.getValue(); if (ComdatsChosen.count(&C)) continue; Comdat::SelectionKind SK; bool LinkFromSrc; if (getComdatResult(&C, SK, LinkFromSrc)) return true; ComdatsChosen[&C] = std::make_pair(SK, LinkFromSrc); } // Upgrade mismatched global arrays. upgradeMismatchedGlobals(); // Insert all of the globals in src into the DstM module... without linking // initializers (which could refer to functions not yet mapped over). for (Module::global_iterator I = SrcM->global_begin(), E = SrcM->global_end(); I != E; ++I) if (linkGlobalValueProto(I)) return true; // Link the functions together between the two modules, without doing function // bodies... this just adds external function prototypes to the DstM // function... We do this so that when we begin processing function bodies, // all of the global values that may be referenced are available in our // ValueMap. for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I) if (linkGlobalValueProto(I)) return true; // If there were any aliases, link them now. for (Module::alias_iterator I = SrcM->alias_begin(), E = SrcM->alias_end(); I != E; ++I) if (linkGlobalValueProto(I)) return true; for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i) linkAppendingVarInit(AppendingVars[i]); // Link in the function bodies that are defined in the source module into // DstM. for (Module::iterator SF = SrcM->begin(), E = SrcM->end(); SF != E; ++SF) { // Skip if not linking from source. if (DoNotLinkFromSource.count(SF)) continue; Function *DF = cast(ValueMap[SF]); if (SF->hasPrefixData()) { // Link in the prefix data. DF->setPrefixData(MapValue( SF->getPrefixData(), ValueMap, RF_None, &TypeMap, &ValMaterializer)); } // Materialize if needed. if (std::error_code EC = SF->materialize()) return emitError(EC.message()); // Skip if no body (function is external). if (SF->isDeclaration()) continue; linkFunctionBody(DF, SF); SF->Dematerialize(); } // Resolve all uses of aliases with aliasees. linkAliasBodies(); // Remap all of the named MDNodes in Src into the DstM module. We do this // after linking GlobalValues so that MDNodes that reference GlobalValues // are properly remapped. linkNamedMDNodes(); // Merge the module flags into the DstM module. if (linkModuleFlagsMetadata()) return true; // Update the initializers in the DstM module now that all globals that may // be referenced are in DstM. linkGlobalInits(); // Process vector of lazily linked in functions. bool LinkedInAnyFunctions; do { LinkedInAnyFunctions = false; for(std::vector::iterator I = LazilyLinkFunctions.begin(), E = LazilyLinkFunctions.end(); I != E; ++I) { Function *SF = *I; if (!SF) continue; Function *DF = cast(ValueMap[SF]); if (SF->hasPrefixData()) { // Link in the prefix data. DF->setPrefixData(MapValue(SF->getPrefixData(), ValueMap, RF_None, &TypeMap, &ValMaterializer)); } // Materialize if needed. if (std::error_code EC = SF->materialize()) return emitError(EC.message()); // Skip if no body (function is external). if (SF->isDeclaration()) continue; // Erase from vector *before* the function body is linked - linkFunctionBody could // invalidate I. LazilyLinkFunctions.erase(I); // Link in function body. linkFunctionBody(DF, SF); SF->Dematerialize(); // Set flag to indicate we may have more functions to lazily link in // since we linked in a function. LinkedInAnyFunctions = true; break; } } while (LinkedInAnyFunctions); // Now that all of the types from the source are used, resolve any structs // copied over to the dest that didn't exist there. TypeMap.linkDefinedTypeBodies(); return false; } void Linker::init(Module *M, DiagnosticHandlerFunction DiagnosticHandler) { this->Composite = M; this->DiagnosticHandler = DiagnosticHandler; TypeFinder StructTypes; StructTypes.run(*M, true); IdentifiedStructTypes.insert(StructTypes.begin(), StructTypes.end()); } Linker::Linker(Module *M, DiagnosticHandlerFunction DiagnosticHandler) { init(M, DiagnosticHandler); } Linker::Linker(Module *M) { init(M, [this](const DiagnosticInfo &DI) { Composite->getContext().diagnose(DI); }); } Linker::~Linker() { } void Linker::deleteModule() { delete Composite; Composite = nullptr; } bool Linker::linkInModule(Module *Src) { ModuleLinker TheLinker(Composite, IdentifiedStructTypes, Src, DiagnosticHandler); return TheLinker.run(); } //===----------------------------------------------------------------------===// // LinkModules entrypoint. //===----------------------------------------------------------------------===// /// This function links two modules together, with the resulting Dest module /// modified to be the composite of the two input modules. If an error occurs, /// true is returned and ErrorMsg (if not null) is set to indicate the problem. /// Upon failure, the Dest module could be in a modified state, and shouldn't be /// relied on to be consistent. bool Linker::LinkModules(Module *Dest, Module *Src, DiagnosticHandlerFunction DiagnosticHandler) { Linker L(Dest, DiagnosticHandler); return L.linkInModule(Src); } bool Linker::LinkModules(Module *Dest, Module *Src) { Linker L(Dest); return L.linkInModule(Src); } //===----------------------------------------------------------------------===// // C API. //===----------------------------------------------------------------------===// LLVMBool LLVMLinkModules(LLVMModuleRef Dest, LLVMModuleRef Src, LLVMLinkerMode Mode, char **OutMessages) { Module *D = unwrap(Dest); std::string Message; raw_string_ostream Stream(Message); DiagnosticPrinterRawOStream DP(Stream); LLVMBool Result = Linker::LinkModules( D, unwrap(Src), [&](const DiagnosticInfo &DI) { DI.print(DP); }); if (OutMessages && Result) *OutMessages = strdup(Message.c_str()); return Result; }