//===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "assembler" #include "llvm/MC/MCAssembler.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCSectionMachO.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/MCValue.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/Twine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MachO.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/Debug.h" // FIXME: Gross. #include "../Target/X86/X86FixupKinds.h" #include using namespace llvm; class MachObjectWriter; STATISTIC(EmittedFragments, "Number of emitted assembler fragments"); // FIXME FIXME FIXME: There are number of places in this file where we convert // what is a 64-bit assembler value used for computation into a value in the // object file, which may truncate it. We should detect that truncation where // invalid and report errors back. static void WriteFileData(raw_ostream &OS, const MCSectionData &SD, MachObjectWriter &MOW); /// isVirtualSection - Check if this is a section which does not actually exist /// in the object file. static bool isVirtualSection(const MCSection &Section) { // FIXME: Lame. const MCSectionMachO &SMO = static_cast(Section); unsigned Type = SMO.getTypeAndAttributes() & MCSectionMachO::SECTION_TYPE; return (Type == MCSectionMachO::S_ZEROFILL); } static unsigned getFixupKindLog2Size(unsigned Kind) { switch (Kind) { default: llvm_unreachable("invalid fixup kind!"); case X86::reloc_pcrel_1byte: case FK_Data_1: return 0; case FK_Data_2: return 1; case X86::reloc_pcrel_4byte: case X86::reloc_riprel_4byte: case FK_Data_4: return 2; case FK_Data_8: return 3; } } static bool isFixupKindPCRel(unsigned Kind) { switch (Kind) { default: return false; case X86::reloc_pcrel_1byte: case X86::reloc_pcrel_4byte: case X86::reloc_riprel_4byte: return true; } } class MachObjectWriter { // See . enum { Header_Magic32 = 0xFEEDFACE, Header_Magic64 = 0xFEEDFACF }; static const unsigned Header32Size = 28; static const unsigned Header64Size = 32; static const unsigned SegmentLoadCommand32Size = 56; static const unsigned Section32Size = 68; static const unsigned SymtabLoadCommandSize = 24; static const unsigned DysymtabLoadCommandSize = 80; static const unsigned Nlist32Size = 12; static const unsigned RelocationInfoSize = 8; enum HeaderFileType { HFT_Object = 0x1 }; enum HeaderFlags { HF_SubsectionsViaSymbols = 0x2000 }; enum LoadCommandType { LCT_Segment = 0x1, LCT_Symtab = 0x2, LCT_Dysymtab = 0xb }; // See . enum SymbolTypeType { STT_Undefined = 0x00, STT_Absolute = 0x02, STT_Section = 0x0e }; enum SymbolTypeFlags { // If any of these bits are set, then the entry is a stab entry number (see // . Otherwise the other masks apply. STF_StabsEntryMask = 0xe0, STF_TypeMask = 0x0e, STF_External = 0x01, STF_PrivateExtern = 0x10 }; /// IndirectSymbolFlags - Flags for encoding special values in the indirect /// symbol entry. enum IndirectSymbolFlags { ISF_Local = 0x80000000, ISF_Absolute = 0x40000000 }; /// RelocationFlags - Special flags for addresses. enum RelocationFlags { RF_Scattered = 0x80000000 }; enum RelocationInfoType { RIT_Vanilla = 0, RIT_Pair = 1, RIT_Difference = 2, RIT_PreboundLazyPointer = 3, RIT_LocalDifference = 4 }; /// MachSymbolData - Helper struct for containing some precomputed information /// on symbols. struct MachSymbolData { MCSymbolData *SymbolData; uint64_t StringIndex; uint8_t SectionIndex; // Support lexicographic sorting. bool operator<(const MachSymbolData &RHS) const { const std::string &Name = SymbolData->getSymbol().getName(); return Name < RHS.SymbolData->getSymbol().getName(); } }; raw_ostream &OS; bool IsLSB; public: MachObjectWriter(raw_ostream &_OS, bool _IsLSB = true) : OS(_OS), IsLSB(_IsLSB) { } /// @name Helper Methods /// @{ void Write8(uint8_t Value) { OS << char(Value); } void Write16(uint16_t Value) { if (IsLSB) { Write8(uint8_t(Value >> 0)); Write8(uint8_t(Value >> 8)); } else { Write8(uint8_t(Value >> 8)); Write8(uint8_t(Value >> 0)); } } void Write32(uint32_t Value) { if (IsLSB) { Write16(uint16_t(Value >> 0)); Write16(uint16_t(Value >> 16)); } else { Write16(uint16_t(Value >> 16)); Write16(uint16_t(Value >> 0)); } } void Write64(uint64_t Value) { if (IsLSB) { Write32(uint32_t(Value >> 0)); Write32(uint32_t(Value >> 32)); } else { Write32(uint32_t(Value >> 32)); Write32(uint32_t(Value >> 0)); } } void WriteZeros(unsigned N) { const char Zeros[16] = { 0 }; for (unsigned i = 0, e = N / 16; i != e; ++i) OS << StringRef(Zeros, 16); OS << StringRef(Zeros, N % 16); } void WriteString(StringRef Str, unsigned ZeroFillSize = 0) { OS << Str; if (ZeroFillSize) WriteZeros(ZeroFillSize - Str.size()); } /// @} void WriteHeader32(unsigned NumLoadCommands, unsigned LoadCommandsSize, bool SubsectionsViaSymbols) { uint32_t Flags = 0; if (SubsectionsViaSymbols) Flags |= HF_SubsectionsViaSymbols; // struct mach_header (28 bytes) uint64_t Start = OS.tell(); (void) Start; Write32(Header_Magic32); // FIXME: Support cputype. Write32(MachO::CPUTypeI386); // FIXME: Support cpusubtype. Write32(MachO::CPUSubType_I386_ALL); Write32(HFT_Object); Write32(NumLoadCommands); // Object files have a single load command, the // segment. Write32(LoadCommandsSize); Write32(Flags); assert(OS.tell() - Start == Header32Size); } /// WriteSegmentLoadCommand32 - Write a 32-bit segment load command. /// /// \arg NumSections - The number of sections in this segment. /// \arg SectionDataSize - The total size of the sections. void WriteSegmentLoadCommand32(unsigned NumSections, uint64_t VMSize, uint64_t SectionDataStartOffset, uint64_t SectionDataSize) { // struct segment_command (56 bytes) uint64_t Start = OS.tell(); (void) Start; Write32(LCT_Segment); Write32(SegmentLoadCommand32Size + NumSections * Section32Size); WriteString("", 16); Write32(0); // vmaddr Write32(VMSize); // vmsize Write32(SectionDataStartOffset); // file offset Write32(SectionDataSize); // file size Write32(0x7); // maxprot Write32(0x7); // initprot Write32(NumSections); Write32(0); // flags assert(OS.tell() - Start == SegmentLoadCommand32Size); } void WriteSection32(const MCSectionData &SD, uint64_t FileOffset, uint64_t RelocationsStart, unsigned NumRelocations) { // The offset is unused for virtual sections. if (isVirtualSection(SD.getSection())) { assert(SD.getFileSize() == 0 && "Invalid file size!"); FileOffset = 0; } // struct section (68 bytes) uint64_t Start = OS.tell(); (void) Start; // FIXME: cast<> support! const MCSectionMachO &Section = static_cast(SD.getSection()); WriteString(Section.getSectionName(), 16); WriteString(Section.getSegmentName(), 16); Write32(SD.getAddress()); // address Write32(SD.getSize()); // size Write32(FileOffset); unsigned Flags = Section.getTypeAndAttributes(); if (SD.hasInstructions()) Flags |= MCSectionMachO::S_ATTR_SOME_INSTRUCTIONS; assert(isPowerOf2_32(SD.getAlignment()) && "Invalid alignment!"); Write32(Log2_32(SD.getAlignment())); Write32(NumRelocations ? RelocationsStart : 0); Write32(NumRelocations); Write32(Flags); Write32(0); // reserved1 Write32(Section.getStubSize()); // reserved2 assert(OS.tell() - Start == Section32Size); } void WriteSymtabLoadCommand(uint32_t SymbolOffset, uint32_t NumSymbols, uint32_t StringTableOffset, uint32_t StringTableSize) { // struct symtab_command (24 bytes) uint64_t Start = OS.tell(); (void) Start; Write32(LCT_Symtab); Write32(SymtabLoadCommandSize); Write32(SymbolOffset); Write32(NumSymbols); Write32(StringTableOffset); Write32(StringTableSize); assert(OS.tell() - Start == SymtabLoadCommandSize); } void WriteDysymtabLoadCommand(uint32_t FirstLocalSymbol, uint32_t NumLocalSymbols, uint32_t FirstExternalSymbol, uint32_t NumExternalSymbols, uint32_t FirstUndefinedSymbol, uint32_t NumUndefinedSymbols, uint32_t IndirectSymbolOffset, uint32_t NumIndirectSymbols) { // struct dysymtab_command (80 bytes) uint64_t Start = OS.tell(); (void) Start; Write32(LCT_Dysymtab); Write32(DysymtabLoadCommandSize); Write32(FirstLocalSymbol); Write32(NumLocalSymbols); Write32(FirstExternalSymbol); Write32(NumExternalSymbols); Write32(FirstUndefinedSymbol); Write32(NumUndefinedSymbols); Write32(0); // tocoff Write32(0); // ntoc Write32(0); // modtaboff Write32(0); // nmodtab Write32(0); // extrefsymoff Write32(0); // nextrefsyms Write32(IndirectSymbolOffset); Write32(NumIndirectSymbols); Write32(0); // extreloff Write32(0); // nextrel Write32(0); // locreloff Write32(0); // nlocrel assert(OS.tell() - Start == DysymtabLoadCommandSize); } void WriteNlist32(MachSymbolData &MSD) { MCSymbolData &Data = *MSD.SymbolData; const MCSymbol &Symbol = Data.getSymbol(); uint8_t Type = 0; uint16_t Flags = Data.getFlags(); uint32_t Address = 0; // Set the N_TYPE bits. See . // // FIXME: Are the prebound or indirect fields possible here? if (Symbol.isUndefined()) Type = STT_Undefined; else if (Symbol.isAbsolute()) Type = STT_Absolute; else Type = STT_Section; // FIXME: Set STAB bits. if (Data.isPrivateExtern()) Type |= STF_PrivateExtern; // Set external bit. if (Data.isExternal() || Symbol.isUndefined()) Type |= STF_External; // Compute the symbol address. if (Symbol.isDefined()) { if (Symbol.isAbsolute()) { llvm_unreachable("FIXME: Not yet implemented!"); } else { Address = Data.getFragment()->getAddress() + Data.getOffset(); } } else if (Data.isCommon()) { // Common symbols are encoded with the size in the address // field, and their alignment in the flags. Address = Data.getCommonSize(); // Common alignment is packed into the 'desc' bits. if (unsigned Align = Data.getCommonAlignment()) { unsigned Log2Size = Log2_32(Align); assert((1U << Log2Size) == Align && "Invalid 'common' alignment!"); if (Log2Size > 15) llvm_report_error("invalid 'common' alignment '" + Twine(Align) + "'"); // FIXME: Keep this mask with the SymbolFlags enumeration. Flags = (Flags & 0xF0FF) | (Log2Size << 8); } } // struct nlist (12 bytes) Write32(MSD.StringIndex); Write8(Type); Write8(MSD.SectionIndex); // The Mach-O streamer uses the lowest 16-bits of the flags for the 'desc' // value. Write16(Flags); Write32(Address); } struct MachRelocationEntry { uint32_t Word0; uint32_t Word1; }; void ComputeScatteredRelocationInfo(MCAssembler &Asm, MCFragment &Fragment, MCAsmFixup &Fixup, const MCValue &Target, DenseMap &SymbolMap, std::vector &Relocs) { uint32_t Address = Fragment.getOffset() + Fixup.Offset; unsigned IsPCRel = 0; unsigned Type = RIT_Vanilla; // See . const MCSymbol *A = Target.getSymA(); MCSymbolData *SD = SymbolMap.lookup(A); uint32_t Value = SD->getFragment()->getAddress() + SD->getOffset(); uint32_t Value2 = 0; if (const MCSymbol *B = Target.getSymB()) { Type = RIT_LocalDifference; MCSymbolData *SD = SymbolMap.lookup(B); Value2 = SD->getFragment()->getAddress() + SD->getOffset(); } unsigned Log2Size = getFixupKindLog2Size(Fixup.Kind); // The value which goes in the fixup is current value of the expression. Fixup.FixedValue = Value - Value2 + Target.getConstant(); if (isFixupKindPCRel(Fixup.Kind)) { Fixup.FixedValue -= Address + (1 << Log2Size); IsPCRel = 1; } MachRelocationEntry MRE; MRE.Word0 = ((Address << 0) | (Type << 24) | (Log2Size << 28) | (IsPCRel << 30) | RF_Scattered); MRE.Word1 = Value; Relocs.push_back(MRE); if (Type == RIT_LocalDifference) { Type = RIT_Pair; MachRelocationEntry MRE; MRE.Word0 = ((0 << 0) | (Type << 24) | (Log2Size << 28) | (0 << 30) | RF_Scattered); MRE.Word1 = Value2; Relocs.push_back(MRE); } } void ComputeRelocationInfo(MCAssembler &Asm, MCDataFragment &Fragment, MCAsmFixup &Fixup, DenseMap &SymbolMap, std::vector &Relocs) { MCValue Target; if (!Fixup.Value->EvaluateAsRelocatable(Target)) llvm_report_error("expected relocatable expression"); // If this is a difference or a local symbol plus an offset, then we need a // scattered relocation entry. if (Target.getSymB() || (Target.getSymA() && !Target.getSymA()->isUndefined() && Target.getConstant())) return ComputeScatteredRelocationInfo(Asm, Fragment, Fixup, Target, SymbolMap, Relocs); // See . uint32_t Address = Fragment.getOffset() + Fixup.Offset; uint32_t Value = 0; unsigned Index = 0; unsigned IsPCRel = 0; unsigned IsExtern = 0; unsigned Type = 0; if (Target.isAbsolute()) { // constant // SymbolNum of 0 indicates the absolute section. // // FIXME: When is this generated? Type = RIT_Vanilla; Value = 0; llvm_unreachable("FIXME: Not yet implemented!"); } else { const MCSymbol *Symbol = Target.getSymA(); MCSymbolData *SD = SymbolMap.lookup(Symbol); if (Symbol->isUndefined()) { IsExtern = 1; Index = SD->getIndex(); Value = 0; } else { // The index is the section ordinal. // // FIXME: O(N) Index = 1; MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); for (; it != ie; ++it, ++Index) if (&*it == SD->getFragment()->getParent()) break; assert(it != ie && "Unable to find section index!"); Value = SD->getFragment()->getAddress() + SD->getOffset(); } Type = RIT_Vanilla; } // The value which goes in the fixup is current value of the expression. Fixup.FixedValue = Value + Target.getConstant(); unsigned Log2Size = getFixupKindLog2Size(Fixup.Kind); if (isFixupKindPCRel(Fixup.Kind)) { Fixup.FixedValue -= Address + (1< &SymbolMap) { // This is the point where 'as' creates actual symbols for indirect symbols // (in the following two passes). It would be easier for us to do this // sooner when we see the attribute, but that makes getting the order in the // symbol table much more complicated than it is worth. // // FIXME: Revisit this when the dust settles. // Bind non lazy symbol pointers first. for (MCAssembler::indirect_symbol_iterator it = Asm.indirect_symbol_begin(), ie = Asm.indirect_symbol_end(); it != ie; ++it) { // FIXME: cast<> support! const MCSectionMachO &Section = static_cast(it->SectionData->getSection()); unsigned Type = Section.getTypeAndAttributes() & MCSectionMachO::SECTION_TYPE; if (Type != MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS) continue; MCSymbolData *&Entry = SymbolMap[it->Symbol]; if (!Entry) Entry = new MCSymbolData(*it->Symbol, 0, 0, &Asm); } // Then lazy symbol pointers and symbol stubs. for (MCAssembler::indirect_symbol_iterator it = Asm.indirect_symbol_begin(), ie = Asm.indirect_symbol_end(); it != ie; ++it) { // FIXME: cast<> support! const MCSectionMachO &Section = static_cast(it->SectionData->getSection()); unsigned Type = Section.getTypeAndAttributes() & MCSectionMachO::SECTION_TYPE; if (Type != MCSectionMachO::S_LAZY_SYMBOL_POINTERS && Type != MCSectionMachO::S_SYMBOL_STUBS) continue; MCSymbolData *&Entry = SymbolMap[it->Symbol]; if (!Entry) { Entry = new MCSymbolData(*it->Symbol, 0, 0, &Asm); // Set the symbol type to undefined lazy, but only on construction. // // FIXME: Do not hardcode. Entry->setFlags(Entry->getFlags() | 0x0001); } } } /// ComputeSymbolTable - Compute the symbol table data /// /// \param StringTable [out] - The string table data. /// \param StringIndexMap [out] - Map from symbol names to offsets in the /// string table. void ComputeSymbolTable(MCAssembler &Asm, SmallString<256> &StringTable, std::vector &LocalSymbolData, std::vector &ExternalSymbolData, std::vector &UndefinedSymbolData) { // Build section lookup table. DenseMap SectionIndexMap; unsigned Index = 1; for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it, ++Index) SectionIndexMap[&it->getSection()] = Index; assert(Index <= 256 && "Too many sections!"); // Index 0 is always the empty string. StringMap StringIndexMap; StringTable += '\x00'; // Build the symbol arrays and the string table, but only for non-local // symbols. // // The particular order that we collect the symbols and create the string // table, then sort the symbols is chosen to match 'as'. Even though it // doesn't matter for correctness, this is important for letting us diff .o // files. for (MCAssembler::symbol_iterator it = Asm.symbol_begin(), ie = Asm.symbol_end(); it != ie; ++it) { const MCSymbol &Symbol = it->getSymbol(); // Ignore assembler temporaries. if (it->getSymbol().isTemporary()) continue; if (!it->isExternal() && !Symbol.isUndefined()) continue; uint64_t &Entry = StringIndexMap[Symbol.getName()]; if (!Entry) { Entry = StringTable.size(); StringTable += Symbol.getName(); StringTable += '\x00'; } MachSymbolData MSD; MSD.SymbolData = it; MSD.StringIndex = Entry; if (Symbol.isUndefined()) { MSD.SectionIndex = 0; UndefinedSymbolData.push_back(MSD); } else if (Symbol.isAbsolute()) { MSD.SectionIndex = 0; ExternalSymbolData.push_back(MSD); } else { MSD.SectionIndex = SectionIndexMap.lookup(&Symbol.getSection()); assert(MSD.SectionIndex && "Invalid section index!"); ExternalSymbolData.push_back(MSD); } } // Now add the data for local symbols. for (MCAssembler::symbol_iterator it = Asm.symbol_begin(), ie = Asm.symbol_end(); it != ie; ++it) { const MCSymbol &Symbol = it->getSymbol(); // Ignore assembler temporaries. if (it->getSymbol().isTemporary()) continue; if (it->isExternal() || Symbol.isUndefined()) continue; uint64_t &Entry = StringIndexMap[Symbol.getName()]; if (!Entry) { Entry = StringTable.size(); StringTable += Symbol.getName(); StringTable += '\x00'; } MachSymbolData MSD; MSD.SymbolData = it; MSD.StringIndex = Entry; if (Symbol.isAbsolute()) { MSD.SectionIndex = 0; LocalSymbolData.push_back(MSD); } else { MSD.SectionIndex = SectionIndexMap.lookup(&Symbol.getSection()); assert(MSD.SectionIndex && "Invalid section index!"); LocalSymbolData.push_back(MSD); } } // External and undefined symbols are required to be in lexicographic order. std::sort(ExternalSymbolData.begin(), ExternalSymbolData.end()); std::sort(UndefinedSymbolData.begin(), UndefinedSymbolData.end()); // Set the symbol indices. Index = 0; for (unsigned i = 0, e = LocalSymbolData.size(); i != e; ++i) LocalSymbolData[i].SymbolData->setIndex(Index++); for (unsigned i = 0, e = ExternalSymbolData.size(); i != e; ++i) ExternalSymbolData[i].SymbolData->setIndex(Index++); for (unsigned i = 0, e = UndefinedSymbolData.size(); i != e; ++i) UndefinedSymbolData[i].SymbolData->setIndex(Index++); // The string table is padded to a multiple of 4. while (StringTable.size() % 4) StringTable += '\x00'; } void WriteObject(MCAssembler &Asm) { unsigned NumSections = Asm.size(); // Compute the symbol -> symbol data map. // // FIXME: This should not be here. DenseMap SymbolMap; for (MCAssembler::symbol_iterator it = Asm.symbol_begin(), ie = Asm.symbol_end(); it != ie; ++it) SymbolMap[&it->getSymbol()] = it; // Create symbol data for any indirect symbols. BindIndirectSymbols(Asm, SymbolMap); // Compute symbol table information. SmallString<256> StringTable; std::vector LocalSymbolData; std::vector ExternalSymbolData; std::vector UndefinedSymbolData; unsigned NumSymbols = Asm.symbol_size(); // No symbol table command is written if there are no symbols. if (NumSymbols) ComputeSymbolTable(Asm, StringTable, LocalSymbolData, ExternalSymbolData, UndefinedSymbolData); // The section data starts after the header, the segment load command (and // section headers) and the symbol table. unsigned NumLoadCommands = 1; uint64_t LoadCommandsSize = SegmentLoadCommand32Size + NumSections * Section32Size; // Add the symbol table load command sizes, if used. if (NumSymbols) { NumLoadCommands += 2; LoadCommandsSize += SymtabLoadCommandSize + DysymtabLoadCommandSize; } // Compute the total size of the section data, as well as its file size and // vm size. uint64_t SectionDataStart = Header32Size + LoadCommandsSize; uint64_t SectionDataSize = 0; uint64_t SectionDataFileSize = 0; uint64_t VMSize = 0; for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it) { MCSectionData &SD = *it; VMSize = std::max(VMSize, SD.getAddress() + SD.getSize()); if (isVirtualSection(SD.getSection())) continue; SectionDataSize = std::max(SectionDataSize, SD.getAddress() + SD.getSize()); SectionDataFileSize = std::max(SectionDataFileSize, SD.getAddress() + SD.getFileSize()); } // The section data is padded to 4 bytes. // // FIXME: Is this machine dependent? unsigned SectionDataPadding = OffsetToAlignment(SectionDataFileSize, 4); SectionDataFileSize += SectionDataPadding; // Write the prolog, starting with the header and load command... WriteHeader32(NumLoadCommands, LoadCommandsSize, Asm.getSubsectionsViaSymbols()); WriteSegmentLoadCommand32(NumSections, VMSize, SectionDataStart, SectionDataSize); // ... and then the section headers. // // We also compute the section relocations while we do this. Note that // computing relocation info will also update the fixup to have the correct // value; this will overwrite the appropriate data in the fragment when it // is written. std::vector RelocInfos; uint64_t RelocTableEnd = SectionDataStart + SectionDataFileSize; for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it) { MCSectionData &SD = *it; // The assembler writes relocations in the reverse order they were seen. // // FIXME: It is probably more complicated than this. unsigned NumRelocsStart = RelocInfos.size(); for (MCSectionData::reverse_iterator it2 = SD.rbegin(), ie2 = SD.rend(); it2 != ie2; ++it2) if (MCDataFragment *DF = dyn_cast(&*it2)) for (unsigned i = 0, e = DF->fixup_size(); i != e; ++i) ComputeRelocationInfo(Asm, *DF, DF->getFixups()[e - i - 1], SymbolMap, RelocInfos); unsigned NumRelocs = RelocInfos.size() - NumRelocsStart; uint64_t SectionStart = SectionDataStart + SD.getAddress(); WriteSection32(SD, SectionStart, RelocTableEnd, NumRelocs); RelocTableEnd += NumRelocs * RelocationInfoSize; } // Write the symbol table load command, if used. if (NumSymbols) { unsigned FirstLocalSymbol = 0; unsigned NumLocalSymbols = LocalSymbolData.size(); unsigned FirstExternalSymbol = FirstLocalSymbol + NumLocalSymbols; unsigned NumExternalSymbols = ExternalSymbolData.size(); unsigned FirstUndefinedSymbol = FirstExternalSymbol + NumExternalSymbols; unsigned NumUndefinedSymbols = UndefinedSymbolData.size(); unsigned NumIndirectSymbols = Asm.indirect_symbol_size(); unsigned NumSymTabSymbols = NumLocalSymbols + NumExternalSymbols + NumUndefinedSymbols; uint64_t IndirectSymbolSize = NumIndirectSymbols * 4; uint64_t IndirectSymbolOffset = 0; // If used, the indirect symbols are written after the section data. if (NumIndirectSymbols) IndirectSymbolOffset = RelocTableEnd; // The symbol table is written after the indirect symbol data. uint64_t SymbolTableOffset = RelocTableEnd + IndirectSymbolSize; // The string table is written after symbol table. uint64_t StringTableOffset = SymbolTableOffset + NumSymTabSymbols * Nlist32Size; WriteSymtabLoadCommand(SymbolTableOffset, NumSymTabSymbols, StringTableOffset, StringTable.size()); WriteDysymtabLoadCommand(FirstLocalSymbol, NumLocalSymbols, FirstExternalSymbol, NumExternalSymbols, FirstUndefinedSymbol, NumUndefinedSymbols, IndirectSymbolOffset, NumIndirectSymbols); } // Write the actual section data. for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it) WriteFileData(OS, *it, *this); // Write the extra padding. WriteZeros(SectionDataPadding); // Write the relocation entries. for (unsigned i = 0, e = RelocInfos.size(); i != e; ++i) { Write32(RelocInfos[i].Word0); Write32(RelocInfos[i].Word1); } // Write the symbol table data, if used. if (NumSymbols) { // Write the indirect symbol entries. for (MCAssembler::indirect_symbol_iterator it = Asm.indirect_symbol_begin(), ie = Asm.indirect_symbol_end(); it != ie; ++it) { // Indirect symbols in the non lazy symbol pointer section have some // special handling. const MCSectionMachO &Section = static_cast(it->SectionData->getSection()); unsigned Type = Section.getTypeAndAttributes() & MCSectionMachO::SECTION_TYPE; if (Type == MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS) { // If this symbol is defined and internal, mark it as such. if (it->Symbol->isDefined() && !SymbolMap.lookup(it->Symbol)->isExternal()) { uint32_t Flags = ISF_Local; if (it->Symbol->isAbsolute()) Flags |= ISF_Absolute; Write32(Flags); continue; } } Write32(SymbolMap[it->Symbol]->getIndex()); } // FIXME: Check that offsets match computed ones. // Write the symbol table entries. for (unsigned i = 0, e = LocalSymbolData.size(); i != e; ++i) WriteNlist32(LocalSymbolData[i]); for (unsigned i = 0, e = ExternalSymbolData.size(); i != e; ++i) WriteNlist32(ExternalSymbolData[i]); for (unsigned i = 0, e = UndefinedSymbolData.size(); i != e; ++i) WriteNlist32(UndefinedSymbolData[i]); // Write the string table. OS << StringTable.str(); } } void ApplyFixup(const MCAsmFixup &Fixup, MCDataFragment &DF) { unsigned Size = 1 << getFixupKindLog2Size(Fixup.Kind); // FIXME: Endianness assumption. assert(Fixup.Offset + Size <= DF.getContents().size() && "Invalid fixup offset!"); for (unsigned i = 0; i != Size; ++i) DF.getContents()[Fixup.Offset + i] = uint8_t(Fixup.FixedValue >> (i * 8)); } }; /* *** */ MCFragment::MCFragment() : Kind(FragmentType(~0)) { } MCFragment::MCFragment(FragmentType _Kind, MCSectionData *_Parent) : Kind(_Kind), Parent(_Parent), FileSize(~UINT64_C(0)) { if (Parent) Parent->getFragmentList().push_back(this); } MCFragment::~MCFragment() { } uint64_t MCFragment::getAddress() const { assert(getParent() && "Missing Section!"); return getParent()->getAddress() + Offset; } /* *** */ MCSectionData::MCSectionData() : Section(0) {} MCSectionData::MCSectionData(const MCSection &_Section, MCAssembler *A) : Section(&_Section), Alignment(1), Address(~UINT64_C(0)), Size(~UINT64_C(0)), FileSize(~UINT64_C(0)), HasInstructions(false) { if (A) A->getSectionList().push_back(this); } /* *** */ MCSymbolData::MCSymbolData() : Symbol(0) {} MCSymbolData::MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment, uint64_t _Offset, MCAssembler *A) : Symbol(&_Symbol), Fragment(_Fragment), Offset(_Offset), IsExternal(false), IsPrivateExtern(false), CommonSize(0), CommonAlign(0), Flags(0), Index(0) { if (A) A->getSymbolList().push_back(this); } /* *** */ MCAssembler::MCAssembler(MCContext &_Context, raw_ostream &_OS) : Context(_Context), OS(_OS), SubsectionsViaSymbols(false) { } MCAssembler::~MCAssembler() { } void MCAssembler::LayoutSection(MCSectionData &SD) { uint64_t Address = SD.getAddress(); for (MCSectionData::iterator it = SD.begin(), ie = SD.end(); it != ie; ++it) { MCFragment &F = *it; F.setOffset(Address - SD.getAddress()); // Evaluate fragment size. switch (F.getKind()) { case MCFragment::FT_Align: { MCAlignFragment &AF = cast(F); uint64_t Size = OffsetToAlignment(Address, AF.getAlignment()); if (Size > AF.getMaxBytesToEmit()) AF.setFileSize(0); else AF.setFileSize(Size); break; } case MCFragment::FT_Data: case MCFragment::FT_Fill: F.setFileSize(F.getMaxFileSize()); break; case MCFragment::FT_Org: { MCOrgFragment &OF = cast(F); MCValue Target; if (!OF.getOffset().EvaluateAsRelocatable(Target)) llvm_report_error("expected relocatable expression"); if (!Target.isAbsolute()) llvm_unreachable("FIXME: Not yet implemented!"); uint64_t OrgOffset = Target.getConstant(); uint64_t Offset = Address - SD.getAddress(); // FIXME: We need a way to communicate this error. if (OrgOffset < Offset) llvm_report_error("invalid .org offset '" + Twine(OrgOffset) + "' (at offset '" + Twine(Offset) + "'"); F.setFileSize(OrgOffset - Offset); break; } case MCFragment::FT_ZeroFill: { MCZeroFillFragment &ZFF = cast(F); // Align the fragment offset; it is safe to adjust the offset freely since // this is only in virtual sections. uint64_t Aligned = RoundUpToAlignment(Address, ZFF.getAlignment()); F.setOffset(Aligned - SD.getAddress()); // FIXME: This is misnamed. F.setFileSize(ZFF.getSize()); break; } } Address += F.getFileSize(); } // Set the section sizes. SD.setSize(Address - SD.getAddress()); if (isVirtualSection(SD.getSection())) SD.setFileSize(0); else SD.setFileSize(Address - SD.getAddress()); } /// WriteFileData - Write the \arg F data to the output file. static void WriteFileData(raw_ostream &OS, const MCFragment &F, MachObjectWriter &MOW) { uint64_t Start = OS.tell(); (void) Start; ++EmittedFragments; // FIXME: Embed in fragments instead? switch (F.getKind()) { case MCFragment::FT_Align: { MCAlignFragment &AF = cast(F); uint64_t Count = AF.getFileSize() / AF.getValueSize(); // FIXME: This error shouldn't actually occur (the front end should emit // multiple .align directives to enforce the semantics it wants), but is // severe enough that we want to report it. How to handle this? if (Count * AF.getValueSize() != AF.getFileSize()) llvm_report_error("undefined .align directive, value size '" + Twine(AF.getValueSize()) + "' is not a divisor of padding size '" + Twine(AF.getFileSize()) + "'"); for (uint64_t i = 0; i != Count; ++i) { switch (AF.getValueSize()) { default: assert(0 && "Invalid size!"); case 1: MOW.Write8 (uint8_t (AF.getValue())); break; case 2: MOW.Write16(uint16_t(AF.getValue())); break; case 4: MOW.Write32(uint32_t(AF.getValue())); break; case 8: MOW.Write64(uint64_t(AF.getValue())); break; } } break; } case MCFragment::FT_Data: { MCDataFragment &DF = cast(F); // Apply the fixups. // // FIXME: Move elsewhere. for (MCDataFragment::const_fixup_iterator it = DF.fixup_begin(), ie = DF.fixup_end(); it != ie; ++it) MOW.ApplyFixup(*it, DF); OS << cast(F).getContents().str(); break; } case MCFragment::FT_Fill: { MCFillFragment &FF = cast(F); for (uint64_t i = 0, e = FF.getCount(); i != e; ++i) { switch (FF.getValueSize()) { default: assert(0 && "Invalid size!"); case 1: MOW.Write8 (uint8_t (FF.getValue())); break; case 2: MOW.Write16(uint16_t(FF.getValue())); break; case 4: MOW.Write32(uint32_t(FF.getValue())); break; case 8: MOW.Write64(uint64_t(FF.getValue())); break; } } break; } case MCFragment::FT_Org: { MCOrgFragment &OF = cast(F); for (uint64_t i = 0, e = OF.getFileSize(); i != e; ++i) MOW.Write8(uint8_t(OF.getValue())); break; } case MCFragment::FT_ZeroFill: { assert(0 && "Invalid zero fill fragment in concrete section!"); break; } } assert(OS.tell() - Start == F.getFileSize()); } /// WriteFileData - Write the \arg SD data to the output file. static void WriteFileData(raw_ostream &OS, const MCSectionData &SD, MachObjectWriter &MOW) { // Ignore virtual sections. if (isVirtualSection(SD.getSection())) { assert(SD.getFileSize() == 0); return; } uint64_t Start = OS.tell(); (void) Start; for (MCSectionData::const_iterator it = SD.begin(), ie = SD.end(); it != ie; ++it) WriteFileData(OS, *it, MOW); // Add section padding. assert(SD.getFileSize() >= SD.getSize() && "Invalid section sizes!"); MOW.WriteZeros(SD.getFileSize() - SD.getSize()); assert(OS.tell() - Start == SD.getFileSize()); } void MCAssembler::Finish() { DEBUG_WITH_TYPE("mc-dump", { llvm::errs() << "assembler backend - pre-layout\n--\n"; dump(); }); // Layout the concrete sections and fragments. uint64_t Address = 0; MCSectionData *Prev = 0; for (iterator it = begin(), ie = end(); it != ie; ++it) { MCSectionData &SD = *it; // Skip virtual sections. if (isVirtualSection(SD.getSection())) continue; // Align this section if necessary by adding padding bytes to the previous // section. if (uint64_t Pad = OffsetToAlignment(Address, it->getAlignment())) { assert(Prev && "Missing prev section!"); Prev->setFileSize(Prev->getFileSize() + Pad); Address += Pad; } // Layout the section fragments and its size. SD.setAddress(Address); LayoutSection(SD); Address += SD.getFileSize(); Prev = &SD; } // Layout the virtual sections. for (iterator it = begin(), ie = end(); it != ie; ++it) { MCSectionData &SD = *it; if (!isVirtualSection(SD.getSection())) continue; SD.setAddress(Address); LayoutSection(SD); Address += SD.getSize(); } DEBUG_WITH_TYPE("mc-dump", { llvm::errs() << "assembler backend - post-layout\n--\n"; dump(); }); // Write the object file. MachObjectWriter MOW(OS); MOW.WriteObject(*this); OS.flush(); } // Debugging methods namespace llvm { raw_ostream &operator<<(raw_ostream &OS, const MCAsmFixup &AF) { OS << ""; return OS; } } void MCFragment::dump() { raw_ostream &OS = llvm::errs(); OS << ""; } void MCAlignFragment::dump() { raw_ostream &OS = llvm::errs(); OS << "MCFragment::dump(); OS << "\n "; OS << " Alignment:" << getAlignment() << " Value:" << getValue() << " ValueSize:" << getValueSize() << " MaxBytesToEmit:" << getMaxBytesToEmit() << ">"; } void MCDataFragment::dump() { raw_ostream &OS = llvm::errs(); OS << "MCFragment::dump(); OS << "\n "; OS << " Contents:["; for (unsigned i = 0, e = getContents().size(); i != e; ++i) { if (i) OS << ","; OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF); } OS << "] (" << getContents().size() << " bytes)"; if (!getFixups().empty()) { OS << ",\n "; OS << " Fixups:["; for (fixup_iterator it = fixup_begin(), ie = fixup_end(); it != ie; ++it) { if (it != fixup_begin()) OS << ",\n "; OS << *it; } OS << "]"; } OS << ">"; } void MCFillFragment::dump() { raw_ostream &OS = llvm::errs(); OS << "MCFragment::dump(); OS << "\n "; OS << " Value:" << getValue() << " ValueSize:" << getValueSize() << " Count:" << getCount() << ">"; } void MCOrgFragment::dump() { raw_ostream &OS = llvm::errs(); OS << "MCFragment::dump(); OS << "\n "; OS << " Offset:" << getOffset() << " Value:" << getValue() << ">"; } void MCZeroFillFragment::dump() { raw_ostream &OS = llvm::errs(); OS << "MCFragment::dump(); OS << "\n "; OS << " Size:" << getSize() << " Alignment:" << getAlignment() << ">"; } void MCSectionData::dump() { raw_ostream &OS = llvm::errs(); OS << "dump(); } OS << "]>"; } void MCSymbolData::dump() { raw_ostream &OS = llvm::errs(); OS << ""; } void MCAssembler::dump() { raw_ostream &OS = llvm::errs(); OS << "dump(); } OS << "],\n"; OS << " Symbols:["; for (symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) { if (it != symbol_begin()) OS << ",\n "; it->dump(); } OS << "]>\n"; }