//===- COFFObjectFile.cpp - COFF object file implementation -----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file declares the COFFObjectFile class. // //===----------------------------------------------------------------------===// #include "llvm/Object/COFF.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/Triple.h" #include "llvm/Support/COFF.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include #include using namespace llvm; using namespace object; using support::ulittle16_t; using support::ulittle32_t; using support::ulittle64_t; using support::little16_t; // Returns false if size is greater than the buffer size. And sets ec. static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) { if (M.getBufferSize() < Size) { EC = object_error::unexpected_eof; return false; } return true; } static std::error_code checkOffset(MemoryBufferRef M, uintptr_t Addr, const uint64_t Size) { if (Addr + Size < Addr || Addr + Size < Size || Addr + Size > uintptr_t(M.getBufferEnd()) || Addr < uintptr_t(M.getBufferStart())) { return object_error::unexpected_eof; } return object_error::success; } // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m. // Returns unexpected_eof if error. template static std::error_code getObject(const T *&Obj, MemoryBufferRef M, const void *Ptr, const uint64_t Size = sizeof(T)) { uintptr_t Addr = uintptr_t(Ptr); if (std::error_code EC = checkOffset(M, Addr, Size)) return EC; Obj = reinterpret_cast(Addr); return object_error::success; } // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without // prefixed slashes. static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) { assert(Str.size() <= 6 && "String too long, possible overflow."); if (Str.size() > 6) return true; uint64_t Value = 0; while (!Str.empty()) { unsigned CharVal; if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25 CharVal = Str[0] - 'A'; else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51 CharVal = Str[0] - 'a' + 26; else if (Str[0] >= '0' && Str[0] <= '9') // 52..61 CharVal = Str[0] - '0' + 52; else if (Str[0] == '+') // 62 CharVal = 62; else if (Str[0] == '/') // 63 CharVal = 63; else return true; Value = (Value * 64) + CharVal; Str = Str.substr(1); } if (Value > std::numeric_limits::max()) return true; Result = static_cast(Value); return false; } template const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const { const coff_symbol_type *Addr = reinterpret_cast(Ref.p); assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr))); #ifndef NDEBUG // Verify that the symbol points to a valid entry in the symbol table. uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base()); assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 && "Symbol did not point to the beginning of a symbol"); #endif return Addr; } const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const { const coff_section *Addr = reinterpret_cast(Ref.p); # ifndef NDEBUG // Verify that the section points to a valid entry in the section table. if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections())) report_fatal_error("Section was outside of section table."); uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable); assert(Offset % sizeof(coff_section) == 0 && "Section did not point to the beginning of a section"); # endif return Addr; } void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const { auto End = reinterpret_cast(StringTable); if (SymbolTable16) { const coff_symbol16 *Symb = toSymb(Ref); Symb += 1 + Symb->NumberOfAuxSymbols; Ref.p = std::min(reinterpret_cast(Symb), End); } else if (SymbolTable32) { const coff_symbol32 *Symb = toSymb(Ref); Symb += 1 + Symb->NumberOfAuxSymbols; Ref.p = std::min(reinterpret_cast(Symb), End); } else { llvm_unreachable("no symbol table pointer!"); } } std::error_code COFFObjectFile::getSymbolName(DataRefImpl Ref, StringRef &Result) const { COFFSymbolRef Symb = getCOFFSymbol(Ref); return getSymbolName(Symb, Result); } std::error_code COFFObjectFile::getSymbolAddress(DataRefImpl Ref, uint64_t &Result) const { COFFSymbolRef Symb = getCOFFSymbol(Ref); if (Symb.isAnyUndefined()) { Result = UnknownAddressOrSize; return object_error::success; } if (Symb.isCommon()) { Result = UnknownAddressOrSize; return object_error::success; } int32_t SectionNumber = Symb.getSectionNumber(); if (!COFF::isReservedSectionNumber(SectionNumber)) { const coff_section *Section = nullptr; if (std::error_code EC = getSection(SectionNumber, Section)) return EC; Result = Section->VirtualAddress + Symb.getValue(); return object_error::success; } Result = Symb.getValue(); return object_error::success; } std::error_code COFFObjectFile::getSymbolType(DataRefImpl Ref, SymbolRef::Type &Result) const { COFFSymbolRef Symb = getCOFFSymbol(Ref); int32_t SectionNumber = Symb.getSectionNumber(); Result = SymbolRef::ST_Other; if (Symb.isAnyUndefined()) { Result = SymbolRef::ST_Unknown; } else if (Symb.isFunctionDefinition()) { Result = SymbolRef::ST_Function; } else if (Symb.isCommon()) { Result = SymbolRef::ST_Data; } else if (Symb.isFileRecord()) { Result = SymbolRef::ST_File; } else if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition()) { // TODO: perhaps we need a new symbol type ST_Section. Result = SymbolRef::ST_Debug; } else if (!COFF::isReservedSectionNumber(SectionNumber)) { const coff_section *Section = nullptr; if (std::error_code EC = getSection(SectionNumber, Section)) return EC; uint32_t Characteristics = Section->Characteristics; if (Characteristics & COFF::IMAGE_SCN_CNT_CODE) Result = SymbolRef::ST_Function; else if (Characteristics & (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA)) Result = SymbolRef::ST_Data; } return object_error::success; } uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const { COFFSymbolRef Symb = getCOFFSymbol(Ref); uint32_t Result = SymbolRef::SF_None; if (Symb.isExternal() || Symb.isWeakExternal()) Result |= SymbolRef::SF_Global; if (Symb.isWeakExternal()) Result |= SymbolRef::SF_Weak; if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE) Result |= SymbolRef::SF_Absolute; if (Symb.isFileRecord()) Result |= SymbolRef::SF_FormatSpecific; if (Symb.isSectionDefinition()) Result |= SymbolRef::SF_FormatSpecific; if (Symb.isCommon()) Result |= SymbolRef::SF_Common; if (Symb.isAnyUndefined()) Result |= SymbolRef::SF_Undefined; return Result; } std::error_code COFFObjectFile::getSymbolSize(DataRefImpl Ref, uint64_t &Result) const { COFFSymbolRef Symb = getCOFFSymbol(Ref); if (Symb.isAnyUndefined()) { Result = UnknownAddressOrSize; return object_error::success; } if (Symb.isCommon()) { Result = Symb.getValue(); return object_error::success; } // Let's attempt to get the size of the symbol by looking at the address of // the symbol after the symbol in question. uint64_t SymbAddr; if (std::error_code EC = getSymbolAddress(Ref, SymbAddr)) return EC; int32_t SectionNumber = Symb.getSectionNumber(); if (COFF::isReservedSectionNumber(SectionNumber)) { // Absolute and debug symbols aren't sorted in any interesting way. Result = 0; return object_error::success; } const section_iterator SecEnd = section_end(); uint64_t AfterAddr = UnknownAddressOrSize; for (const symbol_iterator &SymbI : symbols()) { section_iterator SecI = SecEnd; if (std::error_code EC = SymbI->getSection(SecI)) return EC; // Check the symbol's section, skip it if it's in the wrong section. // First, make sure it is in any section. if (SecI == SecEnd) continue; // Second, make sure it is in the same section as the symbol in question. if (!sectionContainsSymbol(SecI->getRawDataRefImpl(), Ref)) continue; uint64_t Addr; if (std::error_code EC = SymbI->getAddress(Addr)) return EC; // We want to compare our symbol in question with the closest possible // symbol that comes after. if (AfterAddr > Addr && Addr > SymbAddr) AfterAddr = Addr; } if (AfterAddr == UnknownAddressOrSize) { // No symbol comes after this one, assume that everything after our symbol // is part of it. const coff_section *Section = nullptr; if (std::error_code EC = getSection(SectionNumber, Section)) return EC; Result = Section->SizeOfRawData - Symb.getValue(); } else { // Take the difference between our symbol and the symbol that comes after // our symbol. Result = AfterAddr - SymbAddr; } return object_error::success; } std::error_code COFFObjectFile::getSymbolSection(DataRefImpl Ref, section_iterator &Result) const { COFFSymbolRef Symb = getCOFFSymbol(Ref); if (COFF::isReservedSectionNumber(Symb.getSectionNumber())) { Result = section_end(); } else { const coff_section *Sec = nullptr; if (std::error_code EC = getSection(Symb.getSectionNumber(), Sec)) return EC; DataRefImpl Ref; Ref.p = reinterpret_cast(Sec); Result = section_iterator(SectionRef(Ref, this)); } return object_error::success; } void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const { const coff_section *Sec = toSec(Ref); Sec += 1; Ref.p = reinterpret_cast(Sec); } std::error_code COFFObjectFile::getSectionName(DataRefImpl Ref, StringRef &Result) const { const coff_section *Sec = toSec(Ref); return getSectionName(Sec, Result); } uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const { const coff_section *Sec = toSec(Ref); return Sec->VirtualAddress; } uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const { return getSectionSize(toSec(Ref)); } std::error_code COFFObjectFile::getSectionContents(DataRefImpl Ref, StringRef &Result) const { const coff_section *Sec = toSec(Ref); ArrayRef Res; std::error_code EC = getSectionContents(Sec, Res); Result = StringRef(reinterpret_cast(Res.data()), Res.size()); return EC; } uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const { const coff_section *Sec = toSec(Ref); return uint64_t(1) << (((Sec->Characteristics & 0x00F00000) >> 20) - 1); } bool COFFObjectFile::isSectionText(DataRefImpl Ref) const { const coff_section *Sec = toSec(Ref); return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE; } bool COFFObjectFile::isSectionData(DataRefImpl Ref) const { const coff_section *Sec = toSec(Ref); return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA; } bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const { const coff_section *Sec = toSec(Ref); const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | COFF::IMAGE_SCN_MEM_WRITE; return (Sec->Characteristics & BssFlags) == BssFlags; } bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const { const coff_section *Sec = toSec(Ref); // In COFF, a virtual section won't have any in-file // content, so the file pointer to the content will be zero. return Sec->PointerToRawData == 0; } bool COFFObjectFile::sectionContainsSymbol(DataRefImpl SecRef, DataRefImpl SymbRef) const { const coff_section *Sec = toSec(SecRef); COFFSymbolRef Symb = getCOFFSymbol(SymbRef); int32_t SecNumber = (Sec - SectionTable) + 1; return SecNumber == Symb.getSectionNumber(); } static uint32_t getNumberOfRelocations(const coff_section *Sec, MemoryBufferRef M, const uint8_t *base) { // The field for the number of relocations in COFF section table is only // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to // NumberOfRelocations field, and the actual relocation count is stored in the // VirtualAddress field in the first relocation entry. if (Sec->hasExtendedRelocations()) { const coff_relocation *FirstReloc; if (getObject(FirstReloc, M, reinterpret_cast( base + Sec->PointerToRelocations))) return 0; // -1 to exclude this first relocation entry. return FirstReloc->VirtualAddress - 1; } return Sec->NumberOfRelocations; } static const coff_relocation * getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) { uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base); if (!NumRelocs) return nullptr; auto begin = reinterpret_cast( Base + Sec->PointerToRelocations); if (Sec->hasExtendedRelocations()) { // Skip the first relocation entry repurposed to store the number of // relocations. begin++; } if (checkOffset(M, uintptr_t(begin), sizeof(coff_relocation) * NumRelocs)) return nullptr; return begin; } relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const { const coff_section *Sec = toSec(Ref); const coff_relocation *begin = getFirstReloc(Sec, Data, base()); DataRefImpl Ret; Ret.p = reinterpret_cast(begin); return relocation_iterator(RelocationRef(Ret, this)); } relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const { const coff_section *Sec = toSec(Ref); const coff_relocation *I = getFirstReloc(Sec, Data, base()); if (I) I += getNumberOfRelocations(Sec, Data, base()); DataRefImpl Ret; Ret.p = reinterpret_cast(I); return relocation_iterator(RelocationRef(Ret, this)); } // Initialize the pointer to the symbol table. std::error_code COFFObjectFile::initSymbolTablePtr() { if (COFFHeader) if (std::error_code EC = getObject( SymbolTable16, Data, base() + getPointerToSymbolTable(), (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) return EC; if (COFFBigObjHeader) if (std::error_code EC = getObject( SymbolTable32, Data, base() + getPointerToSymbolTable(), (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) return EC; // Find string table. The first four byte of the string table contains the // total size of the string table, including the size field itself. If the // string table is empty, the value of the first four byte would be 4. uint32_t StringTableOffset = getPointerToSymbolTable() + getNumberOfSymbols() * getSymbolTableEntrySize(); const uint8_t *StringTableAddr = base() + StringTableOffset; const ulittle32_t *StringTableSizePtr; if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr)) return EC; StringTableSize = *StringTableSizePtr; if (std::error_code EC = getObject(StringTable, Data, StringTableAddr, StringTableSize)) return EC; // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some // tools like cvtres write a size of 0 for an empty table instead of 4. if (StringTableSize < 4) StringTableSize = 4; // Check that the string table is null terminated if has any in it. if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0) return object_error::parse_failed; return object_error::success; } // Returns the file offset for the given VA. std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const { uint64_t ImageBase = PE32Header ? (uint64_t)PE32Header->ImageBase : (uint64_t)PE32PlusHeader->ImageBase; uint64_t Rva = Addr - ImageBase; assert(Rva <= UINT32_MAX); return getRvaPtr((uint32_t)Rva, Res); } // Returns the file offset for the given RVA. std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const { for (const SectionRef &S : sections()) { const coff_section *Section = getCOFFSection(S); uint32_t SectionStart = Section->VirtualAddress; uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize; if (SectionStart <= Addr && Addr < SectionEnd) { uint32_t Offset = Addr - SectionStart; Res = uintptr_t(base()) + Section->PointerToRawData + Offset; return object_error::success; } } return object_error::parse_failed; } // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name // table entry. std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint, StringRef &Name) const { uintptr_t IntPtr = 0; if (std::error_code EC = getRvaPtr(Rva, IntPtr)) return EC; const uint8_t *Ptr = reinterpret_cast(IntPtr); Hint = *reinterpret_cast(Ptr); Name = StringRef(reinterpret_cast(Ptr + 2)); return object_error::success; } // Find the import table. std::error_code COFFObjectFile::initImportTablePtr() { // First, we get the RVA of the import table. If the file lacks a pointer to // the import table, do nothing. const data_directory *DataEntry; if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry)) return object_error::success; // Do nothing if the pointer to import table is NULL. if (DataEntry->RelativeVirtualAddress == 0) return object_error::success; uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress; // -1 because the last entry is the null entry. NumberOfImportDirectory = DataEntry->Size / sizeof(import_directory_table_entry) - 1; // Find the section that contains the RVA. This is needed because the RVA is // the import table's memory address which is different from its file offset. uintptr_t IntPtr = 0; if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr)) return EC; ImportDirectory = reinterpret_cast< const import_directory_table_entry *>(IntPtr); return object_error::success; } // Initializes DelayImportDirectory and NumberOfDelayImportDirectory. std::error_code COFFObjectFile::initDelayImportTablePtr() { const data_directory *DataEntry; if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry)) return object_error::success; if (DataEntry->RelativeVirtualAddress == 0) return object_error::success; uint32_t RVA = DataEntry->RelativeVirtualAddress; NumberOfDelayImportDirectory = DataEntry->Size / sizeof(delay_import_directory_table_entry) - 1; uintptr_t IntPtr = 0; if (std::error_code EC = getRvaPtr(RVA, IntPtr)) return EC; DelayImportDirectory = reinterpret_cast< const delay_import_directory_table_entry *>(IntPtr); return object_error::success; } // Find the export table. std::error_code COFFObjectFile::initExportTablePtr() { // First, we get the RVA of the export table. If the file lacks a pointer to // the export table, do nothing. const data_directory *DataEntry; if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry)) return object_error::success; // Do nothing if the pointer to export table is NULL. if (DataEntry->RelativeVirtualAddress == 0) return object_error::success; uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress; uintptr_t IntPtr = 0; if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr)) return EC; ExportDirectory = reinterpret_cast(IntPtr); return object_error::success; } std::error_code COFFObjectFile::initBaseRelocPtr() { const data_directory *DataEntry; if (getDataDirectory(COFF::BASE_RELOCATION_TABLE, DataEntry)) return object_error::success; if (DataEntry->RelativeVirtualAddress == 0) return object_error::success; uintptr_t IntPtr = 0; if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) return EC; BaseRelocHeader = reinterpret_cast( IntPtr); BaseRelocEnd = reinterpret_cast( IntPtr + DataEntry->Size); return object_error::success; } COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC) : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr), COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr), DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr), SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0), ImportDirectory(nullptr), NumberOfImportDirectory(0), DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0), ExportDirectory(nullptr), BaseRelocHeader(nullptr), BaseRelocEnd(nullptr) { // Check that we at least have enough room for a header. if (!checkSize(Data, EC, sizeof(coff_file_header))) return; // The current location in the file where we are looking at. uint64_t CurPtr = 0; // PE header is optional and is present only in executables. If it exists, // it is placed right after COFF header. bool HasPEHeader = false; // Check if this is a PE/COFF file. if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) { // PE/COFF, seek through MS-DOS compatibility stub and 4-byte // PE signature to find 'normal' COFF header. const auto *DH = reinterpret_cast(base()); if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') { CurPtr = DH->AddressOfNewExeHeader; // Check the PE magic bytes. ("PE\0\0") if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) { EC = object_error::parse_failed; return; } CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes. HasPEHeader = true; } } if ((EC = getObject(COFFHeader, Data, base() + CurPtr))) return; // It might be a bigobj file, let's check. Note that COFF bigobj and COFF // import libraries share a common prefix but bigobj is more restrictive. if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN && COFFHeader->NumberOfSections == uint16_t(0xffff) && checkSize(Data, EC, sizeof(coff_bigobj_file_header))) { if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr))) return; // Verify that we are dealing with bigobj. if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion && std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic, sizeof(COFF::BigObjMagic)) == 0) { COFFHeader = nullptr; CurPtr += sizeof(coff_bigobj_file_header); } else { // It's not a bigobj. COFFBigObjHeader = nullptr; } } if (COFFHeader) { // The prior checkSize call may have failed. This isn't a hard error // because we were just trying to sniff out bigobj. EC = object_error::success; CurPtr += sizeof(coff_file_header); if (COFFHeader->isImportLibrary()) return; } if (HasPEHeader) { const pe32_header *Header; if ((EC = getObject(Header, Data, base() + CurPtr))) return; const uint8_t *DataDirAddr; uint64_t DataDirSize; if (Header->Magic == COFF::PE32Header::PE32) { PE32Header = Header; DataDirAddr = base() + CurPtr + sizeof(pe32_header); DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize; } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) { PE32PlusHeader = reinterpret_cast(Header); DataDirAddr = base() + CurPtr + sizeof(pe32plus_header); DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize; } else { // It's neither PE32 nor PE32+. EC = object_error::parse_failed; return; } if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize))) return; CurPtr += COFFHeader->SizeOfOptionalHeader; } if ((EC = getObject(SectionTable, Data, base() + CurPtr, (uint64_t)getNumberOfSections() * sizeof(coff_section)))) return; // Initialize the pointer to the symbol table. if (getPointerToSymbolTable() != 0) { if ((EC = initSymbolTablePtr())) return; } else { // We had better not have any symbols if we don't have a symbol table. if (getNumberOfSymbols() != 0) { EC = object_error::parse_failed; return; } } // Initialize the pointer to the beginning of the import table. if ((EC = initImportTablePtr())) return; if ((EC = initDelayImportTablePtr())) return; // Initialize the pointer to the export table. if ((EC = initExportTablePtr())) return; // Initialize the pointer to the base relocation table. if ((EC = initBaseRelocPtr())) return; EC = object_error::success; } basic_symbol_iterator COFFObjectFile::symbol_begin_impl() const { DataRefImpl Ret; Ret.p = getSymbolTable(); return basic_symbol_iterator(SymbolRef(Ret, this)); } basic_symbol_iterator COFFObjectFile::symbol_end_impl() const { // The symbol table ends where the string table begins. DataRefImpl Ret; Ret.p = reinterpret_cast(StringTable); return basic_symbol_iterator(SymbolRef(Ret, this)); } import_directory_iterator COFFObjectFile::import_directory_begin() const { return import_directory_iterator( ImportDirectoryEntryRef(ImportDirectory, 0, this)); } import_directory_iterator COFFObjectFile::import_directory_end() const { return import_directory_iterator( ImportDirectoryEntryRef(ImportDirectory, NumberOfImportDirectory, this)); } delay_import_directory_iterator COFFObjectFile::delay_import_directory_begin() const { return delay_import_directory_iterator( DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this)); } delay_import_directory_iterator COFFObjectFile::delay_import_directory_end() const { return delay_import_directory_iterator( DelayImportDirectoryEntryRef( DelayImportDirectory, NumberOfDelayImportDirectory, this)); } export_directory_iterator COFFObjectFile::export_directory_begin() const { return export_directory_iterator( ExportDirectoryEntryRef(ExportDirectory, 0, this)); } export_directory_iterator COFFObjectFile::export_directory_end() const { if (!ExportDirectory) return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this)); ExportDirectoryEntryRef Ref(ExportDirectory, ExportDirectory->AddressTableEntries, this); return export_directory_iterator(Ref); } section_iterator COFFObjectFile::section_begin() const { DataRefImpl Ret; Ret.p = reinterpret_cast(SectionTable); return section_iterator(SectionRef(Ret, this)); } section_iterator COFFObjectFile::section_end() const { DataRefImpl Ret; int NumSections = COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections(); Ret.p = reinterpret_cast(SectionTable + NumSections); return section_iterator(SectionRef(Ret, this)); } base_reloc_iterator COFFObjectFile::base_reloc_begin() const { return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this)); } base_reloc_iterator COFFObjectFile::base_reloc_end() const { return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this)); } uint8_t COFFObjectFile::getBytesInAddress() const { return getArch() == Triple::x86_64 ? 8 : 4; } StringRef COFFObjectFile::getFileFormatName() const { switch(getMachine()) { case COFF::IMAGE_FILE_MACHINE_I386: return "COFF-i386"; case COFF::IMAGE_FILE_MACHINE_AMD64: return "COFF-x86-64"; case COFF::IMAGE_FILE_MACHINE_ARMNT: return "COFF-ARM"; default: return "COFF-"; } } unsigned COFFObjectFile::getArch() const { switch (getMachine()) { case COFF::IMAGE_FILE_MACHINE_I386: return Triple::x86; case COFF::IMAGE_FILE_MACHINE_AMD64: return Triple::x86_64; case COFF::IMAGE_FILE_MACHINE_ARMNT: return Triple::thumb; default: return Triple::UnknownArch; } } iterator_range COFFObjectFile::import_directories() const { return make_range(import_directory_begin(), import_directory_end()); } iterator_range COFFObjectFile::delay_import_directories() const { return make_range(delay_import_directory_begin(), delay_import_directory_end()); } iterator_range COFFObjectFile::export_directories() const { return make_range(export_directory_begin(), export_directory_end()); } iterator_range COFFObjectFile::base_relocs() const { return make_range(base_reloc_begin(), base_reloc_end()); } std::error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const { Res = PE32Header; return object_error::success; } std::error_code COFFObjectFile::getPE32PlusHeader(const pe32plus_header *&Res) const { Res = PE32PlusHeader; return object_error::success; } std::error_code COFFObjectFile::getDataDirectory(uint32_t Index, const data_directory *&Res) const { // Error if if there's no data directory or the index is out of range. if (!DataDirectory) { Res = nullptr; return object_error::parse_failed; } assert(PE32Header || PE32PlusHeader); uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize : PE32PlusHeader->NumberOfRvaAndSize; if (Index >= NumEnt) { Res = nullptr; return object_error::parse_failed; } Res = &DataDirectory[Index]; return object_error::success; } std::error_code COFFObjectFile::getSection(int32_t Index, const coff_section *&Result) const { Result = nullptr; if (COFF::isReservedSectionNumber(Index)) return object_error::success; if (static_cast(Index) <= getNumberOfSections()) { // We already verified the section table data, so no need to check again. Result = SectionTable + (Index - 1); return object_error::success; } return object_error::parse_failed; } std::error_code COFFObjectFile::getString(uint32_t Offset, StringRef &Result) const { if (StringTableSize <= 4) // Tried to get a string from an empty string table. return object_error::parse_failed; if (Offset >= StringTableSize) return object_error::unexpected_eof; Result = StringRef(StringTable + Offset); return object_error::success; } std::error_code COFFObjectFile::getSymbolName(COFFSymbolRef Symbol, StringRef &Res) const { // Check for string table entry. First 4 bytes are 0. if (Symbol.getStringTableOffset().Zeroes == 0) { uint32_t Offset = Symbol.getStringTableOffset().Offset; if (std::error_code EC = getString(Offset, Res)) return EC; return object_error::success; } if (Symbol.getShortName()[COFF::NameSize - 1] == 0) // Null terminated, let ::strlen figure out the length. Res = StringRef(Symbol.getShortName()); else // Not null terminated, use all 8 bytes. Res = StringRef(Symbol.getShortName(), COFF::NameSize); return object_error::success; } ArrayRef COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const { const uint8_t *Aux = nullptr; size_t SymbolSize = getSymbolTableEntrySize(); if (Symbol.getNumberOfAuxSymbols() > 0) { // AUX data comes immediately after the symbol in COFF Aux = reinterpret_cast(Symbol.getRawPtr()) + SymbolSize; # ifndef NDEBUG // Verify that the Aux symbol points to a valid entry in the symbol table. uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base()); if (Offset < getPointerToSymbolTable() || Offset >= getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize)) report_fatal_error("Aux Symbol data was outside of symbol table."); assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 && "Aux Symbol data did not point to the beginning of a symbol"); # endif } return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize); } std::error_code COFFObjectFile::getSectionName(const coff_section *Sec, StringRef &Res) const { StringRef Name; if (Sec->Name[COFF::NameSize - 1] == 0) // Null terminated, let ::strlen figure out the length. Name = Sec->Name; else // Not null terminated, use all 8 bytes. Name = StringRef(Sec->Name, COFF::NameSize); // Check for string table entry. First byte is '/'. if (Name.startswith("/")) { uint32_t Offset; if (Name.startswith("//")) { if (decodeBase64StringEntry(Name.substr(2), Offset)) return object_error::parse_failed; } else { if (Name.substr(1).getAsInteger(10, Offset)) return object_error::parse_failed; } if (std::error_code EC = getString(Offset, Name)) return EC; } Res = Name; return object_error::success; } uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const { // SizeOfRawData and VirtualSize change what they represent depending on // whether or not we have an executable image. // // For object files, SizeOfRawData contains the size of section's data; // VirtualSize is always zero. // // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the // actual section size is in VirtualSize. It is possible for VirtualSize to // be greater than SizeOfRawData; the contents past that point should be // considered to be zero. uint32_t SectionSize; if (Sec->VirtualSize) SectionSize = std::min(Sec->VirtualSize, Sec->SizeOfRawData); else SectionSize = Sec->SizeOfRawData; return SectionSize; } std::error_code COFFObjectFile::getSectionContents(const coff_section *Sec, ArrayRef &Res) const { // PointerToRawData and SizeOfRawData won't make sense for BSS sections, // don't do anything interesting for them. assert((Sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA) == 0 && "BSS sections don't have contents!"); // The only thing that we need to verify is that the contents is contained // within the file bounds. We don't need to make sure it doesn't cover other // data, as there's nothing that says that is not allowed. uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData; uint32_t SectionSize = getSectionSize(Sec); if (checkOffset(Data, ConStart, SectionSize)) return object_error::parse_failed; Res = makeArrayRef(reinterpret_cast(ConStart), SectionSize); return object_error::success; } const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const { return reinterpret_cast(Rel.p); } void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const { Rel.p = reinterpret_cast( reinterpret_cast(Rel.p) + 1); } std::error_code COFFObjectFile::getRelocationAddress(DataRefImpl Rel, uint64_t &Res) const { report_fatal_error("getRelocationAddress not implemented in COFFObjectFile"); } std::error_code COFFObjectFile::getRelocationOffset(DataRefImpl Rel, uint64_t &Res) const { const coff_relocation *R = toRel(Rel); const support::ulittle32_t *VirtualAddressPtr; if (std::error_code EC = getObject(VirtualAddressPtr, Data, &R->VirtualAddress)) return EC; Res = *VirtualAddressPtr; return object_error::success; } symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const { const coff_relocation *R = toRel(Rel); DataRefImpl Ref; if (R->SymbolTableIndex >= getNumberOfSymbols()) return symbol_end(); if (SymbolTable16) Ref.p = reinterpret_cast(SymbolTable16 + R->SymbolTableIndex); else if (SymbolTable32) Ref.p = reinterpret_cast(SymbolTable32 + R->SymbolTableIndex); else llvm_unreachable("no symbol table pointer!"); return symbol_iterator(SymbolRef(Ref, this)); } std::error_code COFFObjectFile::getRelocationType(DataRefImpl Rel, uint64_t &Res) const { const coff_relocation* R = toRel(Rel); Res = R->Type; return object_error::success; } const coff_section * COFFObjectFile::getCOFFSection(const SectionRef &Section) const { return toSec(Section.getRawDataRefImpl()); } COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const { if (SymbolTable16) return toSymb(Ref); if (SymbolTable32) return toSymb(Ref); llvm_unreachable("no symbol table pointer!"); } COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const { return getCOFFSymbol(Symbol.getRawDataRefImpl()); } const coff_relocation * COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const { return toRel(Reloc.getRawDataRefImpl()); } #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \ case COFF::reloc_type: \ Res = #reloc_type; \ break; std::error_code COFFObjectFile::getRelocationTypeName(DataRefImpl Rel, SmallVectorImpl &Result) const { const coff_relocation *Reloc = toRel(Rel); StringRef Res; switch (getMachine()) { case COFF::IMAGE_FILE_MACHINE_AMD64: switch (Reloc->Type) { LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32); default: Res = "Unknown"; } break; case COFF::IMAGE_FILE_MACHINE_ARMNT: switch (Reloc->Type) { LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T); default: Res = "Unknown"; } break; case COFF::IMAGE_FILE_MACHINE_I386: switch (Reloc->Type) { LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32); default: Res = "Unknown"; } break; default: Res = "Unknown"; } Result.append(Res.begin(), Res.end()); return object_error::success; } #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME std::error_code COFFObjectFile::getRelocationValueString(DataRefImpl Rel, SmallVectorImpl &Result) const { const coff_relocation *Reloc = toRel(Rel); DataRefImpl Sym; ErrorOr Symb = getSymbol(Reloc->SymbolTableIndex); if (std::error_code EC = Symb.getError()) return EC; Sym.p = reinterpret_cast(Symb->getRawPtr()); StringRef SymName; if (std::error_code EC = getSymbolName(Sym, SymName)) return EC; Result.append(SymName.begin(), SymName.end()); return object_error::success; } bool COFFObjectFile::isRelocatableObject() const { return !DataDirectory; } bool ImportDirectoryEntryRef:: operator==(const ImportDirectoryEntryRef &Other) const { return ImportTable == Other.ImportTable && Index == Other.Index; } void ImportDirectoryEntryRef::moveNext() { ++Index; } std::error_code ImportDirectoryEntryRef::getImportTableEntry( const import_directory_table_entry *&Result) const { Result = ImportTable + Index; return object_error::success; } static imported_symbol_iterator makeImportedSymbolIterator(const COFFObjectFile *Object, uintptr_t Ptr, int Index) { if (Object->getBytesInAddress() == 4) { auto *P = reinterpret_cast(Ptr); return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); } auto *P = reinterpret_cast(Ptr); return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); } static imported_symbol_iterator importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) { uintptr_t IntPtr = 0; Object->getRvaPtr(RVA, IntPtr); return makeImportedSymbolIterator(Object, IntPtr, 0); } static imported_symbol_iterator importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) { uintptr_t IntPtr = 0; Object->getRvaPtr(RVA, IntPtr); // Forward the pointer to the last entry which is null. int Index = 0; if (Object->getBytesInAddress() == 4) { auto *Entry = reinterpret_cast(IntPtr); while (*Entry++) ++Index; } else { auto *Entry = reinterpret_cast(IntPtr); while (*Entry++) ++Index; } return makeImportedSymbolIterator(Object, IntPtr, Index); } imported_symbol_iterator ImportDirectoryEntryRef::imported_symbol_begin() const { return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA, OwningObject); } imported_symbol_iterator ImportDirectoryEntryRef::imported_symbol_end() const { return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA, OwningObject); } iterator_range ImportDirectoryEntryRef::imported_symbols() const { return make_range(imported_symbol_begin(), imported_symbol_end()); } std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const { uintptr_t IntPtr = 0; if (std::error_code EC = OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr)) return EC; Result = StringRef(reinterpret_cast(IntPtr)); return object_error::success; } std::error_code ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const { Result = ImportTable[Index].ImportLookupTableRVA; return object_error::success; } std::error_code ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const { Result = ImportTable[Index].ImportAddressTableRVA; return object_error::success; } std::error_code ImportDirectoryEntryRef::getImportLookupEntry( const import_lookup_table_entry32 *&Result) const { uintptr_t IntPtr = 0; uint32_t RVA = ImportTable[Index].ImportLookupTableRVA; if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) return EC; Result = reinterpret_cast(IntPtr); return object_error::success; } bool DelayImportDirectoryEntryRef:: operator==(const DelayImportDirectoryEntryRef &Other) const { return Table == Other.Table && Index == Other.Index; } void DelayImportDirectoryEntryRef::moveNext() { ++Index; } imported_symbol_iterator DelayImportDirectoryEntryRef::imported_symbol_begin() const { return importedSymbolBegin(Table[Index].DelayImportNameTable, OwningObject); } imported_symbol_iterator DelayImportDirectoryEntryRef::imported_symbol_end() const { return importedSymbolEnd(Table[Index].DelayImportNameTable, OwningObject); } iterator_range DelayImportDirectoryEntryRef::imported_symbols() const { return make_range(imported_symbol_begin(), imported_symbol_end()); } std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const { uintptr_t IntPtr = 0; if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr)) return EC; Result = StringRef(reinterpret_cast(IntPtr)); return object_error::success; } std::error_code DelayImportDirectoryEntryRef:: getDelayImportTable(const delay_import_directory_table_entry *&Result) const { Result = Table; return object_error::success; } std::error_code DelayImportDirectoryEntryRef:: getImportAddress(int AddrIndex, uint64_t &Result) const { uint32_t RVA = Table[Index].DelayImportAddressTable + AddrIndex * (OwningObject->is64() ? 8 : 4); uintptr_t IntPtr = 0; if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) return EC; if (OwningObject->is64()) Result = *reinterpret_cast(IntPtr); else Result = *reinterpret_cast(IntPtr); return object_error::success; } bool ExportDirectoryEntryRef:: operator==(const ExportDirectoryEntryRef &Other) const { return ExportTable == Other.ExportTable && Index == Other.Index; } void ExportDirectoryEntryRef::moveNext() { ++Index; } // Returns the name of the current export symbol. If the symbol is exported only // by ordinal, the empty string is set as a result. std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const { uintptr_t IntPtr = 0; if (std::error_code EC = OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr)) return EC; Result = StringRef(reinterpret_cast(IntPtr)); return object_error::success; } // Returns the starting ordinal number. std::error_code ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const { Result = ExportTable->OrdinalBase; return object_error::success; } // Returns the export ordinal of the current export symbol. std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const { Result = ExportTable->OrdinalBase + Index; return object_error::success; } // Returns the address of the current export symbol. std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const { uintptr_t IntPtr = 0; if (std::error_code EC = OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr)) return EC; const export_address_table_entry *entry = reinterpret_cast(IntPtr); Result = entry[Index].ExportRVA; return object_error::success; } // Returns the name of the current export symbol. If the symbol is exported only // by ordinal, the empty string is set as a result. std::error_code ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const { uintptr_t IntPtr = 0; if (std::error_code EC = OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr)) return EC; const ulittle16_t *Start = reinterpret_cast(IntPtr); uint32_t NumEntries = ExportTable->NumberOfNamePointers; int Offset = 0; for (const ulittle16_t *I = Start, *E = Start + NumEntries; I < E; ++I, ++Offset) { if (*I != Index) continue; if (std::error_code EC = OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr)) return EC; const ulittle32_t *NamePtr = reinterpret_cast(IntPtr); if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr)) return EC; Result = StringRef(reinterpret_cast(IntPtr)); return object_error::success; } Result = ""; return object_error::success; } bool ImportedSymbolRef:: operator==(const ImportedSymbolRef &Other) const { return Entry32 == Other.Entry32 && Entry64 == Other.Entry64 && Index == Other.Index; } void ImportedSymbolRef::moveNext() { ++Index; } std::error_code ImportedSymbolRef::getSymbolName(StringRef &Result) const { uint32_t RVA; if (Entry32) { // If a symbol is imported only by ordinal, it has no name. if (Entry32[Index].isOrdinal()) return object_error::success; RVA = Entry32[Index].getHintNameRVA(); } else { if (Entry64[Index].isOrdinal()) return object_error::success; RVA = Entry64[Index].getHintNameRVA(); } uintptr_t IntPtr = 0; if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) return EC; // +2 because the first two bytes is hint. Result = StringRef(reinterpret_cast(IntPtr + 2)); return object_error::success; } std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const { uint32_t RVA; if (Entry32) { if (Entry32[Index].isOrdinal()) { Result = Entry32[Index].getOrdinal(); return object_error::success; } RVA = Entry32[Index].getHintNameRVA(); } else { if (Entry64[Index].isOrdinal()) { Result = Entry64[Index].getOrdinal(); return object_error::success; } RVA = Entry64[Index].getHintNameRVA(); } uintptr_t IntPtr = 0; if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) return EC; Result = *reinterpret_cast(IntPtr); return object_error::success; } ErrorOr> ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) { std::error_code EC; std::unique_ptr Ret(new COFFObjectFile(Object, EC)); if (EC) return EC; return std::move(Ret); } bool BaseRelocRef::operator==(const BaseRelocRef &Other) const { return Header == Other.Header && Index == Other.Index; } void BaseRelocRef::moveNext() { // Header->BlockSize is the size of the current block, including the // size of the header itself. uint32_t Size = sizeof(*Header) + sizeof(coff_base_reloc_block_entry) * (Index + 1); if (Size == Header->BlockSize) { // .reloc contains a list of base relocation blocks. Each block // consists of the header followed by entries. The header contains // how many entories will follow. When we reach the end of the // current block, proceed to the next block. Header = reinterpret_cast( reinterpret_cast(Header) + Size); Index = 0; } else { ++Index; } } std::error_code BaseRelocRef::getType(uint8_t &Type) const { auto *Entry = reinterpret_cast(Header + 1); Type = Entry[Index].getType(); return object_error::success; } std::error_code BaseRelocRef::getRVA(uint32_t &Result) const { auto *Entry = reinterpret_cast(Header + 1); Result = Header->PageRVA + Entry[Index].getOffset(); return object_error::success; }