//===- SampleProfReader.cpp - Read LLVM sample profile data ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the class that reads LLVM sample profiles. It // supports two file formats: text and binary. The textual representation // is useful for debugging and testing purposes. The binary representation // is more compact, resulting in smaller file sizes. However, they can // both be used interchangeably. // // NOTE: If you are making changes to the file format, please remember // to document them in the Clang documentation at // tools/clang/docs/UsersManual.rst. // // Text format // ----------- // // Sample profiles are written as ASCII text. The file is divided into // sections, which correspond to each of the functions executed at runtime. // Each section has the following format // // function1:total_samples:total_head_samples // offset1[.discriminator]: number_of_samples [fn1:num fn2:num ... ] // offset2[.discriminator]: number_of_samples [fn3:num fn4:num ... ] // ... // offsetN[.discriminator]: number_of_samples [fn5:num fn6:num ... ] // // The file may contain blank lines between sections and within a // section. However, the spacing within a single line is fixed. Additional // spaces will result in an error while reading the file. // // Function names must be mangled in order for the profile loader to // match them in the current translation unit. The two numbers in the // function header specify how many total samples were accumulated in the // function (first number), and the total number of samples accumulated // in the prologue of the function (second number). This head sample // count provides an indicator of how frequently the function is invoked. // // Each sampled line may contain several items. Some are optional (marked // below): // // a. Source line offset. This number represents the line number // in the function where the sample was collected. The line number is // always relative to the line where symbol of the function is // defined. So, if the function has its header at line 280, the offset // 13 is at line 293 in the file. // // Note that this offset should never be a negative number. This could // happen in cases like macros. The debug machinery will register the // line number at the point of macro expansion. So, if the macro was // expanded in a line before the start of the function, the profile // converter should emit a 0 as the offset (this means that the optimizers // will not be able to associate a meaningful weight to the instructions // in the macro). // // b. [OPTIONAL] Discriminator. This is used if the sampled program // was compiled with DWARF discriminator support // (http://wiki.dwarfstd.org/index.php?title=Path_Discriminators). // DWARF discriminators are unsigned integer values that allow the // compiler to distinguish between multiple execution paths on the // same source line location. // // For example, consider the line of code ``if (cond) foo(); else bar();``. // If the predicate ``cond`` is true 80% of the time, then the edge // into function ``foo`` should be considered to be taken most of the // time. But both calls to ``foo`` and ``bar`` are at the same source // line, so a sample count at that line is not sufficient. The // compiler needs to know which part of that line is taken more // frequently. // // This is what discriminators provide. In this case, the calls to // ``foo`` and ``bar`` will be at the same line, but will have // different discriminator values. This allows the compiler to correctly // set edge weights into ``foo`` and ``bar``. // // c. Number of samples. This is an integer quantity representing the // number of samples collected by the profiler at this source // location. // // d. [OPTIONAL] Potential call targets and samples. If present, this // line contains a call instruction. This models both direct and // number of samples. For example, // // 130: 7 foo:3 bar:2 baz:7 // // The above means that at relative line offset 130 there is a call // instruction that calls one of ``foo()``, ``bar()`` and ``baz()``, // with ``baz()`` being the relatively more frequently called target. // //===----------------------------------------------------------------------===// #include "llvm/ProfileData/SampleProfReader.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorOr.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/LineIterator.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Regex.h" using namespace llvm::sampleprof; using namespace llvm; /// \brief Print the samples collected for a function on stream \p OS. /// /// \param OS Stream to emit the output to. void FunctionSamples::print(raw_ostream &OS) { OS << TotalSamples << ", " << TotalHeadSamples << ", " << BodySamples.size() << " sampled lines\n"; for (const auto &SI : BodySamples) { LineLocation Loc = SI.first; const SampleRecord &Sample = SI.second; OS << "\tline offset: " << Loc.LineOffset << ", discriminator: " << Loc.Discriminator << ", number of samples: " << Sample.getSamples(); if (Sample.hasCalls()) { OS << ", calls:"; for (const auto &I : Sample.getCallTargets()) OS << " " << I.first() << ":" << I.second; } OS << "\n"; } OS << "\n"; } /// \brief Dump the function profile for \p FName. /// /// \param FName Name of the function to print. /// \param OS Stream to emit the output to. void SampleProfileReader::dumpFunctionProfile(StringRef FName, raw_ostream &OS) { OS << "Function: " << FName << ": "; Profiles[FName].print(OS); } /// \brief Dump all the function profiles found on stream \p OS. void SampleProfileReader::dump(raw_ostream &OS) { for (const auto &I : Profiles) dumpFunctionProfile(I.getKey(), OS); } /// \brief Load samples from a text file. /// /// See the documentation at the top of the file for an explanation of /// the expected format. /// /// \returns true if the file was loaded successfully, false otherwise. std::error_code SampleProfileReaderText::read() { line_iterator LineIt(*Buffer, /*SkipBlanks=*/true, '#'); // Read the profile of each function. Since each function may be // mentioned more than once, and we are collecting flat profiles, // accumulate samples as we parse them. Regex HeadRE("^([^0-9].*):([0-9]+):([0-9]+)$"); Regex LineSampleRE("^([0-9]+)\\.?([0-9]+)?: ([0-9]+)(.*)$"); Regex CallSampleRE(" +([^0-9 ][^ ]*):([0-9]+)"); while (!LineIt.is_at_eof()) { // Read the header of each function. // // Note that for function identifiers we are actually expecting // mangled names, but we may not always get them. This happens when // the compiler decides not to emit the function (e.g., it was inlined // and removed). In this case, the binary will not have the linkage // name for the function, so the profiler will emit the function's // unmangled name, which may contain characters like ':' and '>' in its // name (member functions, templates, etc). // // The only requirement we place on the identifier, then, is that it // should not begin with a number. SmallVector Matches; if (!HeadRE.match(*LineIt, &Matches)) { reportParseError(LineIt.line_number(), "Expected 'mangled_name:NUM:NUM', found " + *LineIt); return sampleprof_error::malformed; } assert(Matches.size() == 4); StringRef FName = Matches[1]; unsigned NumSamples, NumHeadSamples; Matches[2].getAsInteger(10, NumSamples); Matches[3].getAsInteger(10, NumHeadSamples); Profiles[FName] = FunctionSamples(); FunctionSamples &FProfile = Profiles[FName]; FProfile.addTotalSamples(NumSamples); FProfile.addHeadSamples(NumHeadSamples); ++LineIt; // Now read the body. The body of the function ends when we reach // EOF or when we see the start of the next function. while (!LineIt.is_at_eof() && isdigit((*LineIt)[0])) { if (!LineSampleRE.match(*LineIt, &Matches)) { reportParseError( LineIt.line_number(), "Expected 'NUM[.NUM]: NUM[ mangled_name:NUM]*', found " + *LineIt); return sampleprof_error::malformed; } assert(Matches.size() == 5); unsigned LineOffset, NumSamples, Discriminator = 0; Matches[1].getAsInteger(10, LineOffset); if (Matches[2] != "") Matches[2].getAsInteger(10, Discriminator); Matches[3].getAsInteger(10, NumSamples); // If there are function calls in this line, generate a call sample // entry for each call. std::string CallsLine(Matches[4]); while (CallsLine != "") { SmallVector CallSample; if (!CallSampleRE.match(CallsLine, &CallSample)) { reportParseError(LineIt.line_number(), "Expected 'mangled_name:NUM', found " + CallsLine); return sampleprof_error::malformed; } StringRef CalledFunction = CallSample[1]; unsigned CalledFunctionSamples; CallSample[2].getAsInteger(10, CalledFunctionSamples); FProfile.addCalledTargetSamples(LineOffset, Discriminator, CalledFunction, CalledFunctionSamples); CallsLine = CallSampleRE.sub("", CallsLine); } FProfile.addBodySamples(LineOffset, Discriminator, NumSamples); ++LineIt; } } return sampleprof_error::success; } template ErrorOr SampleProfileReaderBinary::readNumber() { unsigned NumBytesRead = 0; std::error_code EC; uint64_t Val = decodeULEB128(Data, &NumBytesRead); if (Val > std::numeric_limits::max()) EC = sampleprof_error::malformed; else if (Data + NumBytesRead > End) EC = sampleprof_error::truncated; else EC = sampleprof_error::success; if (EC) { reportParseError(0, EC.message()); return EC; } Data += NumBytesRead; return static_cast(Val); } ErrorOr SampleProfileReaderBinary::readString() { std::error_code EC; StringRef Str(reinterpret_cast(Data)); if (Data + Str.size() + 1 > End) { EC = sampleprof_error::truncated; reportParseError(0, EC.message()); return EC; } Data += Str.size() + 1; return Str; } std::error_code SampleProfileReaderBinary::read() { while (!at_eof()) { auto FName(readString()); if (std::error_code EC = FName.getError()) return EC; Profiles[*FName] = FunctionSamples(); FunctionSamples &FProfile = Profiles[*FName]; auto Val = readNumber(); if (std::error_code EC = Val.getError()) return EC; FProfile.addTotalSamples(*Val); Val = readNumber(); if (std::error_code EC = Val.getError()) return EC; FProfile.addHeadSamples(*Val); // Read the samples in the body. auto NumRecords = readNumber(); if (std::error_code EC = NumRecords.getError()) return EC; for (unsigned I = 0; I < *NumRecords; ++I) { auto LineOffset = readNumber(); if (std::error_code EC = LineOffset.getError()) return EC; auto Discriminator = readNumber(); if (std::error_code EC = Discriminator.getError()) return EC; auto NumSamples = readNumber(); if (std::error_code EC = NumSamples.getError()) return EC; auto NumCalls = readNumber(); if (std::error_code EC = NumCalls.getError()) return EC; for (unsigned J = 0; J < *NumCalls; ++J) { auto CalledFunction(readString()); if (std::error_code EC = CalledFunction.getError()) return EC; auto CalledFunctionSamples = readNumber(); if (std::error_code EC = CalledFunctionSamples.getError()) return EC; FProfile.addCalledTargetSamples(*LineOffset, *Discriminator, *CalledFunction, *CalledFunctionSamples); } FProfile.addBodySamples(*LineOffset, *Discriminator, *NumSamples); } } return sampleprof_error::success; } std::error_code SampleProfileReaderBinary::readHeader() { Data = reinterpret_cast(Buffer->getBufferStart()); End = Data + Buffer->getBufferSize(); // Read and check the magic identifier. auto Magic = readNumber(); if (std::error_code EC = Magic.getError()) return EC; else if (*Magic != SPMagic()) return sampleprof_error::bad_magic; // Read the version number. auto Version = readNumber(); if (std::error_code EC = Version.getError()) return EC; else if (*Version != SPVersion()) return sampleprof_error::unsupported_version; return sampleprof_error::success; } bool SampleProfileReaderBinary::hasFormat(const MemoryBuffer &Buffer) { const uint8_t *Data = reinterpret_cast(Buffer.getBufferStart()); uint64_t Magic = decodeULEB128(Data); return Magic == SPMagic(); } /// \brief Prepare a memory buffer for the contents of \p Filename. /// /// \returns an error code indicating the status of the buffer. static ErrorOr> setupMemoryBuffer(std::string Filename) { auto BufferOrErr = MemoryBuffer::getFileOrSTDIN(Filename); if (std::error_code EC = BufferOrErr.getError()) return EC; auto Buffer = std::move(BufferOrErr.get()); // Sanity check the file. if (Buffer->getBufferSize() > std::numeric_limits::max()) return sampleprof_error::too_large; return std::move(Buffer); } /// \brief Create a sample profile reader based on the format of the input file. /// /// \param Filename The file to open. /// /// \param Reader The reader to instantiate according to \p Filename's format. /// /// \param C The LLVM context to use to emit diagnostics. /// /// \returns an error code indicating the status of the created reader. ErrorOr> SampleProfileReader::create(StringRef Filename, LLVMContext &C) { auto BufferOrError = setupMemoryBuffer(Filename); if (std::error_code EC = BufferOrError.getError()) return EC; auto Buffer = std::move(BufferOrError.get()); std::unique_ptr Reader; if (SampleProfileReaderBinary::hasFormat(*Buffer)) Reader.reset(new SampleProfileReaderBinary(std::move(Buffer), C)); else Reader.reset(new SampleProfileReaderText(std::move(Buffer), C)); if (std::error_code EC = Reader->readHeader()) return EC; return std::move(Reader); }