//===-- AArch64A57FPLoadBalancing.cpp - Balance FP ops statically on A57---===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // For best-case performance on Cortex-A57, we should try to use a balanced // mix of odd and even D-registers when performing a critical sequence of // independent, non-quadword FP/ASIMD floating-point multiply or // multiply-accumulate operations. // // This pass attempts to detect situations where the register allocation may // adversely affect this load balancing and to change the registers used so as // to better utilize the CPU. // // Ideally we'd just take each multiply or multiply-accumulate in turn and // allocate it alternating even or odd registers. However, multiply-accumulates // are most efficiently performed in the same functional unit as their // accumulation operand. Therefore this pass tries to find maximal sequences // ("Chains") of multiply-accumulates linked via their accumulation operand, // and assign them all the same "color" (oddness/evenness). // // This optimization affects S-register and D-register floating point // multiplies and FMADD/FMAs, as well as vector (floating point only) muls and // FMADD/FMA. Q register instructions (and 128-bit vector instructions) are // not affected. //===----------------------------------------------------------------------===// #include "AArch64.h" #include "AArch64InstrInfo.h" #include "AArch64Subtarget.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/EquivalenceClasses.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RegisterClassInfo.h" #include "llvm/CodeGen/RegisterScavenging.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; #define DEBUG_TYPE "aarch64-a57-fp-load-balancing" // Enforce the algorithm to use the scavenged register even when the original // destination register is the correct color. Used for testing. static cl::opt TransformAll("aarch64-a57-fp-load-balancing-force-all", cl::desc("Always modify dest registers regardless of color"), cl::init(false), cl::Hidden); // Never use the balance information obtained from chains - return a specific // color always. Used for testing. static cl::opt OverrideBalance("aarch64-a57-fp-load-balancing-override", cl::desc("Ignore balance information, always return " "(1: Even, 2: Odd)."), cl::init(0), cl::Hidden); //===----------------------------------------------------------------------===// // Helper functions // Is the instruction a type of multiply on 64-bit (or 32-bit) FPRs? static bool isMul(MachineInstr *MI) { switch (MI->getOpcode()) { case AArch64::FMULSrr: case AArch64::FNMULSrr: case AArch64::FMULDrr: case AArch64::FNMULDrr: return true; default: return false; } } // Is the instruction a type of FP multiply-accumulate on 64-bit (or 32-bit) FPRs? static bool isMla(MachineInstr *MI) { switch (MI->getOpcode()) { case AArch64::FMSUBSrrr: case AArch64::FMADDSrrr: case AArch64::FNMSUBSrrr: case AArch64::FNMADDSrrr: case AArch64::FMSUBDrrr: case AArch64::FMADDDrrr: case AArch64::FNMSUBDrrr: case AArch64::FNMADDDrrr: return true; default: return false; } } namespace llvm { static void initializeAArch64A57FPLoadBalancingPass(PassRegistry &); } //===----------------------------------------------------------------------===// namespace { /// A "color", which is either even or odd. Yes, these aren't really colors /// but the algorithm is conceptually doing two-color graph coloring. enum class Color { Even, Odd }; #ifndef NDEBUG static const char *ColorNames[2] = { "Even", "Odd" }; #endif class Chain; class AArch64A57FPLoadBalancing : public MachineFunctionPass { MachineRegisterInfo *MRI; const TargetRegisterInfo *TRI; RegisterClassInfo RCI; public: static char ID; explicit AArch64A57FPLoadBalancing() : MachineFunctionPass(ID) { initializeAArch64A57FPLoadBalancingPass(*PassRegistry::getPassRegistry()); } bool runOnMachineFunction(MachineFunction &F) override; const char *getPassName() const override { return "A57 FP Anti-dependency breaker"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); MachineFunctionPass::getAnalysisUsage(AU); } private: bool runOnBasicBlock(MachineBasicBlock &MBB); bool colorChainSet(std::vector GV, MachineBasicBlock &MBB, int &Balance); bool colorChain(Chain *G, Color C, MachineBasicBlock &MBB); int scavengeRegister(Chain *G, Color C, MachineBasicBlock &MBB); void scanInstruction(MachineInstr *MI, unsigned Idx, std::map &Active, std::vector> &AllChains); void maybeKillChain(MachineOperand &MO, unsigned Idx, std::map &RegChains); Color getColor(unsigned Register); Chain *getAndEraseNext(Color PreferredColor, std::vector &L); }; } char AArch64A57FPLoadBalancing::ID = 0; INITIALIZE_PASS_BEGIN(AArch64A57FPLoadBalancing, DEBUG_TYPE, "AArch64 A57 FP Load-Balancing", false, false) INITIALIZE_PASS_END(AArch64A57FPLoadBalancing, DEBUG_TYPE, "AArch64 A57 FP Load-Balancing", false, false) namespace { /// A Chain is a sequence of instructions that are linked together by /// an accumulation operand. For example: /// /// fmul d0, ? /// fmla d1, ?, ?, d0 /// fmla d2, ?, ?, d1 /// /// There may be other instructions interleaved in the sequence that /// do not belong to the chain. These other instructions must not use /// the "chain" register at any point. /// /// We currently only support chains where the "chain" operand is killed /// at each link in the chain for simplicity. /// A chain has three important instructions - Start, Last and Kill. /// * The start instruction is the first instruction in the chain. /// * Last is the final instruction in the chain. /// * Kill may or may not be defined. If defined, Kill is the instruction /// where the outgoing value of the Last instruction is killed. /// This information is important as if we know the outgoing value is /// killed with no intervening uses, we can safely change its register. /// /// Without a kill instruction, we must assume the outgoing value escapes /// beyond our model and either must not change its register or must /// create a fixup FMOV to keep the old register value consistent. /// class Chain { public: /// The important (marker) instructions. MachineInstr *StartInst, *LastInst, *KillInst; /// The index, from the start of the basic block, that each marker /// appears. These are stored so we can do quick interval tests. unsigned StartInstIdx, LastInstIdx, KillInstIdx; /// All instructions in the chain. std::set Insts; /// True if KillInst cannot be modified. If this is true, /// we cannot change LastInst's outgoing register. /// This will be true for tied values and regmasks. bool KillIsImmutable; /// The "color" of LastInst. This will be the preferred chain color, /// as changing intermediate nodes is easy but changing the last /// instruction can be more tricky. Color LastColor; Chain(MachineInstr *MI, unsigned Idx, Color C) : StartInst(MI), LastInst(MI), KillInst(nullptr), StartInstIdx(Idx), LastInstIdx(Idx), KillInstIdx(0), LastColor(C) { Insts.insert(MI); } /// Add a new instruction into the chain. The instruction's dest operand /// has the given color. void add(MachineInstr *MI, unsigned Idx, Color C) { LastInst = MI; LastInstIdx = Idx; LastColor = C; assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) && "Chain: broken invariant. A Chain can only be killed after its last " "def"); Insts.insert(MI); } /// Return true if MI is a member of the chain. bool contains(MachineInstr *MI) { return Insts.count(MI) > 0; } /// Return the number of instructions in the chain. unsigned size() const { return Insts.size(); } /// Inform the chain that its last active register (the dest register of /// LastInst) is killed by MI with no intervening uses or defs. void setKill(MachineInstr *MI, unsigned Idx, bool Immutable) { KillInst = MI; KillInstIdx = Idx; KillIsImmutable = Immutable; assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) && "Chain: broken invariant. A Chain can only be killed after its last " "def"); } /// Return the first instruction in the chain. MachineInstr *getStart() const { return StartInst; } /// Return the last instruction in the chain. MachineInstr *getLast() const { return LastInst; } /// Return the "kill" instruction (as set with setKill()) or NULL. MachineInstr *getKill() const { return KillInst; } /// Return an instruction that can be used as an iterator for the end /// of the chain. This is the maximum of KillInst (if set) and LastInst. MachineBasicBlock::iterator getEnd() const { return ++MachineBasicBlock::iterator(KillInst ? KillInst : LastInst); } /// Can the Kill instruction (assuming one exists) be modified? bool isKillImmutable() const { return KillIsImmutable; } /// Return the preferred color of this chain. Color getPreferredColor() { if (OverrideBalance != 0) return OverrideBalance == 1 ? Color::Even : Color::Odd; return LastColor; } /// Return true if this chain (StartInst..KillInst) overlaps with Other. bool rangeOverlapsWith(const Chain &Other) const { unsigned End = KillInst ? KillInstIdx : LastInstIdx; unsigned OtherEnd = Other.KillInst ? Other.KillInstIdx : Other.LastInstIdx; return StartInstIdx <= OtherEnd && Other.StartInstIdx <= End; } /// Return true if this chain starts before Other. bool startsBefore(const Chain *Other) const { return StartInstIdx < Other->StartInstIdx; } /// Return true if the group will require a fixup MOV at the end. bool requiresFixup() const { return (getKill() && isKillImmutable()) || !getKill(); } /// Return a simple string representation of the chain. std::string str() const { std::string S; raw_string_ostream OS(S); OS << "{"; StartInst->print(OS, /* SkipOpers= */true); OS << " -> "; LastInst->print(OS, /* SkipOpers= */true); if (KillInst) { OS << " (kill @ "; KillInst->print(OS, /* SkipOpers= */true); OS << ")"; } OS << "}"; return OS.str(); } }; } // end anonymous namespace //===----------------------------------------------------------------------===// bool AArch64A57FPLoadBalancing::runOnMachineFunction(MachineFunction &F) { // Don't do anything if this isn't an A53 or A57. if (!(F.getSubtarget().isCortexA53() || F.getSubtarget().isCortexA57())) return false; bool Changed = false; DEBUG(dbgs() << "***** AArch64A57FPLoadBalancing *****\n"); MRI = &F.getRegInfo(); TRI = F.getRegInfo().getTargetRegisterInfo(); RCI.runOnMachineFunction(F); for (auto &MBB : F) { Changed |= runOnBasicBlock(MBB); } return Changed; } bool AArch64A57FPLoadBalancing::runOnBasicBlock(MachineBasicBlock &MBB) { bool Changed = false; DEBUG(dbgs() << "Running on MBB: " << MBB << " - scanning instructions...\n"); // First, scan the basic block producing a set of chains. // The currently "active" chains - chains that can be added to and haven't // been killed yet. This is keyed by register - all chains can only have one // "link" register between each inst in the chain. std::map ActiveChains; std::vector> AllChains; unsigned Idx = 0; for (auto &MI : MBB) scanInstruction(&MI, Idx++, ActiveChains, AllChains); DEBUG(dbgs() << "Scan complete, "<< AllChains.size() << " chains created.\n"); // Group the chains into disjoint sets based on their liveness range. This is // a poor-man's version of graph coloring. Ideally we'd create an interference // graph and perform full-on graph coloring on that, but; // (a) That's rather heavyweight for only two colors. // (b) We expect multiple disjoint interference regions - in practice the live // range of chains is quite small and they are clustered between loads // and stores. EquivalenceClasses EC; for (auto &I : AllChains) EC.insert(I.get()); for (auto &I : AllChains) for (auto &J : AllChains) if (I != J && I->rangeOverlapsWith(*J)) EC.unionSets(I.get(), J.get()); DEBUG(dbgs() << "Created " << EC.getNumClasses() << " disjoint sets.\n"); // Now we assume that every member of an equivalence class interferes // with every other member of that class, and with no members of other classes. // Convert the EquivalenceClasses to a simpler set of sets. std::vector > V; for (auto I = EC.begin(), E = EC.end(); I != E; ++I) { std::vector Cs(EC.member_begin(I), EC.member_end()); if (Cs.empty()) continue; V.push_back(std::move(Cs)); } // Now we have a set of sets, order them by start address so // we can iterate over them sequentially. std::sort(V.begin(), V.end(), [](const std::vector &A, const std::vector &B) { return A.front()->startsBefore(B.front()); }); // As we only have two colors, we can track the global (BB-level) balance of // odds versus evens. We aim to keep this near zero to keep both execution // units fed. // Positive means we're even-heavy, negative we're odd-heavy. // // FIXME: If chains have interdependencies, for example: // mul r0, r1, r2 // mul r3, r0, r1 // We do not model this and may color each one differently, assuming we'll // get ILP when we obviously can't. This hasn't been seen to be a problem // in practice so far, so we simplify the algorithm by ignoring it. int Parity = 0; for (auto &I : V) Changed |= colorChainSet(std::move(I), MBB, Parity); return Changed; } Chain *AArch64A57FPLoadBalancing::getAndEraseNext(Color PreferredColor, std::vector &L) { if (L.empty()) return nullptr; // We try and get the best candidate from L to color next, given that our // preferred color is "PreferredColor". L is ordered from larger to smaller // chains. It is beneficial to color the large chains before the small chains, // but if we can't find a chain of the maximum length with the preferred color, // we fuzz the size and look for slightly smaller chains before giving up and // returning a chain that must be recolored. // FIXME: Does this need to be configurable? const unsigned SizeFuzz = 1; unsigned MinSize = L.front()->size() - SizeFuzz; for (auto I = L.begin(), E = L.end(); I != E; ++I) { if ((*I)->size() <= MinSize) { // We've gone past the size limit. Return the previous item. Chain *Ch = *--I; L.erase(I); return Ch; } if ((*I)->getPreferredColor() == PreferredColor) { Chain *Ch = *I; L.erase(I); return Ch; } } // Bailout case - just return the first item. Chain *Ch = L.front(); L.erase(L.begin()); return Ch; } bool AArch64A57FPLoadBalancing::colorChainSet(std::vector GV, MachineBasicBlock &MBB, int &Parity) { bool Changed = false; DEBUG(dbgs() << "colorChainSet(): #sets=" << GV.size() << "\n"); // Sort by descending size order so that we allocate the most important // sets first. // Tie-break equivalent sizes by sorting chains requiring fixups before // those without fixups. The logic here is that we should look at the // chains that we cannot change before we look at those we can, // so the parity counter is updated and we know what color we should // change them to! // Final tie-break with instruction order so pass output is stable (i.e. not // dependent on malloc'd pointer values). std::sort(GV.begin(), GV.end(), [](const Chain *G1, const Chain *G2) { if (G1->size() != G2->size()) return G1->size() > G2->size(); if (G1->requiresFixup() != G2->requiresFixup()) return G1->requiresFixup() > G2->requiresFixup(); // Make sure startsBefore() produces a stable final order. assert((G1 == G2 || (G1->startsBefore(G2) ^ G2->startsBefore(G1))) && "Starts before not total order!"); return G1->startsBefore(G2); }); Color PreferredColor = Parity < 0 ? Color::Even : Color::Odd; while (Chain *G = getAndEraseNext(PreferredColor, GV)) { // Start off by assuming we'll color to our own preferred color. Color C = PreferredColor; if (Parity == 0) // But if we really don't care, use the chain's preferred color. C = G->getPreferredColor(); DEBUG(dbgs() << " - Parity=" << Parity << ", Color=" << ColorNames[(int)C] << "\n"); // If we'll need a fixup FMOV, don't bother. Testing has shown that this // happens infrequently and when it does it has at least a 50% chance of // slowing code down instead of speeding it up. if (G->requiresFixup() && C != G->getPreferredColor()) { C = G->getPreferredColor(); DEBUG(dbgs() << " - " << G->str() << " - not worthwhile changing; " "color remains " << ColorNames[(int)C] << "\n"); } Changed |= colorChain(G, C, MBB); Parity += (C == Color::Even) ? G->size() : -G->size(); PreferredColor = Parity < 0 ? Color::Even : Color::Odd; } return Changed; } int AArch64A57FPLoadBalancing::scavengeRegister(Chain *G, Color C, MachineBasicBlock &MBB) { RegScavenger RS; RS.enterBasicBlock(&MBB); RS.forward(MachineBasicBlock::iterator(G->getStart())); // Can we find an appropriate register that is available throughout the life // of the chain? unsigned RegClassID = G->getStart()->getDesc().OpInfo[0].RegClass; BitVector AvailableRegs = RS.getRegsAvailable(TRI->getRegClass(RegClassID)); for (MachineBasicBlock::iterator I = G->getStart(), E = G->getEnd(); I != E; ++I) { RS.forward(I); AvailableRegs &= RS.getRegsAvailable(TRI->getRegClass(RegClassID)); // Remove any registers clobbered by a regmask or any def register that is // immediately dead. for (auto J : I->operands()) { if (J.isRegMask()) AvailableRegs.clearBitsNotInMask(J.getRegMask()); if (J.isReg() && J.isDef() && AvailableRegs[J.getReg()]) { assert(J.isDead() && "Non-dead def should have been removed by now!"); AvailableRegs.reset(J.getReg()); } } } // Make sure we allocate in-order, to get the cheapest registers first. auto Ord = RCI.getOrder(TRI->getRegClass(RegClassID)); for (auto Reg : Ord) { if (!AvailableRegs[Reg]) continue; if ((C == Color::Even && (Reg % 2) == 0) || (C == Color::Odd && (Reg % 2) == 1)) return Reg; } return -1; } bool AArch64A57FPLoadBalancing::colorChain(Chain *G, Color C, MachineBasicBlock &MBB) { bool Changed = false; DEBUG(dbgs() << " - colorChain(" << G->str() << ", " << ColorNames[(int)C] << ")\n"); // Try and obtain a free register of the right class. Without a register // to play with we cannot continue. int Reg = scavengeRegister(G, C, MBB); if (Reg == -1) { DEBUG(dbgs() << "Scavenging (thus coloring) failed!\n"); return false; } DEBUG(dbgs() << " - Scavenged register: " << TRI->getName(Reg) << "\n"); std::map Substs; for (MachineBasicBlock::iterator I = G->getStart(), E = G->getEnd(); I != E; ++I) { if (!G->contains(I) && (&*I != G->getKill() || G->isKillImmutable())) continue; // I is a member of G, or I is a mutable instruction that kills G. std::vector ToErase; for (auto &U : I->operands()) { if (U.isReg() && U.isUse() && Substs.find(U.getReg()) != Substs.end()) { unsigned OrigReg = U.getReg(); U.setReg(Substs[OrigReg]); if (U.isKill()) // Don't erase straight away, because there may be other operands // that also reference this substitution! ToErase.push_back(OrigReg); } else if (U.isRegMask()) { for (auto J : Substs) { if (U.clobbersPhysReg(J.first)) ToErase.push_back(J.first); } } } // Now it's safe to remove the substs identified earlier. for (auto J : ToErase) Substs.erase(J); // Only change the def if this isn't the last instruction. if (&*I != G->getKill()) { MachineOperand &MO = I->getOperand(0); bool Change = TransformAll || getColor(MO.getReg()) != C; if (G->requiresFixup() && &*I == G->getLast()) Change = false; if (Change) { Substs[MO.getReg()] = Reg; MO.setReg(Reg); MRI->setPhysRegUsed(Reg); Changed = true; } } } assert(Substs.size() == 0 && "No substitutions should be left active!"); if (G->getKill()) { DEBUG(dbgs() << " - Kill instruction seen.\n"); } else { // We didn't have a kill instruction, but we didn't seem to need to change // the destination register anyway. DEBUG(dbgs() << " - Destination register not changed.\n"); } return Changed; } void AArch64A57FPLoadBalancing::scanInstruction( MachineInstr *MI, unsigned Idx, std::map &ActiveChains, std::vector> &AllChains) { // Inspect "MI", updating ActiveChains and AllChains. if (isMul(MI)) { for (auto &I : MI->uses()) maybeKillChain(I, Idx, ActiveChains); for (auto &I : MI->defs()) maybeKillChain(I, Idx, ActiveChains); // Create a new chain. Multiplies don't require forwarding so can go on any // unit. unsigned DestReg = MI->getOperand(0).getReg(); DEBUG(dbgs() << "New chain started for register " << TRI->getName(DestReg) << " at " << *MI); auto G = llvm::make_unique(MI, Idx, getColor(DestReg)); ActiveChains[DestReg] = G.get(); AllChains.push_back(std::move(G)); } else if (isMla(MI)) { // It is beneficial to keep MLAs on the same functional unit as their // accumulator operand. unsigned DestReg = MI->getOperand(0).getReg(); unsigned AccumReg = MI->getOperand(3).getReg(); maybeKillChain(MI->getOperand(1), Idx, ActiveChains); maybeKillChain(MI->getOperand(2), Idx, ActiveChains); if (DestReg != AccumReg) maybeKillChain(MI->getOperand(0), Idx, ActiveChains); if (ActiveChains.find(AccumReg) != ActiveChains.end()) { DEBUG(dbgs() << "Chain found for accumulator register " << TRI->getName(AccumReg) << " in MI " << *MI); // For simplicity we only chain together sequences of MULs/MLAs where the // accumulator register is killed on each instruction. This means we don't // need to track other uses of the registers we want to rewrite. // // FIXME: We could extend to handle the non-kill cases for more coverage. if (MI->getOperand(3).isKill()) { // Add to chain. DEBUG(dbgs() << "Instruction was successfully added to chain.\n"); ActiveChains[AccumReg]->add(MI, Idx, getColor(DestReg)); // Handle cases where the destination is not the same as the accumulator. if (DestReg != AccumReg) { ActiveChains[DestReg] = ActiveChains[AccumReg]; ActiveChains.erase(AccumReg); } return; } DEBUG(dbgs() << "Cannot add to chain because accumulator operand wasn't " << "marked !\n"); maybeKillChain(MI->getOperand(3), Idx, ActiveChains); } DEBUG(dbgs() << "Creating new chain for dest register " << TRI->getName(DestReg) << "\n"); auto G = llvm::make_unique(MI, Idx, getColor(DestReg)); ActiveChains[DestReg] = G.get(); AllChains.push_back(std::move(G)); } else { // Non-MUL or MLA instruction. Invalidate any chain in the uses or defs // lists. for (auto &I : MI->uses()) maybeKillChain(I, Idx, ActiveChains); for (auto &I : MI->defs()) maybeKillChain(I, Idx, ActiveChains); } } void AArch64A57FPLoadBalancing:: maybeKillChain(MachineOperand &MO, unsigned Idx, std::map &ActiveChains) { // Given an operand and the set of active chains (keyed by register), // determine if a chain should be ended and remove from ActiveChains. MachineInstr *MI = MO.getParent(); if (MO.isReg()) { // If this is a KILL of a current chain, record it. if (MO.isKill() && ActiveChains.find(MO.getReg()) != ActiveChains.end()) { DEBUG(dbgs() << "Kill seen for chain " << TRI->getName(MO.getReg()) << "\n"); ActiveChains[MO.getReg()]->setKill(MI, Idx, /*Immutable=*/MO.isTied()); } ActiveChains.erase(MO.getReg()); } else if (MO.isRegMask()) { for (auto I = ActiveChains.begin(), E = ActiveChains.end(); I != E;) { if (MO.clobbersPhysReg(I->first)) { DEBUG(dbgs() << "Kill (regmask) seen for chain " << TRI->getName(I->first) << "\n"); I->second->setKill(MI, Idx, /*Immutable=*/true); ActiveChains.erase(I++); } else ++I; } } } Color AArch64A57FPLoadBalancing::getColor(unsigned Reg) { if ((TRI->getEncodingValue(Reg) % 2) == 0) return Color::Even; else return Color::Odd; } // Factory function used by AArch64TargetMachine to add the pass to the passmanager. FunctionPass *llvm::createAArch64A57FPLoadBalancing() { return new AArch64A57FPLoadBalancing(); }