//===- ARMAddressingModes.h - ARM Addressing Modes --------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the ARM addressing mode implementation stuff. // //===----------------------------------------------------------------------===// #ifndef LLVM_TARGET_ARM_ARMADDRESSINGMODES_H #define LLVM_TARGET_ARM_ARMADDRESSINGMODES_H #include "llvm/CodeGen/SelectionDAGNodes.h" #include "llvm/Support/MathExtras.h" #include namespace llvm { /// ARM_AM - ARM Addressing Mode Stuff namespace ARM_AM { enum ShiftOpc { no_shift = 0, asr, lsl, lsr, ror, rrx }; enum AddrOpc { add = '+', sub = '-' }; static inline const char *getShiftOpcStr(ShiftOpc Op) { switch (Op) { default: assert(0 && "Unknown shift opc!"); case ARM_AM::asr: return "asr"; case ARM_AM::lsl: return "lsl"; case ARM_AM::lsr: return "lsr"; case ARM_AM::ror: return "ror"; case ARM_AM::rrx: return "rrx"; } } static inline ShiftOpc getShiftOpcForNode(SDValue N) { switch (N.getOpcode()) { default: return ARM_AM::no_shift; case ISD::SHL: return ARM_AM::lsl; case ISD::SRL: return ARM_AM::lsr; case ISD::SRA: return ARM_AM::asr; case ISD::ROTR: return ARM_AM::ror; //case ISD::ROTL: // Only if imm -> turn into ROTR. // Can't handle RRX here, because it would require folding a flag into // the addressing mode. :( This causes us to miss certain things. //case ARMISD::RRX: return ARM_AM::rrx; } } enum AMSubMode { bad_am_submode = 0, ia, ib, da, db }; static inline const char *getAMSubModeStr(AMSubMode Mode) { switch (Mode) { default: assert(0 && "Unknown addressing sub-mode!"); case ARM_AM::ia: return "ia"; case ARM_AM::ib: return "ib"; case ARM_AM::da: return "da"; case ARM_AM::db: return "db"; } } static inline const char *getAMSubModeAltStr(AMSubMode Mode, bool isLD) { switch (Mode) { default: assert(0 && "Unknown addressing sub-mode!"); case ARM_AM::ia: return isLD ? "fd" : "ea"; case ARM_AM::ib: return isLD ? "ed" : "fa"; case ARM_AM::da: return isLD ? "fa" : "ed"; case ARM_AM::db: return isLD ? "ea" : "fd"; } } /// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits. /// static inline unsigned rotr32(unsigned Val, unsigned Amt) { assert(Amt < 32 && "Invalid rotate amount"); return (Val >> Amt) | (Val << ((32-Amt)&31)); } /// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits. /// static inline unsigned rotl32(unsigned Val, unsigned Amt) { assert(Amt < 32 && "Invalid rotate amount"); return (Val << Amt) | (Val >> ((32-Amt)&31)); } //===--------------------------------------------------------------------===// // Addressing Mode #1: shift_operand with registers //===--------------------------------------------------------------------===// // // This 'addressing mode' is used for arithmetic instructions. It can // represent things like: // reg // reg [asr|lsl|lsr|ror|rrx] reg // reg [asr|lsl|lsr|ror|rrx] imm // // This is stored three operands [rega, regb, opc]. The first is the base // reg, the second is the shift amount (or reg0 if not present or imm). The // third operand encodes the shift opcode and the imm if a reg isn't present. // static inline unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm) { return ShOp | (Imm << 3); } static inline unsigned getSORegOffset(unsigned Op) { return Op >> 3; } static inline ShiftOpc getSORegShOp(unsigned Op) { return (ShiftOpc)(Op & 7); } /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return /// the 8-bit imm value. static inline unsigned getSOImmValImm(unsigned Imm) { return Imm & 0xFF; } /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return /// the rotate amount. static inline unsigned getSOImmValRot(unsigned Imm) { return (Imm >> 8) * 2; } /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand, /// computing the rotate amount to use. If this immediate value cannot be /// handled with a single shifter-op, determine a good rotate amount that will /// take a maximal chunk of bits out of the immediate. static inline unsigned getSOImmValRotate(unsigned Imm) { // 8-bit (or less) immediates are trivially shifter_operands with a rotate // of zero. if ((Imm & ~255U) == 0) return 0; // Use CTZ to compute the rotate amount. unsigned TZ = CountTrailingZeros_32(Imm); // Rotate amount must be even. Something like 0x200 must be rotated 8 bits, // not 9. unsigned RotAmt = TZ & ~1; // If we can handle this spread, return it. if ((rotr32(Imm, RotAmt) & ~255U) == 0) return (32-RotAmt)&31; // HW rotates right, not left. // For values like 0xF000000F, we should skip the first run of ones, then // retry the hunt. if (Imm & 1) { unsigned TrailingOnes = CountTrailingZeros_32(~Imm); if (TrailingOnes != 32) { // Avoid overflow on 0xFFFFFFFF // Restart the search for a high-order bit after the initial seconds of // ones. unsigned TZ2 = CountTrailingZeros_32(Imm & ~((1 << TrailingOnes)-1)); // Rotate amount must be even. unsigned RotAmt2 = TZ2 & ~1; // If this fits, use it. if (RotAmt2 != 32 && (rotr32(Imm, RotAmt2) & ~255U) == 0) return (32-RotAmt2)&31; // HW rotates right, not left. } } // Otherwise, we have no way to cover this span of bits with a single // shifter_op immediate. Return a chunk of bits that will be useful to // handle. return (32-RotAmt)&31; // HW rotates right, not left. } /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit /// into an shifter_operand immediate operand, return the 12-bit encoding for /// it. If not, return -1. static inline int getSOImmVal(unsigned Arg) { // 8-bit (or less) immediates are trivially shifter_operands with a rotate // of zero. if ((Arg & ~255U) == 0) return Arg; unsigned RotAmt = getSOImmValRotate(Arg); // If this cannot be handled with a single shifter_op, bail out. if (rotr32(~255U, RotAmt) & Arg) return -1; // Encode this correctly. return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8); } /// isSOImmTwoPartVal - Return true if the specified value can be obtained by /// or'ing together two SOImmVal's. static inline bool isSOImmTwoPartVal(unsigned V) { // If this can be handled with a single shifter_op, bail out. V = rotr32(~255U, getSOImmValRotate(V)) & V; if (V == 0) return false; // If this can be handled with two shifter_op's, accept. V = rotr32(~255U, getSOImmValRotate(V)) & V; return V == 0; } /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal, /// return the first chunk of it. static inline unsigned getSOImmTwoPartFirst(unsigned V) { return rotr32(255U, getSOImmValRotate(V)) & V; } /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal, /// return the second chunk of it. static inline unsigned getSOImmTwoPartSecond(unsigned V) { // Mask out the first hunk. V = rotr32(~255U, getSOImmValRotate(V)) & V; // Take what's left. assert(V == (rotr32(255U, getSOImmValRotate(V)) & V)); return V; } /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed /// by a left shift. Returns the shift amount to use. static inline unsigned getThumbImmValShift(unsigned Imm) { // 8-bit (or less) immediates are trivially immediate operand with a shift // of zero. if ((Imm & ~255U) == 0) return 0; // Use CTZ to compute the shift amount. return CountTrailingZeros_32(Imm); } /// isThumbImmShiftedVal - Return true if the specified value can be obtained /// by left shifting a 8-bit immediate. static inline bool isThumbImmShiftedVal(unsigned V) { // If this can be handled with V = (~255U << getThumbImmValShift(V)) & V; return V == 0; } /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed /// by a left shift. Returns the shift amount to use. static inline unsigned getThumbImm16ValShift(unsigned Imm) { // 16-bit (or less) immediates are trivially immediate operand with a shift // of zero. if ((Imm & ~65535U) == 0) return 0; // Use CTZ to compute the shift amount. return CountTrailingZeros_32(Imm); } /// isThumbImm16ShiftedVal - Return true if the specified value can be /// obtained by left shifting a 16-bit immediate. static inline bool isThumbImm16ShiftedVal(unsigned V) { // If this can be handled with V = (~65535U << getThumbImm16ValShift(V)) & V; return V == 0; } /// getThumbImmNonShiftedVal - If V is a value that satisfies /// isThumbImmShiftedVal, return the non-shiftd value. static inline unsigned getThumbImmNonShiftedVal(unsigned V) { return V >> getThumbImmValShift(V); } /// getT2SOImmValSplat - Return the 12-bit encoded representation /// if the specified value can be obtained by splatting the low 8 bits /// into every other byte or every byte of a 32-bit value. i.e., /// 00000000 00000000 00000000 abcdefgh control = 0 /// 00000000 abcdefgh 00000000 abcdefgh control = 1 /// abcdefgh 00000000 abcdefgh 00000000 control = 2 /// abcdefgh abcdefgh abcdefgh abcdefgh control = 3 /// Return -1 if none of the above apply. /// See ARM Reference Manual A6.3.2. static inline int getT2SOImmValSplat(unsigned V) { unsigned u, Vs, Imm; // control = 0 if ((V & 0xffffff00) == 0) return V; // If the value is zeroes in the first byte, just shift those off Vs = ((V & 0xff) == 0) ? V >> 8 : V; // Any passing value only has 8 bits of payload, splatted across the word Imm = Vs & 0xff; // Likewise, any passing values have the payload splatted into the 3rd byte u = Imm | (Imm << 16); // control = 1 or 2 if (Vs == u) return (((Vs == V) ? 1 : 2) << 8) | Imm; // control = 3 if (Vs == (u | (u << 8))) return (3 << 8) | Imm; return -1; } /// getT2SOImmValRotate - Return the 12-bit encoded representation if the /// specified value is a rotated 8-bit value. Return -1 if no rotation /// encoding is possible. /// See ARM Reference Manual A6.3.2. static inline int getT2SOImmValRotate (unsigned V) { unsigned RotAmt = CountLeadingZeros_32(V); if (RotAmt >= 24) return -1; // If 'Arg' can be handled with a single shifter_op return the value. if ((rotr32(0xff000000U, RotAmt) & V) == V) return (rotr32(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7); return -1; } /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit /// encoding for it. If not, return -1. /// See ARM Reference Manual A6.3.2. static inline int getT2SOImmVal(unsigned Arg) { // If 'Arg' is an 8-bit splat, then get the encoded value. int Splat = getT2SOImmValSplat(Arg); if (Splat != -1) return Splat; // If 'Arg' can be handled with a single shifter_op return the value. int Rot = getT2SOImmValRotate(Arg); if (Rot != -1) return Rot; return -1; } //===--------------------------------------------------------------------===// // Addressing Mode #2 //===--------------------------------------------------------------------===// // // This is used for most simple load/store instructions. // // addrmode2 := reg +/- reg shop imm // addrmode2 := reg +/- imm12 // // The first operand is always a Reg. The second operand is a reg if in // reg/reg form, otherwise it's reg#0. The third field encodes the operation // in bit 12, the immediate in bits 0-11, and the shift op in 13-15. // // If this addressing mode is a frame index (before prolog/epilog insertion // and code rewriting), this operand will have the form: FI#, reg0, // with no shift amount for the frame offset. // static inline unsigned getAM2Opc(AddrOpc Opc, unsigned Imm12, ShiftOpc SO) { assert(Imm12 < (1 << 12) && "Imm too large!"); bool isSub = Opc == sub; return Imm12 | ((int)isSub << 12) | (SO << 13); } static inline unsigned getAM2Offset(unsigned AM2Opc) { return AM2Opc & ((1 << 12)-1); } static inline AddrOpc getAM2Op(unsigned AM2Opc) { return ((AM2Opc >> 12) & 1) ? sub : add; } static inline ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) { return (ShiftOpc)(AM2Opc >> 13); } //===--------------------------------------------------------------------===// // Addressing Mode #3 //===--------------------------------------------------------------------===// // // This is used for sign-extending loads, and load/store-pair instructions. // // addrmode3 := reg +/- reg // addrmode3 := reg +/- imm8 // // The first operand is always a Reg. The second operand is a reg if in // reg/reg form, otherwise it's reg#0. The third field encodes the operation // in bit 8, the immediate in bits 0-7. /// getAM3Opc - This function encodes the addrmode3 opc field. static inline unsigned getAM3Opc(AddrOpc Opc, unsigned char Offset) { bool isSub = Opc == sub; return ((int)isSub << 8) | Offset; } static inline unsigned char getAM3Offset(unsigned AM3Opc) { return AM3Opc & 0xFF; } static inline AddrOpc getAM3Op(unsigned AM3Opc) { return ((AM3Opc >> 8) & 1) ? sub : add; } //===--------------------------------------------------------------------===// // Addressing Mode #4 //===--------------------------------------------------------------------===// // // This is used for load / store multiple instructions. // // addrmode4 := reg, // // The four modes are: // IA - Increment after // IB - Increment before // DA - Decrement after // DB - Decrement before // // If the 4th bit (writeback)is set, then the base register is updated after // the memory transfer. static inline AMSubMode getAM4SubMode(unsigned Mode) { return (AMSubMode)(Mode & 0x7); } static inline unsigned getAM4ModeImm(AMSubMode SubMode, bool WB = false) { return (int)SubMode | ((int)WB << 3); } static inline bool getAM4WBFlag(unsigned Mode) { return (Mode >> 3) & 1; } //===--------------------------------------------------------------------===// // Addressing Mode #5 //===--------------------------------------------------------------------===// // // This is used for coprocessor instructions, such as FP load/stores. // // addrmode5 := reg +/- imm8*4 // // The first operand is always a Reg. The second operand encodes the // operation in bit 8 and the immediate in bits 0-7. // // This is also used for FP load/store multiple ops. The second operand // encodes the writeback mode in bit 8 and the number of registers (or 2 // times the number of registers for DPR ops) in bits 0-7. In addition, // bits 9-11 encode one of the following two sub-modes: // // IA - Increment after // DB - Decrement before /// getAM5Opc - This function encodes the addrmode5 opc field. static inline unsigned getAM5Opc(AddrOpc Opc, unsigned char Offset) { bool isSub = Opc == sub; return ((int)isSub << 8) | Offset; } static inline unsigned char getAM5Offset(unsigned AM5Opc) { return AM5Opc & 0xFF; } static inline AddrOpc getAM5Op(unsigned AM5Opc) { return ((AM5Opc >> 8) & 1) ? sub : add; } /// getAM5Opc - This function encodes the addrmode5 opc field for FLDM and /// FSTM instructions. static inline unsigned getAM5Opc(AMSubMode SubMode, bool WB, unsigned char Offset) { assert((SubMode == ia || SubMode == db) && "Illegal addressing mode 5 sub-mode!"); return ((int)SubMode << 9) | ((int)WB << 8) | Offset; } static inline AMSubMode getAM5SubMode(unsigned AM5Opc) { return (AMSubMode)((AM5Opc >> 9) & 0x7); } static inline bool getAM5WBFlag(unsigned AM5Opc) { return ((AM5Opc >> 8) & 1); } //===--------------------------------------------------------------------===// // Addressing Mode #6 //===--------------------------------------------------------------------===// // // This is used for NEON load / store instructions. // // addrmode6 := reg with optional writeback // // This is stored in three operands [regaddr, regupdate, opc]. The first is // the address register. The second register holds the value of a post-access // increment for writeback or reg0 if no writeback or if the writeback // increment is the size of the memory access. The third operand encodes // whether there is writeback to the address register. static inline unsigned getAM6Opc(bool WB = false) { return (int)WB; } static inline bool getAM6WBFlag(unsigned Mode) { return Mode & 1; } } // end namespace ARM_AM } // end namespace llvm #endif