//===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the ARM-specific support for the FastISel class. Some // of the target-specific code is generated by tablegen in the file // ARMGenFastISel.inc, which is #included here. // //===----------------------------------------------------------------------===// #include "ARM.h" #include "ARMBaseInstrInfo.h" #include "ARMCallingConv.h" #include "ARMRegisterInfo.h" #include "ARMTargetMachine.h" #include "ARMSubtarget.h" #include "ARMConstantPoolValue.h" #include "llvm/CallingConv.h" #include "llvm/DerivedTypes.h" #include "llvm/GlobalVariable.h" #include "llvm/Instructions.h" #include "llvm/IntrinsicInst.h" #include "llvm/Module.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/FastISel.h" #include "llvm/CodeGen/FunctionLoweringInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" using namespace llvm; static cl::opt DisableARMFastISel("disable-arm-fast-isel", cl::desc("Turn off experimental ARM fast-isel support"), cl::init(false), cl::Hidden); extern cl::opt EnableARMLongCalls; namespace { // All possible address modes, plus some. typedef struct Address { enum { RegBase, FrameIndexBase } BaseType; union { unsigned Reg; int FI; } Base; int Offset; unsigned Scale; unsigned PlusReg; // Innocuous defaults for our address. Address() : BaseType(RegBase), Offset(0), Scale(0), PlusReg(0) { Base.Reg = 0; } } Address; class ARMFastISel : public FastISel { /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can /// make the right decision when generating code for different targets. const ARMSubtarget *Subtarget; const TargetMachine &TM; const TargetInstrInfo &TII; const TargetLowering &TLI; ARMFunctionInfo *AFI; // Convenience variables to avoid some queries. bool isThumb; LLVMContext *Context; public: explicit ARMFastISel(FunctionLoweringInfo &funcInfo) : FastISel(funcInfo), TM(funcInfo.MF->getTarget()), TII(*TM.getInstrInfo()), TLI(*TM.getTargetLowering()) { Subtarget = &TM.getSubtarget(); AFI = funcInfo.MF->getInfo(); isThumb = AFI->isThumbFunction(); Context = &funcInfo.Fn->getContext(); } // Code from FastISel.cpp. virtual unsigned FastEmitInst_(unsigned MachineInstOpcode, const TargetRegisterClass *RC); virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill); virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, unsigned Op1, bool Op1IsKill); virtual unsigned FastEmitInst_rrr(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, unsigned Op1, bool Op1IsKill, unsigned Op2, bool Op2IsKill); virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, uint64_t Imm); virtual unsigned FastEmitInst_rf(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, const ConstantFP *FPImm); virtual unsigned FastEmitInst_rri(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, unsigned Op1, bool Op1IsKill, uint64_t Imm); virtual unsigned FastEmitInst_i(unsigned MachineInstOpcode, const TargetRegisterClass *RC, uint64_t Imm); virtual unsigned FastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, bool Op0IsKill, uint32_t Idx); // Backend specific FastISel code. virtual bool TargetSelectInstruction(const Instruction *I); virtual unsigned TargetMaterializeConstant(const Constant *C); virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI); #include "ARMGenFastISel.inc" // Instruction selection routines. private: bool SelectLoad(const Instruction *I); bool SelectStore(const Instruction *I); bool SelectBranch(const Instruction *I); bool SelectCmp(const Instruction *I); bool SelectFPExt(const Instruction *I); bool SelectFPTrunc(const Instruction *I); bool SelectBinaryOp(const Instruction *I, unsigned ISDOpcode); bool SelectSIToFP(const Instruction *I); bool SelectFPToSI(const Instruction *I); bool SelectSDiv(const Instruction *I); bool SelectSRem(const Instruction *I); bool SelectCall(const Instruction *I); bool SelectSelect(const Instruction *I); bool SelectRet(const Instruction *I); // Utility routines. private: bool isTypeLegal(const Type *Ty, MVT &VT); bool isLoadTypeLegal(const Type *Ty, MVT &VT); bool ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr); bool ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr); bool ARMComputeAddress(const Value *Obj, Address &Addr); void ARMSimplifyAddress(Address &Addr, EVT VT); unsigned ARMMaterializeFP(const ConstantFP *CFP, EVT VT); unsigned ARMMaterializeInt(const Constant *C, EVT VT); unsigned ARMMaterializeGV(const GlobalValue *GV, EVT VT); unsigned ARMMoveToFPReg(EVT VT, unsigned SrcReg); unsigned ARMMoveToIntReg(EVT VT, unsigned SrcReg); unsigned ARMSelectCallOp(const GlobalValue *GV); // Call handling routines. private: bool FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT, unsigned &ResultReg); CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool Return); bool ProcessCallArgs(SmallVectorImpl &Args, SmallVectorImpl &ArgRegs, SmallVectorImpl &ArgVTs, SmallVectorImpl &ArgFlags, SmallVectorImpl &RegArgs, CallingConv::ID CC, unsigned &NumBytes); bool FinishCall(MVT RetVT, SmallVectorImpl &UsedRegs, const Instruction *I, CallingConv::ID CC, unsigned &NumBytes); bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call); // OptionalDef handling routines. private: bool isARMNEONPred(const MachineInstr *MI); bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR); const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB); void AddLoadStoreOperands(EVT VT, Address &Addr, const MachineInstrBuilder &MIB); }; } // end anonymous namespace #include "ARMGenCallingConv.inc" // DefinesOptionalPredicate - This is different from DefinesPredicate in that // we don't care about implicit defs here, just places we'll need to add a // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR. bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) { const TargetInstrDesc &TID = MI->getDesc(); if (!TID.hasOptionalDef()) return false; // Look to see if our OptionalDef is defining CPSR or CCR. for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || !MO.isDef()) continue; if (MO.getReg() == ARM::CPSR) *CPSR = true; } return true; } bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) { const TargetInstrDesc &TID = MI->getDesc(); // If we're a thumb2 or not NEON function we were handled via isPredicable. if ((TID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON || AFI->isThumb2Function()) return false; for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) if (TID.OpInfo[i].isPredicate()) return true; return false; } // If the machine is predicable go ahead and add the predicate operands, if // it needs default CC operands add those. // TODO: If we want to support thumb1 then we'll need to deal with optional // CPSR defs that need to be added before the remaining operands. See s_cc_out // for descriptions why. const MachineInstrBuilder & ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) { MachineInstr *MI = &*MIB; // Do we use a predicate? or... // Are we NEON in ARM mode and have a predicate operand? If so, I know // we're not predicable but add it anyways. if (TII.isPredicable(MI) || isARMNEONPred(MI)) AddDefaultPred(MIB); // Do we optionally set a predicate? Preds is size > 0 iff the predicate // defines CPSR. All other OptionalDefines in ARM are the CCR register. bool CPSR = false; if (DefinesOptionalPredicate(MI, &CPSR)) { if (CPSR) AddDefaultT1CC(MIB); else AddDefaultCC(MIB); } return MIB; } unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode, const TargetRegisterClass* RC) { unsigned ResultReg = createResultReg(RC); const TargetInstrDesc &II = TII.get(MachineInstOpcode); AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)); return ResultReg; } unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill) { unsigned ResultReg = createResultReg(RC); const TargetInstrDesc &II = TII.get(MachineInstOpcode); if (II.getNumDefs() >= 1) AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) .addReg(Op0, Op0IsKill * RegState::Kill)); else { AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) .addReg(Op0, Op0IsKill * RegState::Kill)); AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), ResultReg) .addReg(II.ImplicitDefs[0])); } return ResultReg; } unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, unsigned Op1, bool Op1IsKill) { unsigned ResultReg = createResultReg(RC); const TargetInstrDesc &II = TII.get(MachineInstOpcode); if (II.getNumDefs() >= 1) AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) .addReg(Op0, Op0IsKill * RegState::Kill) .addReg(Op1, Op1IsKill * RegState::Kill)); else { AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) .addReg(Op0, Op0IsKill * RegState::Kill) .addReg(Op1, Op1IsKill * RegState::Kill)); AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), ResultReg) .addReg(II.ImplicitDefs[0])); } return ResultReg; } unsigned ARMFastISel::FastEmitInst_rrr(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, unsigned Op1, bool Op1IsKill, unsigned Op2, bool Op2IsKill) { unsigned ResultReg = createResultReg(RC); const TargetInstrDesc &II = TII.get(MachineInstOpcode); if (II.getNumDefs() >= 1) AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) .addReg(Op0, Op0IsKill * RegState::Kill) .addReg(Op1, Op1IsKill * RegState::Kill) .addReg(Op2, Op2IsKill * RegState::Kill)); else { AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) .addReg(Op0, Op0IsKill * RegState::Kill) .addReg(Op1, Op1IsKill * RegState::Kill) .addReg(Op2, Op2IsKill * RegState::Kill)); AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), ResultReg) .addReg(II.ImplicitDefs[0])); } return ResultReg; } unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, uint64_t Imm) { unsigned ResultReg = createResultReg(RC); const TargetInstrDesc &II = TII.get(MachineInstOpcode); if (II.getNumDefs() >= 1) AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) .addReg(Op0, Op0IsKill * RegState::Kill) .addImm(Imm)); else { AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) .addReg(Op0, Op0IsKill * RegState::Kill) .addImm(Imm)); AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), ResultReg) .addReg(II.ImplicitDefs[0])); } return ResultReg; } unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, const ConstantFP *FPImm) { unsigned ResultReg = createResultReg(RC); const TargetInstrDesc &II = TII.get(MachineInstOpcode); if (II.getNumDefs() >= 1) AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) .addReg(Op0, Op0IsKill * RegState::Kill) .addFPImm(FPImm)); else { AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) .addReg(Op0, Op0IsKill * RegState::Kill) .addFPImm(FPImm)); AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), ResultReg) .addReg(II.ImplicitDefs[0])); } return ResultReg; } unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, unsigned Op1, bool Op1IsKill, uint64_t Imm) { unsigned ResultReg = createResultReg(RC); const TargetInstrDesc &II = TII.get(MachineInstOpcode); if (II.getNumDefs() >= 1) AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) .addReg(Op0, Op0IsKill * RegState::Kill) .addReg(Op1, Op1IsKill * RegState::Kill) .addImm(Imm)); else { AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) .addReg(Op0, Op0IsKill * RegState::Kill) .addReg(Op1, Op1IsKill * RegState::Kill) .addImm(Imm)); AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), ResultReg) .addReg(II.ImplicitDefs[0])); } return ResultReg; } unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode, const TargetRegisterClass *RC, uint64_t Imm) { unsigned ResultReg = createResultReg(RC); const TargetInstrDesc &II = TII.get(MachineInstOpcode); if (II.getNumDefs() >= 1) AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) .addImm(Imm)); else { AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) .addImm(Imm)); AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), ResultReg) .addReg(II.ImplicitDefs[0])); } return ResultReg; } unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, bool Op0IsKill, uint32_t Idx) { unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); assert(TargetRegisterInfo::isVirtualRegister(Op0) && "Cannot yet extract from physregs"); AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), ResultReg) .addReg(Op0, getKillRegState(Op0IsKill), Idx)); return ResultReg; } // TODO: Don't worry about 64-bit now, but when this is fixed remove the // checks from the various callers. unsigned ARMFastISel::ARMMoveToFPReg(EVT VT, unsigned SrcReg) { if (VT == MVT::f64) return 0; unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::VMOVRS), MoveReg) .addReg(SrcReg)); return MoveReg; } unsigned ARMFastISel::ARMMoveToIntReg(EVT VT, unsigned SrcReg) { if (VT == MVT::i64) return 0; unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::VMOVSR), MoveReg) .addReg(SrcReg)); return MoveReg; } // For double width floating point we need to materialize two constants // (the high and the low) into integer registers then use a move to get // the combined constant into an FP reg. unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, EVT VT) { const APFloat Val = CFP->getValueAPF(); bool is64bit = VT == MVT::f64; // This checks to see if we can use VFP3 instructions to materialize // a constant, otherwise we have to go through the constant pool. if (TLI.isFPImmLegal(Val, VT)) { unsigned Opc = is64bit ? ARM::FCONSTD : ARM::FCONSTS; unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg) .addFPImm(CFP)); return DestReg; } // Require VFP2 for loading fp constants. if (!Subtarget->hasVFP2()) return false; // MachineConstantPool wants an explicit alignment. unsigned Align = TD.getPrefTypeAlignment(CFP->getType()); if (Align == 0) { // TODO: Figure out if this is correct. Align = TD.getTypeAllocSize(CFP->getType()); } unsigned Idx = MCP.getConstantPoolIndex(cast(CFP), Align); unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS; // The extra reg is for addrmode5. AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg) .addConstantPoolIndex(Idx) .addReg(0)); return DestReg; } unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, EVT VT) { // For now 32-bit only. if (VT != MVT::i32) return false; unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); // If we can do this in a single instruction without a constant pool entry // do so now. const ConstantInt *CI = cast(C); if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getSExtValue())) { unsigned Opc = isThumb ? ARM::t2MOVi16 : ARM::MOVi16; AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg) .addImm(CI->getSExtValue())); return DestReg; } // MachineConstantPool wants an explicit alignment. unsigned Align = TD.getPrefTypeAlignment(C->getType()); if (Align == 0) { // TODO: Figure out if this is correct. Align = TD.getTypeAllocSize(C->getType()); } unsigned Idx = MCP.getConstantPoolIndex(C, Align); if (isThumb) AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::t2LDRpci), DestReg) .addConstantPoolIndex(Idx)); else // The extra immediate is for addrmode2. AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp), DestReg) .addConstantPoolIndex(Idx) .addImm(0)); return DestReg; } unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, EVT VT) { // For now 32-bit only. if (VT != MVT::i32) return 0; Reloc::Model RelocM = TM.getRelocationModel(); // TODO: No external globals for now. if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) return 0; // TODO: Need more magic for ARM PIC. if (!isThumb && (RelocM == Reloc::PIC_)) return 0; // MachineConstantPool wants an explicit alignment. unsigned Align = TD.getPrefTypeAlignment(GV->getType()); if (Align == 0) { // TODO: Figure out if this is correct. Align = TD.getTypeAllocSize(GV->getType()); } // Grab index. unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb() ? 4 : 8); unsigned Id = AFI->createPICLabelUId(); ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, Id, ARMCP::CPValue, PCAdj); unsigned Idx = MCP.getConstantPoolIndex(CPV, Align); // Load value. MachineInstrBuilder MIB; unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); if (isThumb) { unsigned Opc = (RelocM != Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic; MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg) .addConstantPoolIndex(Idx); if (RelocM == Reloc::PIC_) MIB.addImm(Id); } else { // The extra immediate is for addrmode2. MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp), DestReg) .addConstantPoolIndex(Idx) .addImm(0); } AddOptionalDefs(MIB); return DestReg; } unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) { EVT VT = TLI.getValueType(C->getType(), true); // Only handle simple types. if (!VT.isSimple()) return 0; if (const ConstantFP *CFP = dyn_cast(C)) return ARMMaterializeFP(CFP, VT); else if (const GlobalValue *GV = dyn_cast(C)) return ARMMaterializeGV(GV, VT); else if (isa(C)) return ARMMaterializeInt(C, VT); return 0; } unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) { // Don't handle dynamic allocas. if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; MVT VT; if (!isLoadTypeLegal(AI->getType(), VT)) return false; DenseMap::iterator SI = FuncInfo.StaticAllocaMap.find(AI); // This will get lowered later into the correct offsets and registers // via rewriteXFrameIndex. if (SI != FuncInfo.StaticAllocaMap.end()) { TargetRegisterClass* RC = TLI.getRegClassFor(VT); unsigned ResultReg = createResultReg(RC); unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri; AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg) .addFrameIndex(SI->second) .addImm(0)); return ResultReg; } return 0; } bool ARMFastISel::isTypeLegal(const Type *Ty, MVT &VT) { EVT evt = TLI.getValueType(Ty, true); // Only handle simple types. if (evt == MVT::Other || !evt.isSimple()) return false; VT = evt.getSimpleVT(); // Handle all legal types, i.e. a register that will directly hold this // value. return TLI.isTypeLegal(VT); } bool ARMFastISel::isLoadTypeLegal(const Type *Ty, MVT &VT) { if (isTypeLegal(Ty, VT)) return true; // If this is a type than can be sign or zero-extended to a basic operation // go ahead and accept it now. if (VT == MVT::i8 || VT == MVT::i16) return true; return false; } // Computes the address to get to an object. bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) { // Some boilerplate from the X86 FastISel. const User *U = NULL; unsigned Opcode = Instruction::UserOp1; if (const Instruction *I = dyn_cast(Obj)) { // Don't walk into other basic blocks unless the object is an alloca from // another block, otherwise it may not have a virtual register assigned. if (FuncInfo.StaticAllocaMap.count(static_cast(Obj)) || FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { Opcode = I->getOpcode(); U = I; } } else if (const ConstantExpr *C = dyn_cast(Obj)) { Opcode = C->getOpcode(); U = C; } if (const PointerType *Ty = dyn_cast(Obj->getType())) if (Ty->getAddressSpace() > 255) // Fast instruction selection doesn't support the special // address spaces. return false; switch (Opcode) { default: break; case Instruction::BitCast: { // Look through bitcasts. return ARMComputeAddress(U->getOperand(0), Addr); } case Instruction::IntToPtr: { // Look past no-op inttoptrs. if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy()) return ARMComputeAddress(U->getOperand(0), Addr); break; } case Instruction::PtrToInt: { // Look past no-op ptrtoints. if (TLI.getValueType(U->getType()) == TLI.getPointerTy()) return ARMComputeAddress(U->getOperand(0), Addr); break; } case Instruction::GetElementPtr: { Address SavedAddr = Addr; int TmpOffset = Addr.Offset; // Iterate through the GEP folding the constants into offsets where // we can. gep_type_iterator GTI = gep_type_begin(U); for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i, ++GTI) { const Value *Op = *i; if (const StructType *STy = dyn_cast(*GTI)) { const StructLayout *SL = TD.getStructLayout(STy); unsigned Idx = cast(Op)->getZExtValue(); TmpOffset += SL->getElementOffset(Idx); } else { uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType()); for (;;) { if (const ConstantInt *CI = dyn_cast(Op)) { // Constant-offset addressing. TmpOffset += CI->getSExtValue() * S; break; } if (isa(Op) && (!isa(Op) || FuncInfo.MBBMap[cast(Op)->getParent()] == FuncInfo.MBB) && isa(cast(Op)->getOperand(1))) { // An add (in the same block) with a constant operand. Fold the // constant. ConstantInt *CI = cast(cast(Op)->getOperand(1)); TmpOffset += CI->getSExtValue() * S; // Iterate on the other operand. Op = cast(Op)->getOperand(0); continue; } // Unsupported goto unsupported_gep; } } } // Try to grab the base operand now. Addr.Offset = TmpOffset; if (ARMComputeAddress(U->getOperand(0), Addr)) return true; // We failed, restore everything and try the other options. Addr = SavedAddr; unsupported_gep: break; } case Instruction::Alloca: { const AllocaInst *AI = cast(Obj); DenseMap::iterator SI = FuncInfo.StaticAllocaMap.find(AI); if (SI != FuncInfo.StaticAllocaMap.end()) { Addr.BaseType = Address::FrameIndexBase; Addr.Base.FI = SI->second; return true; } break; } } // Materialize the global variable's address into a reg which can // then be used later to load the variable. if (const GlobalValue *GV = dyn_cast(Obj)) { unsigned Tmp = ARMMaterializeGV(GV, TLI.getValueType(Obj->getType())); if (Tmp == 0) return false; Addr.Base.Reg = Tmp; return true; } // Try to get this in a register if nothing else has worked. if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj); return Addr.Base.Reg != 0; } void ARMFastISel::ARMSimplifyAddress(Address &Addr, EVT VT) { assert(VT.isSimple() && "Non-simple types are invalid here!"); bool needsLowering = false; switch (VT.getSimpleVT().SimpleTy) { default: assert(false && "Unhandled load/store type!"); case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: // Integer loads/stores handle 12-bit offsets. needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset); break; case MVT::f32: case MVT::f64: // Floating point operands handle 8-bit offsets. needsLowering = ((Addr.Offset & 0xff) != Addr.Offset); break; } // If this is a stack pointer and the offset needs to be simplified then // put the alloca address into a register, set the base type back to // register and continue. This should almost never happen. if (needsLowering && Addr.BaseType == Address::FrameIndexBase) { TargetRegisterClass *RC = isThumb ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass; unsigned ResultReg = createResultReg(RC); unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri; AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg) .addFrameIndex(Addr.Base.FI) .addImm(0)); Addr.Base.Reg = ResultReg; Addr.BaseType = Address::RegBase; } // Since the offset is too large for the load/store instruction // get the reg+offset into a register. if (needsLowering) { ARMCC::CondCodes Pred = ARMCC::AL; unsigned PredReg = 0; TargetRegisterClass *RC = isThumb ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass; unsigned BaseReg = createResultReg(RC); if (!isThumb) emitARMRegPlusImmediate(*FuncInfo.MBB, FuncInfo.InsertPt, DL, BaseReg, Addr.Base.Reg, Addr.Offset, Pred, PredReg, static_cast(TII)); else { assert(AFI->isThumb2Function()); emitT2RegPlusImmediate(*FuncInfo.MBB, FuncInfo.InsertPt, DL, BaseReg, Addr.Base.Reg, Addr.Offset, Pred, PredReg, static_cast(TII)); } Addr.Offset = 0; Addr.Base.Reg = BaseReg; } } void ARMFastISel::AddLoadStoreOperands(EVT VT, Address &Addr, const MachineInstrBuilder &MIB) { // addrmode5 output depends on the selection dag addressing dividing the // offset by 4 that it then later multiplies. Do this here as well. if (VT.getSimpleVT().SimpleTy == MVT::f32 || VT.getSimpleVT().SimpleTy == MVT::f64) Addr.Offset /= 4; // Frame base works a bit differently. Handle it separately. if (Addr.BaseType == Address::FrameIndexBase) { int FI = Addr.Base.FI; int Offset = Addr.Offset; MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( MachinePointerInfo::getFixedStack(FI, Offset), MachineMemOperand::MOLoad, MFI.getObjectSize(FI), MFI.getObjectAlignment(FI)); // Now add the rest of the operands. MIB.addFrameIndex(FI); // ARM halfword load/stores need an additional operand. if (!isThumb && VT.getSimpleVT().SimpleTy == MVT::i16) MIB.addReg(0); MIB.addImm(Addr.Offset); MIB.addMemOperand(MMO); } else { // Now add the rest of the operands. MIB.addReg(Addr.Base.Reg); // ARM halfword load/stores need an additional operand. if (!isThumb && VT.getSimpleVT().SimpleTy == MVT::i16) MIB.addReg(0); MIB.addImm(Addr.Offset); } AddOptionalDefs(MIB); } bool ARMFastISel::ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr) { assert(VT.isSimple() && "Non-simple types are invalid here!"); unsigned Opc; TargetRegisterClass *RC; switch (VT.getSimpleVT().SimpleTy) { // This is mostly going to be Neon/vector support. default: return false; case MVT::i16: Opc = isThumb ? ARM::t2LDRHi12 : ARM::LDRH; RC = ARM::GPRRegisterClass; break; case MVT::i8: Opc = isThumb ? ARM::t2LDRBi12 : ARM::LDRBi12; RC = ARM::GPRRegisterClass; break; case MVT::i32: Opc = isThumb ? ARM::t2LDRi12 : ARM::LDRi12; RC = ARM::GPRRegisterClass; break; case MVT::f32: Opc = ARM::VLDRS; RC = TLI.getRegClassFor(VT); break; case MVT::f64: Opc = ARM::VLDRD; RC = TLI.getRegClassFor(VT); break; } // Simplify this down to something we can handle. ARMSimplifyAddress(Addr, VT); // Create the base instruction, then add the operands. ResultReg = createResultReg(RC); MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg); AddLoadStoreOperands(VT, Addr, MIB); return true; } bool ARMFastISel::SelectLoad(const Instruction *I) { // Verify we have a legal type before going any further. MVT VT; if (!isLoadTypeLegal(I->getType(), VT)) return false; // See if we can handle this address. Address Addr; if (!ARMComputeAddress(I->getOperand(0), Addr)) return false; unsigned ResultReg; if (!ARMEmitLoad(VT, ResultReg, Addr)) return false; UpdateValueMap(I, ResultReg); return true; } bool ARMFastISel::ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr) { unsigned StrOpc; switch (VT.getSimpleVT().SimpleTy) { // This is mostly going to be Neon/vector support. default: return false; case MVT::i1: { unsigned Res = createResultReg(isThumb ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass); unsigned Opc = isThumb ? ARM::t2ANDri : ARM::ANDri; AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), Res) .addReg(SrcReg).addImm(1)); SrcReg = Res; } // Fallthrough here. case MVT::i8: StrOpc = isThumb ? ARM::t2STRBi12 : ARM::STRBi12; break; case MVT::i16: StrOpc = isThumb ? ARM::t2STRHi12 : ARM::STRH; break; case MVT::i32: StrOpc = isThumb ? ARM::t2STRi12 : ARM::STRi12; break; case MVT::f32: if (!Subtarget->hasVFP2()) return false; StrOpc = ARM::VSTRS; break; case MVT::f64: if (!Subtarget->hasVFP2()) return false; StrOpc = ARM::VSTRD; break; } // Simplify this down to something we can handle. ARMSimplifyAddress(Addr, VT); // Create the base instruction, then add the operands. MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(StrOpc)) .addReg(SrcReg, getKillRegState(true)); AddLoadStoreOperands(VT, Addr, MIB); return true; } bool ARMFastISel::SelectStore(const Instruction *I) { Value *Op0 = I->getOperand(0); unsigned SrcReg = 0; // Verify we have a legal type before going any further. MVT VT; if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT)) return false; // Get the value to be stored into a register. SrcReg = getRegForValue(Op0); if (SrcReg == 0) return false; // See if we can handle this address. Address Addr; if (!ARMComputeAddress(I->getOperand(1), Addr)) return false; if (!ARMEmitStore(VT, SrcReg, Addr)) return false; return true; } static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) { switch (Pred) { // Needs two compares... case CmpInst::FCMP_ONE: case CmpInst::FCMP_UEQ: default: // AL is our "false" for now. The other two need more compares. return ARMCC::AL; case CmpInst::ICMP_EQ: case CmpInst::FCMP_OEQ: return ARMCC::EQ; case CmpInst::ICMP_SGT: case CmpInst::FCMP_OGT: return ARMCC::GT; case CmpInst::ICMP_SGE: case CmpInst::FCMP_OGE: return ARMCC::GE; case CmpInst::ICMP_UGT: case CmpInst::FCMP_UGT: return ARMCC::HI; case CmpInst::FCMP_OLT: return ARMCC::MI; case CmpInst::ICMP_ULE: case CmpInst::FCMP_OLE: return ARMCC::LS; case CmpInst::FCMP_ORD: return ARMCC::VC; case CmpInst::FCMP_UNO: return ARMCC::VS; case CmpInst::FCMP_UGE: return ARMCC::PL; case CmpInst::ICMP_SLT: case CmpInst::FCMP_ULT: return ARMCC::LT; case CmpInst::ICMP_SLE: case CmpInst::FCMP_ULE: return ARMCC::LE; case CmpInst::FCMP_UNE: case CmpInst::ICMP_NE: return ARMCC::NE; case CmpInst::ICMP_UGE: return ARMCC::HS; case CmpInst::ICMP_ULT: return ARMCC::LO; } } bool ARMFastISel::SelectBranch(const Instruction *I) { const BranchInst *BI = cast(I); MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; // Simple branch support. // If we can, avoid recomputing the compare - redoing it could lead to wonky // behavior. // TODO: Factor this out. if (const CmpInst *CI = dyn_cast(BI->getCondition())) { if (CI->hasOneUse() && (CI->getParent() == I->getParent())) { MVT VT; const Type *Ty = CI->getOperand(0)->getType(); if (!isTypeLegal(Ty, VT)) return false; bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy()); if (isFloat && !Subtarget->hasVFP2()) return false; unsigned CmpOpc; switch (VT.SimpleTy) { default: return false; // TODO: Verify compares. case MVT::f32: CmpOpc = ARM::VCMPES; break; case MVT::f64: CmpOpc = ARM::VCMPED; break; case MVT::i32: CmpOpc = isThumb ? ARM::t2CMPrr : ARM::CMPrr; break; } // Get the compare predicate. ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate()); // We may not handle every CC for now. if (ARMPred == ARMCC::AL) return false; unsigned Arg1 = getRegForValue(CI->getOperand(0)); if (Arg1 == 0) return false; unsigned Arg2 = getRegForValue(CI->getOperand(1)); if (Arg2 == 0) return false; AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc)) .addReg(Arg1).addReg(Arg2)); // For floating point we need to move the result to a comparison register // that we can then use for branches. if (isFloat) AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::FMSTAT))); unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc; BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc)) .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR); FastEmitBranch(FBB, DL); FuncInfo.MBB->addSuccessor(TBB); return true; } } unsigned CmpReg = getRegForValue(BI->getCondition()); if (CmpReg == 0) return false; // Re-set the flags just in case. unsigned CmpOpc = isThumb ? ARM::t2CMPri : ARM::CMPri; AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc)) .addReg(CmpReg).addImm(0)); unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc; BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc)) .addMBB(TBB).addImm(ARMCC::NE).addReg(ARM::CPSR); FastEmitBranch(FBB, DL); FuncInfo.MBB->addSuccessor(TBB); return true; } bool ARMFastISel::SelectCmp(const Instruction *I) { const CmpInst *CI = cast(I); MVT VT; const Type *Ty = CI->getOperand(0)->getType(); if (!isTypeLegal(Ty, VT)) return false; bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy()); if (isFloat && !Subtarget->hasVFP2()) return false; unsigned CmpOpc; unsigned CondReg; switch (VT.SimpleTy) { default: return false; // TODO: Verify compares. case MVT::f32: CmpOpc = ARM::VCMPES; CondReg = ARM::FPSCR; break; case MVT::f64: CmpOpc = ARM::VCMPED; CondReg = ARM::FPSCR; break; case MVT::i32: CmpOpc = isThumb ? ARM::t2CMPrr : ARM::CMPrr; CondReg = ARM::CPSR; break; } // Get the compare predicate. ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate()); // We may not handle every CC for now. if (ARMPred == ARMCC::AL) return false; unsigned Arg1 = getRegForValue(CI->getOperand(0)); if (Arg1 == 0) return false; unsigned Arg2 = getRegForValue(CI->getOperand(1)); if (Arg2 == 0) return false; AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc)) .addReg(Arg1).addReg(Arg2)); // For floating point we need to move the result to a comparison register // that we can then use for branches. if (isFloat) AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::FMSTAT))); // Now set a register based on the comparison. Explicitly set the predicates // here. unsigned MovCCOpc = isThumb ? ARM::t2MOVCCi : ARM::MOVCCi; TargetRegisterClass *RC = isThumb ? ARM::rGPRRegisterClass : ARM::GPRRegisterClass; unsigned DestReg = createResultReg(RC); Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0); unsigned ZeroReg = TargetMaterializeConstant(Zero); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), DestReg) .addReg(ZeroReg).addImm(1) .addImm(ARMPred).addReg(CondReg); UpdateValueMap(I, DestReg); return true; } bool ARMFastISel::SelectFPExt(const Instruction *I) { // Make sure we have VFP and that we're extending float to double. if (!Subtarget->hasVFP2()) return false; Value *V = I->getOperand(0); if (!I->getType()->isDoubleTy() || !V->getType()->isFloatTy()) return false; unsigned Op = getRegForValue(V); if (Op == 0) return false; unsigned Result = createResultReg(ARM::DPRRegisterClass); AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::VCVTDS), Result) .addReg(Op)); UpdateValueMap(I, Result); return true; } bool ARMFastISel::SelectFPTrunc(const Instruction *I) { // Make sure we have VFP and that we're truncating double to float. if (!Subtarget->hasVFP2()) return false; Value *V = I->getOperand(0); if (!(I->getType()->isFloatTy() && V->getType()->isDoubleTy())) return false; unsigned Op = getRegForValue(V); if (Op == 0) return false; unsigned Result = createResultReg(ARM::SPRRegisterClass); AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::VCVTSD), Result) .addReg(Op)); UpdateValueMap(I, Result); return true; } bool ARMFastISel::SelectSIToFP(const Instruction *I) { // Make sure we have VFP. if (!Subtarget->hasVFP2()) return false; MVT DstVT; const Type *Ty = I->getType(); if (!isTypeLegal(Ty, DstVT)) return false; unsigned Op = getRegForValue(I->getOperand(0)); if (Op == 0) return false; // The conversion routine works on fp-reg to fp-reg and the operand above // was an integer, move it to the fp registers if possible. unsigned FP = ARMMoveToFPReg(MVT::f32, Op); if (FP == 0) return false; unsigned Opc; if (Ty->isFloatTy()) Opc = ARM::VSITOS; else if (Ty->isDoubleTy()) Opc = ARM::VSITOD; else return 0; unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT)); AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg) .addReg(FP)); UpdateValueMap(I, ResultReg); return true; } bool ARMFastISel::SelectFPToSI(const Instruction *I) { // Make sure we have VFP. if (!Subtarget->hasVFP2()) return false; MVT DstVT; const Type *RetTy = I->getType(); if (!isTypeLegal(RetTy, DstVT)) return false; unsigned Op = getRegForValue(I->getOperand(0)); if (Op == 0) return false; unsigned Opc; const Type *OpTy = I->getOperand(0)->getType(); if (OpTy->isFloatTy()) Opc = ARM::VTOSIZS; else if (OpTy->isDoubleTy()) Opc = ARM::VTOSIZD; else return 0; // f64->s32 or f32->s32 both need an intermediate f32 reg. unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32)); AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg) .addReg(Op)); // This result needs to be in an integer register, but the conversion only // takes place in fp-regs. unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg); if (IntReg == 0) return false; UpdateValueMap(I, IntReg); return true; } bool ARMFastISel::SelectSelect(const Instruction *I) { MVT VT; if (!isTypeLegal(I->getType(), VT)) return false; // Things need to be register sized for register moves. if (VT != MVT::i32) return false; const TargetRegisterClass *RC = TLI.getRegClassFor(VT); unsigned CondReg = getRegForValue(I->getOperand(0)); if (CondReg == 0) return false; unsigned Op1Reg = getRegForValue(I->getOperand(1)); if (Op1Reg == 0) return false; unsigned Op2Reg = getRegForValue(I->getOperand(2)); if (Op2Reg == 0) return false; unsigned CmpOpc = isThumb ? ARM::t2TSTri : ARM::TSTri; AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc)) .addReg(CondReg).addImm(1)); unsigned ResultReg = createResultReg(RC); unsigned MovCCOpc = isThumb ? ARM::t2MOVCCr : ARM::MOVCCr; BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg) .addReg(Op1Reg).addReg(Op2Reg) .addImm(ARMCC::EQ).addReg(ARM::CPSR); UpdateValueMap(I, ResultReg); return true; } bool ARMFastISel::SelectSDiv(const Instruction *I) { MVT VT; const Type *Ty = I->getType(); if (!isTypeLegal(Ty, VT)) return false; // If we have integer div support we should have selected this automagically. // In case we have a real miss go ahead and return false and we'll pick // it up later. if (Subtarget->hasDivide()) return false; // Otherwise emit a libcall. RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; if (VT == MVT::i8) LC = RTLIB::SDIV_I8; else if (VT == MVT::i16) LC = RTLIB::SDIV_I16; else if (VT == MVT::i32) LC = RTLIB::SDIV_I32; else if (VT == MVT::i64) LC = RTLIB::SDIV_I64; else if (VT == MVT::i128) LC = RTLIB::SDIV_I128; assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!"); return ARMEmitLibcall(I, LC); } bool ARMFastISel::SelectSRem(const Instruction *I) { MVT VT; const Type *Ty = I->getType(); if (!isTypeLegal(Ty, VT)) return false; RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; if (VT == MVT::i8) LC = RTLIB::SREM_I8; else if (VT == MVT::i16) LC = RTLIB::SREM_I16; else if (VT == MVT::i32) LC = RTLIB::SREM_I32; else if (VT == MVT::i64) LC = RTLIB::SREM_I64; else if (VT == MVT::i128) LC = RTLIB::SREM_I128; assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!"); return ARMEmitLibcall(I, LC); } bool ARMFastISel::SelectBinaryOp(const Instruction *I, unsigned ISDOpcode) { EVT VT = TLI.getValueType(I->getType(), true); // We can get here in the case when we want to use NEON for our fp // operations, but can't figure out how to. Just use the vfp instructions // if we have them. // FIXME: It'd be nice to use NEON instructions. const Type *Ty = I->getType(); bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy()); if (isFloat && !Subtarget->hasVFP2()) return false; unsigned Op1 = getRegForValue(I->getOperand(0)); if (Op1 == 0) return false; unsigned Op2 = getRegForValue(I->getOperand(1)); if (Op2 == 0) return false; unsigned Opc; bool is64bit = VT == MVT::f64 || VT == MVT::i64; switch (ISDOpcode) { default: return false; case ISD::FADD: Opc = is64bit ? ARM::VADDD : ARM::VADDS; break; case ISD::FSUB: Opc = is64bit ? ARM::VSUBD : ARM::VSUBS; break; case ISD::FMUL: Opc = is64bit ? ARM::VMULD : ARM::VMULS; break; } unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg) .addReg(Op1).addReg(Op2)); UpdateValueMap(I, ResultReg); return true; } // Call Handling Code bool ARMFastISel::FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT, unsigned &ResultReg) { unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, Src, /*TODO: Kill=*/false); if (RR != 0) { ResultReg = RR; return true; } else return false; } // This is largely taken directly from CCAssignFnForNode - we don't support // varargs in FastISel so that part has been removed. // TODO: We may not support all of this. CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, bool Return) { switch (CC) { default: llvm_unreachable("Unsupported calling convention"); case CallingConv::Fast: // Ignore fastcc. Silence compiler warnings. (void)RetFastCC_ARM_APCS; (void)FastCC_ARM_APCS; // Fallthrough case CallingConv::C: // Use target triple & subtarget features to do actual dispatch. if (Subtarget->isAAPCS_ABI()) { if (Subtarget->hasVFP2() && FloatABIType == FloatABI::Hard) return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); else return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); } else return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); case CallingConv::ARM_AAPCS_VFP: return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); case CallingConv::ARM_AAPCS: return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); case CallingConv::ARM_APCS: return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); } } bool ARMFastISel::ProcessCallArgs(SmallVectorImpl &Args, SmallVectorImpl &ArgRegs, SmallVectorImpl &ArgVTs, SmallVectorImpl &ArgFlags, SmallVectorImpl &RegArgs, CallingConv::ID CC, unsigned &NumBytes) { SmallVector ArgLocs; CCState CCInfo(CC, false, TM, ArgLocs, *Context); CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC, false)); // Get a count of how many bytes are to be pushed on the stack. NumBytes = CCInfo.getNextStackOffset(); // Issue CALLSEQ_START unsigned AdjStackDown = TM.getRegisterInfo()->getCallFrameSetupOpcode(); AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackDown)) .addImm(NumBytes)); // Process the args. for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; unsigned Arg = ArgRegs[VA.getValNo()]; MVT ArgVT = ArgVTs[VA.getValNo()]; // We don't handle NEON/vector parameters yet. if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64) return false; // Handle arg promotion, etc. switch (VA.getLocInfo()) { case CCValAssign::Full: break; case CCValAssign::SExt: { bool Emitted = FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), Arg, ArgVT, Arg); assert(Emitted && "Failed to emit a sext!"); (void)Emitted; Emitted = true; ArgVT = VA.getLocVT(); break; } case CCValAssign::ZExt: { bool Emitted = FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), Arg, ArgVT, Arg); assert(Emitted && "Failed to emit a zext!"); (void)Emitted; Emitted = true; ArgVT = VA.getLocVT(); break; } case CCValAssign::AExt: { bool Emitted = FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), Arg, ArgVT, Arg); if (!Emitted) Emitted = FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), Arg, ArgVT, Arg); if (!Emitted) Emitted = FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), Arg, ArgVT, Arg); assert(Emitted && "Failed to emit a aext!"); (void)Emitted; ArgVT = VA.getLocVT(); break; } case CCValAssign::BCvt: { unsigned BC = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg, /*TODO: Kill=*/false); assert(BC != 0 && "Failed to emit a bitcast!"); Arg = BC; ArgVT = VA.getLocVT(); break; } default: llvm_unreachable("Unknown arg promotion!"); } // Now copy/store arg to correct locations. if (VA.isRegLoc() && !VA.needsCustom()) { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), VA.getLocReg()) .addReg(Arg); RegArgs.push_back(VA.getLocReg()); } else if (VA.needsCustom()) { // TODO: We need custom lowering for vector (v2f64) args. if (VA.getLocVT() != MVT::f64) return false; CCValAssign &NextVA = ArgLocs[++i]; // TODO: Only handle register args for now. if(!(VA.isRegLoc() && NextVA.isRegLoc())) return false; AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::VMOVRRD), VA.getLocReg()) .addReg(NextVA.getLocReg(), RegState::Define) .addReg(Arg)); RegArgs.push_back(VA.getLocReg()); RegArgs.push_back(NextVA.getLocReg()); } else { assert(VA.isMemLoc()); // Need to store on the stack. Address Addr; Addr.BaseType = Address::RegBase; Addr.Base.Reg = ARM::SP; Addr.Offset = VA.getLocMemOffset(); if (!ARMEmitStore(ArgVT, Arg, Addr)) return false; } } return true; } bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl &UsedRegs, const Instruction *I, CallingConv::ID CC, unsigned &NumBytes) { // Issue CALLSEQ_END unsigned AdjStackUp = TM.getRegisterInfo()->getCallFrameDestroyOpcode(); AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackUp)) .addImm(NumBytes).addImm(0)); // Now the return value. if (RetVT != MVT::isVoid) { SmallVector RVLocs; CCState CCInfo(CC, false, TM, RVLocs, *Context); CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true)); // Copy all of the result registers out of their specified physreg. if (RVLocs.size() == 2 && RetVT == MVT::f64) { // For this move we copy into two registers and then move into the // double fp reg we want. EVT DestVT = RVLocs[0].getValVT(); TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT); unsigned ResultReg = createResultReg(DstRC); AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::VMOVDRR), ResultReg) .addReg(RVLocs[0].getLocReg()) .addReg(RVLocs[1].getLocReg())); UsedRegs.push_back(RVLocs[0].getLocReg()); UsedRegs.push_back(RVLocs[1].getLocReg()); // Finally update the result. UpdateValueMap(I, ResultReg); } else { assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!"); EVT CopyVT = RVLocs[0].getValVT(); TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT); unsigned ResultReg = createResultReg(DstRC); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), ResultReg).addReg(RVLocs[0].getLocReg()); UsedRegs.push_back(RVLocs[0].getLocReg()); // Finally update the result. UpdateValueMap(I, ResultReg); } } return true; } bool ARMFastISel::SelectRet(const Instruction *I) { const ReturnInst *Ret = cast(I); const Function &F = *I->getParent()->getParent(); if (!FuncInfo.CanLowerReturn) return false; if (F.isVarArg()) return false; CallingConv::ID CC = F.getCallingConv(); if (Ret->getNumOperands() > 0) { SmallVector Outs; GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), Outs, TLI); // Analyze operands of the call, assigning locations to each operand. SmallVector ValLocs; CCState CCInfo(CC, F.isVarArg(), TM, ValLocs, I->getContext()); CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */)); const Value *RV = Ret->getOperand(0); unsigned Reg = getRegForValue(RV); if (Reg == 0) return false; // Only handle a single return value for now. if (ValLocs.size() != 1) return false; CCValAssign &VA = ValLocs[0]; // Don't bother handling odd stuff for now. if (VA.getLocInfo() != CCValAssign::Full) return false; // Only handle register returns for now. if (!VA.isRegLoc()) return false; // TODO: For now, don't try to handle cases where getLocInfo() // says Full but the types don't match. if (TLI.getValueType(RV->getType()) != VA.getValVT()) return false; // Make the copy. unsigned SrcReg = Reg + VA.getValNo(); unsigned DstReg = VA.getLocReg(); const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg); // Avoid a cross-class copy. This is very unlikely. if (!SrcRC->contains(DstReg)) return false; BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg); // Mark the register as live out of the function. MRI.addLiveOut(VA.getLocReg()); } unsigned RetOpc = isThumb ? ARM::tBX_RET : ARM::BX_RET; AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(RetOpc))); return true; } unsigned ARMFastISel::ARMSelectCallOp(const GlobalValue *GV) { // Darwin needs the r9 versions of the opcodes. bool isDarwin = Subtarget->isTargetDarwin(); if (isThumb) { return isDarwin ? ARM::tBLr9 : ARM::tBL; } else { return isDarwin ? ARM::BLr9 : ARM::BL; } } // A quick function that will emit a call for a named libcall in F with the // vector of passed arguments for the Instruction in I. We can assume that we // can emit a call for any libcall we can produce. This is an abridged version // of the full call infrastructure since we won't need to worry about things // like computed function pointers or strange arguments at call sites. // TODO: Try to unify this and the normal call bits for ARM, then try to unify // with X86. bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) { CallingConv::ID CC = TLI.getLibcallCallingConv(Call); // Handle *simple* calls for now. const Type *RetTy = I->getType(); MVT RetVT; if (RetTy->isVoidTy()) RetVT = MVT::isVoid; else if (!isTypeLegal(RetTy, RetVT)) return false; // For now we're using BLX etc on the assumption that we have v5t ops. if (!Subtarget->hasV5TOps()) return false; // TODO: For now if we have long calls specified we don't handle the call. if (EnableARMLongCalls) return false; // Set up the argument vectors. SmallVector Args; SmallVector ArgRegs; SmallVector ArgVTs; SmallVector ArgFlags; Args.reserve(I->getNumOperands()); ArgRegs.reserve(I->getNumOperands()); ArgVTs.reserve(I->getNumOperands()); ArgFlags.reserve(I->getNumOperands()); for (unsigned i = 0; i < I->getNumOperands(); ++i) { Value *Op = I->getOperand(i); unsigned Arg = getRegForValue(Op); if (Arg == 0) return false; const Type *ArgTy = Op->getType(); MVT ArgVT; if (!isTypeLegal(ArgTy, ArgVT)) return false; ISD::ArgFlagsTy Flags; unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy); Flags.setOrigAlign(OriginalAlignment); Args.push_back(Op); ArgRegs.push_back(Arg); ArgVTs.push_back(ArgVT); ArgFlags.push_back(Flags); } // Handle the arguments now that we've gotten them. SmallVector RegArgs; unsigned NumBytes; if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes)) return false; // Issue the call, BLXr9 for darwin, BLX otherwise. This uses V5 ops. // TODO: Turn this into the table of arm call ops. MachineInstrBuilder MIB; unsigned CallOpc = ARMSelectCallOp(NULL); if(isThumb) // Explicitly adding the predicate here. MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc))) .addExternalSymbol(TLI.getLibcallName(Call)); else // Explicitly adding the predicate here. MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc)) .addExternalSymbol(TLI.getLibcallName(Call))); // Add implicit physical register uses to the call. for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) MIB.addReg(RegArgs[i]); // Finish off the call including any return values. SmallVector UsedRegs; if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false; // Set all unused physreg defs as dead. static_cast(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); return true; } bool ARMFastISel::SelectCall(const Instruction *I) { const CallInst *CI = cast(I); const Value *Callee = CI->getCalledValue(); // Can't handle inline asm or worry about intrinsics yet. if (isa(Callee) || isa(CI)) return false; // Only handle global variable Callees that are direct calls. const GlobalValue *GV = dyn_cast(Callee); if (!GV || Subtarget->GVIsIndirectSymbol(GV, TM.getRelocationModel())) return false; // Check the calling convention. ImmutableCallSite CS(CI); CallingConv::ID CC = CS.getCallingConv(); // TODO: Avoid some calling conventions? // Let SDISel handle vararg functions. const PointerType *PT = cast(CS.getCalledValue()->getType()); const FunctionType *FTy = cast(PT->getElementType()); if (FTy->isVarArg()) return false; // Handle *simple* calls for now. const Type *RetTy = I->getType(); MVT RetVT; if (RetTy->isVoidTy()) RetVT = MVT::isVoid; else if (!isTypeLegal(RetTy, RetVT)) return false; // For now we're using BLX etc on the assumption that we have v5t ops. // TODO: Maybe? if (!Subtarget->hasV5TOps()) return false; // TODO: For now if we have long calls specified we don't handle the call. if (EnableARMLongCalls) return false; // Set up the argument vectors. SmallVector Args; SmallVector ArgRegs; SmallVector ArgVTs; SmallVector ArgFlags; Args.reserve(CS.arg_size()); ArgRegs.reserve(CS.arg_size()); ArgVTs.reserve(CS.arg_size()); ArgFlags.reserve(CS.arg_size()); for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i) { unsigned Arg = getRegForValue(*i); if (Arg == 0) return false; ISD::ArgFlagsTy Flags; unsigned AttrInd = i - CS.arg_begin() + 1; if (CS.paramHasAttr(AttrInd, Attribute::SExt)) Flags.setSExt(); if (CS.paramHasAttr(AttrInd, Attribute::ZExt)) Flags.setZExt(); // FIXME: Only handle *easy* calls for now. if (CS.paramHasAttr(AttrInd, Attribute::InReg) || CS.paramHasAttr(AttrInd, Attribute::StructRet) || CS.paramHasAttr(AttrInd, Attribute::Nest) || CS.paramHasAttr(AttrInd, Attribute::ByVal)) return false; const Type *ArgTy = (*i)->getType(); MVT ArgVT; if (!isTypeLegal(ArgTy, ArgVT)) return false; unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy); Flags.setOrigAlign(OriginalAlignment); Args.push_back(*i); ArgRegs.push_back(Arg); ArgVTs.push_back(ArgVT); ArgFlags.push_back(Flags); } // Handle the arguments now that we've gotten them. SmallVector RegArgs; unsigned NumBytes; if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes)) return false; // Issue the call, BLXr9 for darwin, BLX otherwise. This uses V5 ops. // TODO: Turn this into the table of arm call ops. MachineInstrBuilder MIB; unsigned CallOpc = ARMSelectCallOp(GV); // Explicitly adding the predicate here. if(isThumb) // Explicitly adding the predicate here. MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc))) .addGlobalAddress(GV, 0, 0); else // Explicitly adding the predicate here. MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc)) .addGlobalAddress(GV, 0, 0)); // Add implicit physical register uses to the call. for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) MIB.addReg(RegArgs[i]); // Finish off the call including any return values. SmallVector UsedRegs; if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false; // Set all unused physreg defs as dead. static_cast(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); return true; } // TODO: SoftFP support. bool ARMFastISel::TargetSelectInstruction(const Instruction *I) { switch (I->getOpcode()) { case Instruction::Load: return SelectLoad(I); case Instruction::Store: return SelectStore(I); case Instruction::Br: return SelectBranch(I); case Instruction::ICmp: case Instruction::FCmp: return SelectCmp(I); case Instruction::FPExt: return SelectFPExt(I); case Instruction::FPTrunc: return SelectFPTrunc(I); case Instruction::SIToFP: return SelectSIToFP(I); case Instruction::FPToSI: return SelectFPToSI(I); case Instruction::FAdd: return SelectBinaryOp(I, ISD::FADD); case Instruction::FSub: return SelectBinaryOp(I, ISD::FSUB); case Instruction::FMul: return SelectBinaryOp(I, ISD::FMUL); case Instruction::SDiv: return SelectSDiv(I); case Instruction::SRem: return SelectSRem(I); case Instruction::Call: return SelectCall(I); case Instruction::Select: return SelectSelect(I); case Instruction::Ret: return SelectRet(I); default: break; } return false; } namespace llvm { llvm::FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo) { // Completely untested on non-darwin. const TargetMachine &TM = funcInfo.MF->getTarget(); // Darwin and thumb1 only for now. const ARMSubtarget *Subtarget = &TM.getSubtarget(); if (Subtarget->isTargetDarwin() && !Subtarget->isThumb1Only() && !DisableARMFastISel) return new ARMFastISel(funcInfo); return 0; } }