//===-- ARMFrameLowering.cpp - ARM Frame Information ----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the ARM implementation of TargetFrameLowering class. // //===----------------------------------------------------------------------===// #include "ARMFrameLowering.h" #include "ARMBaseInstrInfo.h" #include "ARMBaseRegisterInfo.h" #include "ARMConstantPoolValue.h" #include "ARMMachineFunctionInfo.h" #include "MCTargetDesc/ARMAddressingModes.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RegisterScavenging.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/Function.h" #include "llvm/MC/MCContext.h" #include "llvm/Support/CommandLine.h" #include "llvm/Target/TargetOptions.h" using namespace llvm; static cl::opt SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true), cl::desc("Align ARM NEON spills in prolog and epilog")); static MachineBasicBlock::iterator skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, unsigned NumAlignedDPRCS2Regs); ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti) : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, 4), STI(sti) {} /// hasFP - Return true if the specified function should have a dedicated frame /// pointer register. This is true if the function has variable sized allocas /// or if frame pointer elimination is disabled. bool ARMFrameLowering::hasFP(const MachineFunction &MF) const { const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); // iOS requires FP not to be clobbered for backtracing purpose. if (STI.isTargetIOS()) return true; const MachineFrameInfo *MFI = MF.getFrameInfo(); // Always eliminate non-leaf frame pointers. return ((MF.getTarget().Options.DisableFramePointerElim(MF) && MFI->hasCalls()) || RegInfo->needsStackRealignment(MF) || MFI->hasVarSizedObjects() || MFI->isFrameAddressTaken()); } /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is /// not required, we reserve argument space for call sites in the function /// immediately on entry to the current function. This eliminates the need for /// add/sub sp brackets around call sites. Returns true if the call frame is /// included as part of the stack frame. bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { const MachineFrameInfo *FFI = MF.getFrameInfo(); unsigned CFSize = FFI->getMaxCallFrameSize(); // It's not always a good idea to include the call frame as part of the // stack frame. ARM (especially Thumb) has small immediate offset to // address the stack frame. So a large call frame can cause poor codegen // and may even makes it impossible to scavenge a register. if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12 return false; return !MF.getFrameInfo()->hasVarSizedObjects(); } /// canSimplifyCallFramePseudos - If there is a reserved call frame, the /// call frame pseudos can be simplified. Unlike most targets, having a FP /// is not sufficient here since we still may reference some objects via SP /// even when FP is available in Thumb2 mode. bool ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { return hasReservedCallFrame(MF) || MF.getFrameInfo()->hasVarSizedObjects(); } static bool isCSRestore(MachineInstr *MI, const ARMBaseInstrInfo &TII, const MCPhysReg *CSRegs) { // Integer spill area is handled with "pop". if (isPopOpcode(MI->getOpcode())) { // The first two operands are predicates. The last two are // imp-def and imp-use of SP. Check everything in between. for (int i = 5, e = MI->getNumOperands(); i != e; ++i) if (!isCalleeSavedRegister(MI->getOperand(i).getReg(), CSRegs)) return false; return true; } if ((MI->getOpcode() == ARM::LDR_POST_IMM || MI->getOpcode() == ARM::LDR_POST_REG || MI->getOpcode() == ARM::t2LDR_POST) && isCalleeSavedRegister(MI->getOperand(0).getReg(), CSRegs) && MI->getOperand(1).getReg() == ARM::SP) return true; return false; } static void emitRegPlusImmediate(bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, DebugLoc dl, const ARMBaseInstrInfo &TII, unsigned DestReg, unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags, ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) { if (isARM) emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, Pred, PredReg, TII, MIFlags); else emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, Pred, PredReg, TII, MIFlags); } static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, DebugLoc dl, const ARMBaseInstrInfo &TII, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags, ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) { emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes, MIFlags, Pred, PredReg); } static int sizeOfSPAdjustment(const MachineInstr *MI) { int RegSize; switch (MI->getOpcode()) { case ARM::VSTMDDB_UPD: RegSize = 8; break; case ARM::STMDB_UPD: case ARM::t2STMDB_UPD: RegSize = 4; break; case ARM::t2STR_PRE: case ARM::STR_PRE_IMM: return 4; default: llvm_unreachable("Unknown push or pop like instruction"); } int count = 0; // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ // pred) so the list starts at 4. for (int i = MI->getNumOperands() - 1; i >= 4; --i) count += RegSize; return count; } static bool WindowsRequiresStackProbe(const MachineFunction &MF, size_t StackSizeInBytes) { const MachineFrameInfo *MFI = MF.getFrameInfo(); const Function *F = MF.getFunction(); unsigned StackProbeSize = (MFI->getStackProtectorIndex() > 0) ? 4080 : 4096; if (F->hasFnAttribute("stack-probe-size")) F->getFnAttribute("stack-probe-size") .getValueAsString() .getAsInteger(0, StackProbeSize); return StackSizeInBytes >= StackProbeSize; } namespace { struct StackAdjustingInsts { struct InstInfo { MachineBasicBlock::iterator I; unsigned SPAdjust; bool BeforeFPSet; }; SmallVector Insts; void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust, bool BeforeFPSet = false) { InstInfo Info = {I, SPAdjust, BeforeFPSet}; Insts.push_back(Info); } void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) { auto Info = std::find_if(Insts.begin(), Insts.end(), [&](InstInfo &Info) { return Info.I == I; }); assert(Info != Insts.end() && "invalid sp adjusting instruction"); Info->SPAdjust += ExtraBytes; } void emitDefCFAOffsets(MachineModuleInfo &MMI, MachineBasicBlock &MBB, DebugLoc dl, const ARMBaseInstrInfo &TII, bool HasFP) { unsigned CFAOffset = 0; for (auto &Info : Insts) { if (HasFP && !Info.BeforeFPSet) return; CFAOffset -= Info.SPAdjust; unsigned CFIIndex = MMI.addFrameInst( MCCFIInstruction::createDefCfaOffset(nullptr, CFAOffset)); BuildMI(MBB, std::next(Info.I), dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex) .setMIFlags(MachineInstr::FrameSetup); } } }; } /// Emit an instruction sequence that will align the address in /// register Reg by zero-ing out the lower bits. For versions of the /// architecture that support Neon, this must be done in a single /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a /// single instruction. That function only gets called when optimizing /// spilling of D registers on a core with the Neon instruction set /// present. static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI, const TargetInstrInfo &TII, MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, DebugLoc DL, const unsigned Reg, const unsigned Alignment, const bool MustBeSingleInstruction) { const ARMSubtarget &AST = static_cast(MF.getSubtarget()); const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops(); const unsigned AlignMask = Alignment - 1; const unsigned NrBitsToZero = countTrailingZeros(Alignment); assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported"); if (!AFI->isThumbFunction()) { // if the BFC instruction is available, use that to zero the lower // bits: // bfc Reg, #0, log2(Alignment) // otherwise use BIC, if the mask to zero the required number of bits // can be encoded in the bic immediate field // bic Reg, Reg, Alignment-1 // otherwise, emit // lsr Reg, Reg, log2(Alignment) // lsl Reg, Reg, log2(Alignment) if (CanUseBFC) { AddDefaultPred(BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg) .addReg(Reg, RegState::Kill) .addImm(~AlignMask)); } else if (AlignMask <= 255) { AddDefaultCC( AddDefaultPred(BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg) .addReg(Reg, RegState::Kill) .addImm(AlignMask))); } else { assert(!MustBeSingleInstruction && "Shouldn't call emitAligningInstructions demanding a single " "instruction to be emitted for large stack alignment for a target " "without BFC."); AddDefaultCC(AddDefaultPred( BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) .addReg(Reg, RegState::Kill) .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero)))); AddDefaultCC(AddDefaultPred( BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) .addReg(Reg, RegState::Kill) .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero)))); } } else { // Since this is only reached for Thumb-2 targets, the BFC instruction // should always be available. assert(CanUseBFC); AddDefaultPred(BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg) .addReg(Reg, RegState::Kill) .addImm(~AlignMask)); } } void ARMFrameLowering::emitPrologue(MachineFunction &MF) const { MachineBasicBlock &MBB = MF.front(); MachineBasicBlock::iterator MBBI = MBB.begin(); MachineFrameInfo *MFI = MF.getFrameInfo(); ARMFunctionInfo *AFI = MF.getInfo(); MachineModuleInfo &MMI = MF.getMMI(); MCContext &Context = MMI.getContext(); const TargetMachine &TM = MF.getTarget(); const MCRegisterInfo *MRI = Context.getRegisterInfo(); const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo(); const ARMBaseInstrInfo &TII = *STI.getInstrInfo(); assert(!AFI->isThumb1OnlyFunction() && "This emitPrologue does not support Thumb1!"); bool isARM = !AFI->isThumbFunction(); unsigned Align = STI.getFrameLowering()->getStackAlignment(); unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(Align); unsigned NumBytes = MFI->getStackSize(); const std::vector &CSI = MFI->getCalleeSavedInfo(); DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); unsigned FramePtr = RegInfo->getFrameRegister(MF); // Determine the sizes of each callee-save spill areas and record which frame // belongs to which callee-save spill areas. unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0; int FramePtrSpillFI = 0; int D8SpillFI = 0; // All calls are tail calls in GHC calling conv, and functions have no // prologue/epilogue. if (MF.getFunction()->getCallingConv() == CallingConv::GHC) return; StackAdjustingInsts DefCFAOffsetCandidates; // Allocate the vararg register save area. if (ArgRegsSaveSize) { emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize, MachineInstr::FrameSetup); DefCFAOffsetCandidates.addInst(std::prev(MBBI), ArgRegsSaveSize, true); } if (!AFI->hasStackFrame() && (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) { if (NumBytes - ArgRegsSaveSize != 0) { emitSPUpdate(isARM, MBB, MBBI, dl, TII, -(NumBytes - ArgRegsSaveSize), MachineInstr::FrameSetup); DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes - ArgRegsSaveSize, true); } return; } // Determine spill area sizes. for (unsigned i = 0, e = CSI.size(); i != e; ++i) { unsigned Reg = CSI[i].getReg(); int FI = CSI[i].getFrameIdx(); switch (Reg) { case ARM::R8: case ARM::R9: case ARM::R10: case ARM::R11: case ARM::R12: if (STI.isTargetDarwin()) { GPRCS2Size += 4; break; } // fallthrough case ARM::R0: case ARM::R1: case ARM::R2: case ARM::R3: case ARM::R4: case ARM::R5: case ARM::R6: case ARM::R7: case ARM::LR: if (Reg == FramePtr) FramePtrSpillFI = FI; GPRCS1Size += 4; break; default: // This is a DPR. Exclude the aligned DPRCS2 spills. if (Reg == ARM::D8) D8SpillFI = FI; if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs()) DPRCSSize += 8; } } // Move past area 1. MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push; if (GPRCS1Size > 0) { GPRCS1Push = LastPush = MBBI++; DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true); } // Determine starting offsets of spill areas. bool HasFP = hasFP(MF); unsigned GPRCS1Offset = NumBytes - ArgRegsSaveSize - GPRCS1Size; unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size; unsigned DPRAlign = DPRCSSize ? std::min(8U, Align) : 4U; unsigned DPRGapSize = (GPRCS1Size + GPRCS2Size + ArgRegsSaveSize) % DPRAlign; unsigned DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize; int FramePtrOffsetInPush = 0; if (HasFP) { FramePtrOffsetInPush = MFI->getObjectOffset(FramePtrSpillFI) + ArgRegsSaveSize; AFI->setFramePtrSpillOffset(MFI->getObjectOffset(FramePtrSpillFI) + NumBytes); } AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset); AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset); AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset); // Move past area 2. if (GPRCS2Size > 0) { GPRCS2Push = LastPush = MBBI++; DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size); } // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our // .cfi_offset operations will reflect that. if (DPRGapSize) { assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs"); if (tryFoldSPUpdateIntoPushPop(STI, MF, LastPush, DPRGapSize)) DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize); else { emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize, MachineInstr::FrameSetup); DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize); } } // Move past area 3. if (DPRCSSize > 0) { // Since vpush register list cannot have gaps, there may be multiple vpush // instructions in the prologue. while (MBBI->getOpcode() == ARM::VSTMDDB_UPD) { DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(MBBI)); LastPush = MBBI++; } } // Move past the aligned DPRCS2 area. if (AFI->getNumAlignedDPRCS2Regs() > 0) { MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs()); // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and // leaves the stack pointer pointing to the DPRCS2 area. // // Adjust NumBytes to represent the stack slots below the DPRCS2 area. NumBytes += MFI->getObjectOffset(D8SpillFI); } else NumBytes = DPRCSOffset; if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) { uint32_t NumWords = NumBytes >> 2; if (NumWords < 65536) AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4) .addImm(NumWords) .setMIFlags(MachineInstr::FrameSetup)); else BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R4) .addImm(NumWords) .setMIFlags(MachineInstr::FrameSetup); switch (TM.getCodeModel()) { case CodeModel::Small: case CodeModel::Medium: case CodeModel::Default: case CodeModel::Kernel: BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL)) .addImm((unsigned)ARMCC::AL).addReg(0) .addExternalSymbol("__chkstk") .addReg(ARM::R4, RegState::Implicit) .setMIFlags(MachineInstr::FrameSetup); break; case CodeModel::Large: case CodeModel::JITDefault: BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12) .addExternalSymbol("__chkstk") .setMIFlags(MachineInstr::FrameSetup); BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr)) .addImm((unsigned)ARMCC::AL).addReg(0) .addReg(ARM::R12, RegState::Kill) .addReg(ARM::R4, RegState::Implicit) .setMIFlags(MachineInstr::FrameSetup); break; } AddDefaultCC(AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP) .addReg(ARM::SP, RegState::Define) .addReg(ARM::R4, RegState::Kill) .setMIFlags(MachineInstr::FrameSetup))); NumBytes = 0; } if (NumBytes) { // Adjust SP after all the callee-save spills. if (tryFoldSPUpdateIntoPushPop(STI, MF, LastPush, NumBytes)) DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes); else { emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes, MachineInstr::FrameSetup); DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes); } if (HasFP && isARM) // Restore from fp only in ARM mode: e.g. sub sp, r7, #24 // Note it's not safe to do this in Thumb2 mode because it would have // taken two instructions: // mov sp, r7 // sub sp, #24 // If an interrupt is taken between the two instructions, then sp is in // an inconsistent state (pointing to the middle of callee-saved area). // The interrupt handler can end up clobbering the registers. AFI->setShouldRestoreSPFromFP(true); } // Set FP to point to the stack slot that contains the previous FP. // For iOS, FP is R7, which has now been stored in spill area 1. // Otherwise, if this is not iOS, all the callee-saved registers go // into spill area 1, including the FP in R11. In either case, it // is in area one and the adjustment needs to take place just after // that push. if (HasFP) { MachineBasicBlock::iterator AfterPush = std::next(GPRCS1Push); unsigned PushSize = sizeOfSPAdjustment(GPRCS1Push); emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII, FramePtr, ARM::SP, PushSize + FramePtrOffsetInPush, MachineInstr::FrameSetup); if (FramePtrOffsetInPush + PushSize != 0) { unsigned CFIIndex = MMI.addFrameInst(MCCFIInstruction::createDefCfa( nullptr, MRI->getDwarfRegNum(FramePtr, true), -(ArgRegsSaveSize - FramePtrOffsetInPush))); BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex) .setMIFlags(MachineInstr::FrameSetup); } else { unsigned CFIIndex = MMI.addFrameInst(MCCFIInstruction::createDefCfaRegister( nullptr, MRI->getDwarfRegNum(FramePtr, true))); BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex) .setMIFlags(MachineInstr::FrameSetup); } } // Now that the prologue's actual instructions are finalised, we can insert // the necessary DWARF cf instructions to describe the situation. Start by // recording where each register ended up: if (GPRCS1Size > 0) { MachineBasicBlock::iterator Pos = std::next(GPRCS1Push); int CFIIndex; for (const auto &Entry : CSI) { unsigned Reg = Entry.getReg(); int FI = Entry.getFrameIdx(); switch (Reg) { case ARM::R8: case ARM::R9: case ARM::R10: case ARM::R11: case ARM::R12: if (STI.isTargetDarwin()) break; // fallthrough case ARM::R0: case ARM::R1: case ARM::R2: case ARM::R3: case ARM::R4: case ARM::R5: case ARM::R6: case ARM::R7: case ARM::LR: CFIIndex = MMI.addFrameInst(MCCFIInstruction::createOffset( nullptr, MRI->getDwarfRegNum(Reg, true), MFI->getObjectOffset(FI))); BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex) .setMIFlags(MachineInstr::FrameSetup); break; } } } if (GPRCS2Size > 0) { MachineBasicBlock::iterator Pos = std::next(GPRCS2Push); for (const auto &Entry : CSI) { unsigned Reg = Entry.getReg(); int FI = Entry.getFrameIdx(); switch (Reg) { case ARM::R8: case ARM::R9: case ARM::R10: case ARM::R11: case ARM::R12: if (STI.isTargetDarwin()) { unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); unsigned Offset = MFI->getObjectOffset(FI); unsigned CFIIndex = MMI.addFrameInst( MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex) .setMIFlags(MachineInstr::FrameSetup); } break; } } } if (DPRCSSize > 0) { // Since vpush register list cannot have gaps, there may be multiple vpush // instructions in the prologue. MachineBasicBlock::iterator Pos = std::next(LastPush); for (const auto &Entry : CSI) { unsigned Reg = Entry.getReg(); int FI = Entry.getFrameIdx(); if ((Reg >= ARM::D0 && Reg <= ARM::D31) && (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) { unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); unsigned Offset = MFI->getObjectOffset(FI); unsigned CFIIndex = MMI.addFrameInst( MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex) .setMIFlags(MachineInstr::FrameSetup); } } } // Now we can emit descriptions of where the canonical frame address was // throughout the process. If we have a frame pointer, it takes over the job // half-way through, so only the first few .cfi_def_cfa_offset instructions // actually get emitted. DefCFAOffsetCandidates.emitDefCFAOffsets(MMI, MBB, dl, TII, HasFP); if (STI.isTargetELF() && hasFP(MF)) MFI->setOffsetAdjustment(MFI->getOffsetAdjustment() - AFI->getFramePtrSpillOffset()); AFI->setGPRCalleeSavedArea1Size(GPRCS1Size); AFI->setGPRCalleeSavedArea2Size(GPRCS2Size); AFI->setDPRCalleeSavedGapSize(DPRGapSize); AFI->setDPRCalleeSavedAreaSize(DPRCSSize); // If we need dynamic stack realignment, do it here. Be paranoid and make // sure if we also have VLAs, we have a base pointer for frame access. // If aligned NEON registers were spilled, the stack has already been // realigned. if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->needsStackRealignment(MF)) { unsigned MaxAlign = MFI->getMaxAlignment(); assert(!AFI->isThumb1OnlyFunction()); if (!AFI->isThumbFunction()) { emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign, false); } else { // We cannot use sp as source/dest register here, thus we're using r4 to // perform the calculations. We're emitting the following sequence: // mov r4, sp // -- use emitAligningInstructions to produce best sequence to zero // -- out lower bits in r4 // mov sp, r4 // FIXME: It will be better just to find spare register here. AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4) .addReg(ARM::SP, RegState::Kill)); emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign, false); AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) .addReg(ARM::R4, RegState::Kill)); } AFI->setShouldRestoreSPFromFP(true); } // If we need a base pointer, set it up here. It's whatever the value // of the stack pointer is at this point. Any variable size objects // will be allocated after this, so we can still use the base pointer // to reference locals. // FIXME: Clarify FrameSetup flags here. if (RegInfo->hasBasePointer(MF)) { if (isARM) BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister()) .addReg(ARM::SP) .addImm((unsigned)ARMCC::AL).addReg(0).addReg(0); else AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister()) .addReg(ARM::SP)); } // If the frame has variable sized objects then the epilogue must restore // the sp from fp. We can assume there's an FP here since hasFP already // checks for hasVarSizedObjects. if (MFI->hasVarSizedObjects()) AFI->setShouldRestoreSPFromFP(true); } // Resolve TCReturn pseudo-instruction void ARMFrameLowering::fixTCReturn(MachineFunction &MF, MachineBasicBlock &MBB) const { MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); assert(MBBI->isReturn() && "Can only insert epilog into returning blocks"); unsigned RetOpcode = MBBI->getOpcode(); DebugLoc dl = MBBI->getDebugLoc(); const ARMBaseInstrInfo &TII = *static_cast(MF.getSubtarget().getInstrInfo()); if (!(RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri)) return; // Tail call return: adjust the stack pointer and jump to callee. MBBI = MBB.getLastNonDebugInstr(); MachineOperand &JumpTarget = MBBI->getOperand(0); // Jump to label or value in register. if (RetOpcode == ARM::TCRETURNdi) { unsigned TCOpcode = STI.isThumb() ? (STI.isTargetMachO() ? ARM::tTAILJMPd : ARM::tTAILJMPdND) : ARM::TAILJMPd; MachineInstrBuilder MIB = BuildMI(MBB, MBBI, dl, TII.get(TCOpcode)); if (JumpTarget.isGlobal()) MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(), JumpTarget.getTargetFlags()); else { assert(JumpTarget.isSymbol()); MIB.addExternalSymbol(JumpTarget.getSymbolName(), JumpTarget.getTargetFlags()); } // Add the default predicate in Thumb mode. if (STI.isThumb()) MIB.addImm(ARMCC::AL).addReg(0); } else if (RetOpcode == ARM::TCRETURNri) { BuildMI(MBB, MBBI, dl, TII.get(STI.isThumb() ? ARM::tTAILJMPr : ARM::TAILJMPr)). addReg(JumpTarget.getReg(), RegState::Kill); } MachineInstr *NewMI = std::prev(MBBI); for (unsigned i = 1, e = MBBI->getNumOperands(); i != e; ++i) NewMI->addOperand(MBBI->getOperand(i)); // Delete the pseudo instruction TCRETURN. MBB.erase(MBBI); MBBI = NewMI; } void ARMFrameLowering::emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const { MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); assert(MBBI->isReturn() && "Can only insert epilog into returning blocks"); DebugLoc dl = MBBI->getDebugLoc(); MachineFrameInfo *MFI = MF.getFrameInfo(); ARMFunctionInfo *AFI = MF.getInfo(); const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); const ARMBaseInstrInfo &TII = *static_cast(MF.getSubtarget().getInstrInfo()); assert(!AFI->isThumb1OnlyFunction() && "This emitEpilogue does not support Thumb1!"); bool isARM = !AFI->isThumbFunction(); unsigned Align = STI.getFrameLowering()->getStackAlignment(); unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(Align); int NumBytes = (int)MFI->getStackSize(); unsigned FramePtr = RegInfo->getFrameRegister(MF); // All calls are tail calls in GHC calling conv, and functions have no // prologue/epilogue. if (MF.getFunction()->getCallingConv() == CallingConv::GHC) { fixTCReturn(MF, MBB); return; } if (!AFI->hasStackFrame()) { if (NumBytes - ArgRegsSaveSize != 0) emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes - ArgRegsSaveSize); } else { // Unwind MBBI to point to first LDR / VLDRD. const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); if (MBBI != MBB.begin()) { do { --MBBI; } while (MBBI != MBB.begin() && isCSRestore(MBBI, TII, CSRegs)); if (!isCSRestore(MBBI, TII, CSRegs)) ++MBBI; } // Move SP to start of FP callee save spill area. NumBytes -= (ArgRegsSaveSize + AFI->getGPRCalleeSavedArea1Size() + AFI->getGPRCalleeSavedArea2Size() + AFI->getDPRCalleeSavedGapSize() + AFI->getDPRCalleeSavedAreaSize()); // Reset SP based on frame pointer only if the stack frame extends beyond // frame pointer stack slot or target is ELF and the function has FP. if (AFI->shouldRestoreSPFromFP()) { NumBytes = AFI->getFramePtrSpillOffset() - NumBytes; if (NumBytes) { if (isARM) emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes, ARMCC::AL, 0, TII); else { // It's not possible to restore SP from FP in a single instruction. // For iOS, this looks like: // mov sp, r7 // sub sp, #24 // This is bad, if an interrupt is taken after the mov, sp is in an // inconsistent state. // Use the first callee-saved register as a scratch register. assert(MF.getRegInfo().isPhysRegUsed(ARM::R4) && "No scratch register to restore SP from FP!"); emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes, ARMCC::AL, 0, TII); AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) .addReg(ARM::R4)); } } else { // Thumb2 or ARM. if (isARM) BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP) .addReg(FramePtr).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0); else AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) .addReg(FramePtr)); } } else if (NumBytes && !tryFoldSPUpdateIntoPushPop(STI, MF, MBBI, NumBytes)) emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes); // Increment past our save areas. if (AFI->getDPRCalleeSavedAreaSize()) { MBBI++; // Since vpop register list cannot have gaps, there may be multiple vpop // instructions in the epilogue. while (MBBI->getOpcode() == ARM::VLDMDIA_UPD) MBBI++; } if (AFI->getDPRCalleeSavedGapSize()) { assert(AFI->getDPRCalleeSavedGapSize() == 4 && "unexpected DPR alignment gap"); emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize()); } if (AFI->getGPRCalleeSavedArea2Size()) MBBI++; if (AFI->getGPRCalleeSavedArea1Size()) MBBI++; } fixTCReturn(MF, MBB); if (ArgRegsSaveSize) emitSPUpdate(isARM, MBB, MBBI, dl, TII, ArgRegsSaveSize); } /// getFrameIndexReference - Provide a base+offset reference to an FI slot for /// debug info. It's the same as what we use for resolving the code-gen /// references for now. FIXME: This can go wrong when references are /// SP-relative and simple call frames aren't used. int ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, unsigned &FrameReg) const { return ResolveFrameIndexReference(MF, FI, FrameReg, 0); } int ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF, int FI, unsigned &FrameReg, int SPAdj) const { const MachineFrameInfo *MFI = MF.getFrameInfo(); const ARMBaseRegisterInfo *RegInfo = static_cast( MF.getSubtarget().getRegisterInfo()); const ARMFunctionInfo *AFI = MF.getInfo(); int Offset = MFI->getObjectOffset(FI) + MFI->getStackSize(); int FPOffset = Offset - AFI->getFramePtrSpillOffset(); bool isFixed = MFI->isFixedObjectIndex(FI); FrameReg = ARM::SP; Offset += SPAdj; // SP can move around if there are allocas. We may also lose track of SP // when emergency spilling inside a non-reserved call frame setup. bool hasMovingSP = !hasReservedCallFrame(MF); // When dynamically realigning the stack, use the frame pointer for // parameters, and the stack/base pointer for locals. if (RegInfo->needsStackRealignment(MF)) { assert (hasFP(MF) && "dynamic stack realignment without a FP!"); if (isFixed) { FrameReg = RegInfo->getFrameRegister(MF); Offset = FPOffset; } else if (hasMovingSP) { assert(RegInfo->hasBasePointer(MF) && "VLAs and dynamic stack alignment, but missing base pointer!"); FrameReg = RegInfo->getBaseRegister(); } return Offset; } // If there is a frame pointer, use it when we can. if (hasFP(MF) && AFI->hasStackFrame()) { // Use frame pointer to reference fixed objects. Use it for locals if // there are VLAs (and thus the SP isn't reliable as a base). if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) { FrameReg = RegInfo->getFrameRegister(MF); return FPOffset; } else if (hasMovingSP) { assert(RegInfo->hasBasePointer(MF) && "missing base pointer!"); if (AFI->isThumb2Function()) { // Try to use the frame pointer if we can, else use the base pointer // since it's available. This is handy for the emergency spill slot, in // particular. if (FPOffset >= -255 && FPOffset < 0) { FrameReg = RegInfo->getFrameRegister(MF); return FPOffset; } } } else if (AFI->isThumb2Function()) { // Use add , sp, # // ldr , [sp, #] // if at all possible to save space. if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020) return Offset; // In Thumb2 mode, the negative offset is very limited. Try to avoid // out of range references. ldr ,[, #-] if (FPOffset >= -255 && FPOffset < 0) { FrameReg = RegInfo->getFrameRegister(MF); return FPOffset; } } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) { // Otherwise, use SP or FP, whichever is closer to the stack slot. FrameReg = RegInfo->getFrameRegister(MF); return FPOffset; } } // Use the base pointer if we have one. if (RegInfo->hasBasePointer(MF)) FrameReg = RegInfo->getBaseRegister(); return Offset; } int ARMFrameLowering::getFrameIndexOffset(const MachineFunction &MF, int FI) const { unsigned FrameReg; return getFrameIndexReference(MF, FI, FrameReg); } void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const std::vector &CSI, unsigned StmOpc, unsigned StrOpc, bool NoGap, bool(*Func)(unsigned, bool), unsigned NumAlignedDPRCS2Regs, unsigned MIFlags) const { MachineFunction &MF = *MBB.getParent(); const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); DebugLoc DL; if (MI != MBB.end()) DL = MI->getDebugLoc(); SmallVector, 4> Regs; unsigned i = CSI.size(); while (i != 0) { unsigned LastReg = 0; for (; i != 0; --i) { unsigned Reg = CSI[i-1].getReg(); if (!(Func)(Reg, STI.isTargetDarwin())) continue; // D-registers in the aligned area DPRCS2 are NOT spilled here. if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) continue; // Add the callee-saved register as live-in unless it's LR and // @llvm.returnaddress is called. If LR is returned for // @llvm.returnaddress then it's already added to the function and // entry block live-in sets. bool isKill = true; if (Reg == ARM::LR) { if (MF.getFrameInfo()->isReturnAddressTaken() && MF.getRegInfo().isLiveIn(Reg)) isKill = false; } if (isKill) MBB.addLiveIn(Reg); // If NoGap is true, push consecutive registers and then leave the rest // for other instructions. e.g. // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11} if (NoGap && LastReg && LastReg != Reg-1) break; LastReg = Reg; Regs.push_back(std::make_pair(Reg, isKill)); } if (Regs.empty()) continue; if (Regs.size() > 1 || StrOpc== 0) { MachineInstrBuilder MIB = AddDefaultPred(BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP) .addReg(ARM::SP).setMIFlags(MIFlags)); for (unsigned i = 0, e = Regs.size(); i < e; ++i) MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second)); } else if (Regs.size() == 1) { MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP) .addReg(Regs[0].first, getKillRegState(Regs[0].second)) .addReg(ARM::SP).setMIFlags(MIFlags) .addImm(-4); AddDefaultPred(MIB); } Regs.clear(); // Put any subsequent vpush instructions before this one: they will refer to // higher register numbers so need to be pushed first in order to preserve // monotonicity. --MI; } } void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const std::vector &CSI, unsigned LdmOpc, unsigned LdrOpc, bool isVarArg, bool NoGap, bool(*Func)(unsigned, bool), unsigned NumAlignedDPRCS2Regs) const { MachineFunction &MF = *MBB.getParent(); const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); ARMFunctionInfo *AFI = MF.getInfo(); DebugLoc DL = MI->getDebugLoc(); unsigned RetOpcode = MI->getOpcode(); bool isTailCall = (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri); bool isInterrupt = RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR; SmallVector Regs; unsigned i = CSI.size(); while (i != 0) { unsigned LastReg = 0; bool DeleteRet = false; for (; i != 0; --i) { unsigned Reg = CSI[i-1].getReg(); if (!(Func)(Reg, STI.isTargetDarwin())) continue; // The aligned reloads from area DPRCS2 are not inserted here. if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) continue; if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt && STI.hasV5TOps()) { Reg = ARM::PC; LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET; // Fold the return instruction into the LDM. DeleteRet = true; } // If NoGap is true, pop consecutive registers and then leave the rest // for other instructions. e.g. // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11} if (NoGap && LastReg && LastReg != Reg-1) break; LastReg = Reg; Regs.push_back(Reg); } if (Regs.empty()) continue; if (Regs.size() > 1 || LdrOpc == 0) { MachineInstrBuilder MIB = AddDefaultPred(BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP) .addReg(ARM::SP)); for (unsigned i = 0, e = Regs.size(); i < e; ++i) MIB.addReg(Regs[i], getDefRegState(true)); if (DeleteRet) { MIB.copyImplicitOps(&*MI); MI->eraseFromParent(); } MI = MIB; } else if (Regs.size() == 1) { // If we adjusted the reg to PC from LR above, switch it back here. We // only do that for LDM. if (Regs[0] == ARM::PC) Regs[0] = ARM::LR; MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0]) .addReg(ARM::SP, RegState::Define) .addReg(ARM::SP); // ARM mode needs an extra reg0 here due to addrmode2. Will go away once // that refactoring is complete (eventually). if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) { MIB.addReg(0); MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift)); } else MIB.addImm(4); AddDefaultPred(MIB); } Regs.clear(); // Put any subsequent vpop instructions after this one: they will refer to // higher register numbers so need to be popped afterwards. ++MI; } } /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers /// starting from d8. Also insert stack realignment code and leave the stack /// pointer pointing to the d8 spill slot. static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned NumAlignedDPRCS2Regs, const std::vector &CSI, const TargetRegisterInfo *TRI) { MachineFunction &MF = *MBB.getParent(); ARMFunctionInfo *AFI = MF.getInfo(); DebugLoc DL = MI->getDebugLoc(); const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); MachineFrameInfo &MFI = *MF.getFrameInfo(); // Mark the D-register spill slots as properly aligned. Since MFI computes // stack slot layout backwards, this can actually mean that the d-reg stack // slot offsets can be wrong. The offset for d8 will always be correct. for (unsigned i = 0, e = CSI.size(); i != e; ++i) { unsigned DNum = CSI[i].getReg() - ARM::D8; if (DNum >= 8) continue; int FI = CSI[i].getFrameIdx(); // The even-numbered registers will be 16-byte aligned, the odd-numbered // registers will be 8-byte aligned. MFI.setObjectAlignment(FI, DNum % 2 ? 8 : 16); // The stack slot for D8 needs to be maximally aligned because this is // actually the point where we align the stack pointer. MachineFrameInfo // computes all offsets relative to the incoming stack pointer which is a // bit weird when realigning the stack. Any extra padding for this // over-alignment is not realized because the code inserted below adjusts // the stack pointer by numregs * 8 before aligning the stack pointer. if (DNum == 0) MFI.setObjectAlignment(FI, MFI.getMaxAlignment()); } // Move the stack pointer to the d8 spill slot, and align it at the same // time. Leave the stack slot address in the scratch register r4. // // sub r4, sp, #numregs * 8 // bic r4, r4, #align - 1 // mov sp, r4 // bool isThumb = AFI->isThumbFunction(); assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); AFI->setShouldRestoreSPFromFP(true); // sub r4, sp, #numregs * 8 // The immediate is <= 64, so it doesn't need any special encoding. unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri; AddDefaultCC(AddDefaultPred(BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) .addReg(ARM::SP) .addImm(8 * NumAlignedDPRCS2Regs))); unsigned MaxAlign = MF.getFrameInfo()->getMaxAlignment(); // We must set parameter MustBeSingleInstruction to true, since // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform // stack alignment. Luckily, this can always be done since all ARM // architecture versions that support Neon also support the BFC // instruction. emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true); // mov sp, r4 // The stack pointer must be adjusted before spilling anything, otherwise // the stack slots could be clobbered by an interrupt handler. // Leave r4 live, it is used below. Opc = isThumb ? ARM::tMOVr : ARM::MOVr; MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP) .addReg(ARM::R4); MIB = AddDefaultPred(MIB); if (!isThumb) AddDefaultCC(MIB); // Now spill NumAlignedDPRCS2Regs registers starting from d8. // r4 holds the stack slot address. unsigned NextReg = ARM::D8; // 16-byte aligned vst1.64 with 4 d-regs and address writeback. // The writeback is only needed when emitting two vst1.64 instructions. if (NumAlignedDPRCS2Regs >= 6) { unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, &ARM::QQPRRegClass); MBB.addLiveIn(SupReg); AddDefaultPred(BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4) .addReg(ARM::R4, RegState::Kill).addImm(16) .addReg(NextReg) .addReg(SupReg, RegState::ImplicitKill)); NextReg += 4; NumAlignedDPRCS2Regs -= 4; } // We won't modify r4 beyond this point. It currently points to the next // register to be spilled. unsigned R4BaseReg = NextReg; // 16-byte aligned vst1.64 with 4 d-regs, no writeback. if (NumAlignedDPRCS2Regs >= 4) { unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, &ARM::QQPRRegClass); MBB.addLiveIn(SupReg); AddDefaultPred(BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q)) .addReg(ARM::R4).addImm(16).addReg(NextReg) .addReg(SupReg, RegState::ImplicitKill)); NextReg += 4; NumAlignedDPRCS2Regs -= 4; } // 16-byte aligned vst1.64 with 2 d-regs. if (NumAlignedDPRCS2Regs >= 2) { unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, &ARM::QPRRegClass); MBB.addLiveIn(SupReg); AddDefaultPred(BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64)) .addReg(ARM::R4).addImm(16).addReg(SupReg)); NextReg += 2; NumAlignedDPRCS2Regs -= 2; } // Finally, use a vanilla vstr.64 for the odd last register. if (NumAlignedDPRCS2Regs) { MBB.addLiveIn(NextReg); // vstr.64 uses addrmode5 which has an offset scale of 4. AddDefaultPred(BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD)) .addReg(NextReg) .addReg(ARM::R4).addImm((NextReg-R4BaseReg)*2)); } // The last spill instruction inserted should kill the scratch register r4. std::prev(MI)->addRegisterKilled(ARM::R4, TRI); } /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an /// iterator to the following instruction. static MachineBasicBlock::iterator skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, unsigned NumAlignedDPRCS2Regs) { // sub r4, sp, #numregs * 8 // bic r4, r4, #align - 1 // mov sp, r4 ++MI; ++MI; ++MI; assert(MI->mayStore() && "Expecting spill instruction"); // These switches all fall through. switch(NumAlignedDPRCS2Regs) { case 7: ++MI; assert(MI->mayStore() && "Expecting spill instruction"); default: ++MI; assert(MI->mayStore() && "Expecting spill instruction"); case 1: case 2: case 4: assert(MI->killsRegister(ARM::R4) && "Missed kill flag"); ++MI; } return MI; } /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers /// starting from d8. These instructions are assumed to execute while the /// stack is still aligned, unlike the code inserted by emitPopInst. static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned NumAlignedDPRCS2Regs, const std::vector &CSI, const TargetRegisterInfo *TRI) { MachineFunction &MF = *MBB.getParent(); ARMFunctionInfo *AFI = MF.getInfo(); DebugLoc DL = MI->getDebugLoc(); const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); // Find the frame index assigned to d8. int D8SpillFI = 0; for (unsigned i = 0, e = CSI.size(); i != e; ++i) if (CSI[i].getReg() == ARM::D8) { D8SpillFI = CSI[i].getFrameIdx(); break; } // Materialize the address of the d8 spill slot into the scratch register r4. // This can be fairly complicated if the stack frame is large, so just use // the normal frame index elimination mechanism to do it. This code runs as // the initial part of the epilog where the stack and base pointers haven't // been changed yet. bool isThumb = AFI->isThumbFunction(); assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri; AddDefaultCC(AddDefaultPred(BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) .addFrameIndex(D8SpillFI).addImm(0))); // Now restore NumAlignedDPRCS2Regs registers starting from d8. unsigned NextReg = ARM::D8; // 16-byte aligned vld1.64 with 4 d-regs and writeback. if (NumAlignedDPRCS2Regs >= 6) { unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, &ARM::QQPRRegClass); AddDefaultPred(BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg) .addReg(ARM::R4, RegState::Define) .addReg(ARM::R4, RegState::Kill).addImm(16) .addReg(SupReg, RegState::ImplicitDefine)); NextReg += 4; NumAlignedDPRCS2Regs -= 4; } // We won't modify r4 beyond this point. It currently points to the next // register to be spilled. unsigned R4BaseReg = NextReg; // 16-byte aligned vld1.64 with 4 d-regs, no writeback. if (NumAlignedDPRCS2Regs >= 4) { unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, &ARM::QQPRRegClass); AddDefaultPred(BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg) .addReg(ARM::R4).addImm(16) .addReg(SupReg, RegState::ImplicitDefine)); NextReg += 4; NumAlignedDPRCS2Regs -= 4; } // 16-byte aligned vld1.64 with 2 d-regs. if (NumAlignedDPRCS2Regs >= 2) { unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, &ARM::QPRRegClass); AddDefaultPred(BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg) .addReg(ARM::R4).addImm(16)); NextReg += 2; NumAlignedDPRCS2Regs -= 2; } // Finally, use a vanilla vldr.64 for the remaining odd register. if (NumAlignedDPRCS2Regs) AddDefaultPred(BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg) .addReg(ARM::R4).addImm(2*(NextReg-R4BaseReg))); // Last store kills r4. std::prev(MI)->addRegisterKilled(ARM::R4, TRI); } bool ARMFrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const std::vector &CSI, const TargetRegisterInfo *TRI) const { if (CSI.empty()) return false; MachineFunction &MF = *MBB.getParent(); ARMFunctionInfo *AFI = MF.getInfo(); unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD; unsigned PushOneOpc = AFI->isThumbFunction() ? ARM::t2STR_PRE : ARM::STR_PRE_IMM; unsigned FltOpc = ARM::VSTMDDB_UPD; unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register, 0, MachineInstr::FrameSetup); emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register, 0, MachineInstr::FrameSetup); emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register, NumAlignedDPRCS2Regs, MachineInstr::FrameSetup); // The code above does not insert spill code for the aligned DPRCS2 registers. // The stack realignment code will be inserted between the push instructions // and these spills. if (NumAlignedDPRCS2Regs) emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); return true; } bool ARMFrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const std::vector &CSI, const TargetRegisterInfo *TRI) const { if (CSI.empty()) return false; MachineFunction &MF = *MBB.getParent(); ARMFunctionInfo *AFI = MF.getInfo(); bool isVarArg = AFI->getArgRegsSaveSize() > 0; unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); // The emitPopInst calls below do not insert reloads for the aligned DPRCS2 // registers. Do that here instead. if (NumAlignedDPRCS2Regs) emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD; unsigned LdrOpc = AFI->isThumbFunction() ? ARM::t2LDR_POST :ARM::LDR_POST_IMM; unsigned FltOpc = ARM::VLDMDIA_UPD; emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register, NumAlignedDPRCS2Regs); emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, &isARMArea2Register, 0); emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, &isARMArea1Register, 0); return true; } // FIXME: Make generic? static unsigned GetFunctionSizeInBytes(const MachineFunction &MF, const ARMBaseInstrInfo &TII) { unsigned FnSize = 0; for (auto &MBB : MF) { for (auto &MI : MBB) FnSize += TII.GetInstSizeInBytes(&MI); } return FnSize; } /// estimateRSStackSizeLimit - Look at each instruction that references stack /// frames and return the stack size limit beyond which some of these /// instructions will require a scratch register during their expansion later. // FIXME: Move to TII? static unsigned estimateRSStackSizeLimit(MachineFunction &MF, const TargetFrameLowering *TFI) { const ARMFunctionInfo *AFI = MF.getInfo(); unsigned Limit = (1 << 12) - 1; for (auto &MBB : MF) { for (auto &MI : MBB) { for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { if (!MI.getOperand(i).isFI()) continue; // When using ADDri to get the address of a stack object, 255 is the // largest offset guaranteed to fit in the immediate offset. if (MI.getOpcode() == ARM::ADDri) { Limit = std::min(Limit, (1U << 8) - 1); break; } // Otherwise check the addressing mode. switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) { case ARMII::AddrMode3: case ARMII::AddrModeT2_i8: Limit = std::min(Limit, (1U << 8) - 1); break; case ARMII::AddrMode5: case ARMII::AddrModeT2_i8s4: Limit = std::min(Limit, ((1U << 8) - 1) * 4); break; case ARMII::AddrModeT2_i12: // i12 supports only positive offset so these will be converted to // i8 opcodes. See llvm::rewriteT2FrameIndex. if (TFI->hasFP(MF) && AFI->hasStackFrame()) Limit = std::min(Limit, (1U << 8) - 1); break; case ARMII::AddrMode4: case ARMII::AddrMode6: // Addressing modes 4 & 6 (load/store) instructions can't encode an // immediate offset for stack references. return 0; default: break; } break; // At most one FI per instruction } } } return Limit; } // In functions that realign the stack, it can be an advantage to spill the // callee-saved vector registers after realigning the stack. The vst1 and vld1 // instructions take alignment hints that can improve performance. // static void checkNumAlignedDPRCS2Regs(MachineFunction &MF) { MF.getInfo()->setNumAlignedDPRCS2Regs(0); if (!SpillAlignedNEONRegs) return; // Naked functions don't spill callee-saved registers. if (MF.getFunction()->hasFnAttribute(Attribute::Naked)) return; // We are planning to use NEON instructions vst1 / vld1. if (!static_cast(MF.getSubtarget()).hasNEON()) return; // Don't bother if the default stack alignment is sufficiently high. if (MF.getSubtarget().getFrameLowering()->getStackAlignment() >= 8) return; // Aligned spills require stack realignment. if (!static_cast( MF.getSubtarget().getRegisterInfo())->canRealignStack(MF)) return; // We always spill contiguous d-registers starting from d8. Count how many // needs spilling. The register allocator will almost always use the // callee-saved registers in order, but it can happen that there are holes in // the range. Registers above the hole will be spilled to the standard DPRCS // area. MachineRegisterInfo &MRI = MF.getRegInfo(); unsigned NumSpills = 0; for (; NumSpills < 8; ++NumSpills) if (!MRI.isPhysRegUsed(ARM::D8 + NumSpills)) break; // Don't do this for just one d-register. It's not worth it. if (NumSpills < 2) return; // Spill the first NumSpills D-registers after realigning the stack. MF.getInfo()->setNumAlignedDPRCS2Regs(NumSpills); // A scratch register is required for the vst1 / vld1 instructions. MF.getRegInfo().setPhysRegUsed(ARM::R4); } void ARMFrameLowering::processFunctionBeforeCalleeSavedScan(MachineFunction &MF, RegScavenger *RS) const { // This tells PEI to spill the FP as if it is any other callee-save register // to take advantage the eliminateFrameIndex machinery. This also ensures it // is spilled in the order specified by getCalleeSavedRegs() to make it easier // to combine multiple loads / stores. bool CanEliminateFrame = true; bool CS1Spilled = false; bool LRSpilled = false; unsigned NumGPRSpills = 0; SmallVector UnspilledCS1GPRs; SmallVector UnspilledCS2GPRs; const ARMBaseRegisterInfo *RegInfo = static_cast( MF.getSubtarget().getRegisterInfo()); const ARMBaseInstrInfo &TII = *static_cast(MF.getSubtarget().getInstrInfo()); ARMFunctionInfo *AFI = MF.getInfo(); MachineFrameInfo *MFI = MF.getFrameInfo(); MachineRegisterInfo &MRI = MF.getRegInfo(); unsigned FramePtr = RegInfo->getFrameRegister(MF); // Spill R4 if Thumb2 function requires stack realignment - it will be used as // scratch register. Also spill R4 if Thumb2 function has varsized objects, // since it's not always possible to restore sp from fp in a single // instruction. // FIXME: It will be better just to find spare register here. if (AFI->isThumb2Function() && (MFI->hasVarSizedObjects() || RegInfo->needsStackRealignment(MF))) MRI.setPhysRegUsed(ARM::R4); if (AFI->isThumb1OnlyFunction()) { // Spill LR if Thumb1 function uses variable length argument lists. if (AFI->getArgRegsSaveSize() > 0) MRI.setPhysRegUsed(ARM::LR); // Spill R4 if Thumb1 epilogue has to restore SP from FP. We don't know // for sure what the stack size will be, but for this, an estimate is good // enough. If there anything changes it, it'll be a spill, which implies // we've used all the registers and so R4 is already used, so not marking // it here will be OK. // FIXME: It will be better just to find spare register here. unsigned StackSize = MFI->estimateStackSize(MF); if (MFI->hasVarSizedObjects() || StackSize > 508) MRI.setPhysRegUsed(ARM::R4); } // See if we can spill vector registers to aligned stack. checkNumAlignedDPRCS2Regs(MF); // Spill the BasePtr if it's used. if (RegInfo->hasBasePointer(MF)) MRI.setPhysRegUsed(RegInfo->getBaseRegister()); // Don't spill FP if the frame can be eliminated. This is determined // by scanning the callee-save registers to see if any is used. const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); for (unsigned i = 0; CSRegs[i]; ++i) { unsigned Reg = CSRegs[i]; bool Spilled = false; if (MRI.isPhysRegUsed(Reg)) { Spilled = true; CanEliminateFrame = false; } if (!ARM::GPRRegClass.contains(Reg)) continue; if (Spilled) { NumGPRSpills++; if (!STI.isTargetDarwin()) { if (Reg == ARM::LR) LRSpilled = true; CS1Spilled = true; continue; } // Keep track if LR and any of R4, R5, R6, and R7 is spilled. switch (Reg) { case ARM::LR: LRSpilled = true; // Fallthrough case ARM::R0: case ARM::R1: case ARM::R2: case ARM::R3: case ARM::R4: case ARM::R5: case ARM::R6: case ARM::R7: CS1Spilled = true; break; default: break; } } else { if (!STI.isTargetDarwin()) { UnspilledCS1GPRs.push_back(Reg); continue; } switch (Reg) { case ARM::R0: case ARM::R1: case ARM::R2: case ARM::R3: case ARM::R4: case ARM::R5: case ARM::R6: case ARM::R7: case ARM::LR: UnspilledCS1GPRs.push_back(Reg); break; default: UnspilledCS2GPRs.push_back(Reg); break; } } } bool ForceLRSpill = false; if (!LRSpilled && AFI->isThumb1OnlyFunction()) { unsigned FnSize = GetFunctionSizeInBytes(MF, TII); // Force LR to be spilled if the Thumb function size is > 2048. This enables // use of BL to implement far jump. If it turns out that it's not needed // then the branch fix up path will undo it. if (FnSize >= (1 << 11)) { CanEliminateFrame = false; ForceLRSpill = true; } } // If any of the stack slot references may be out of range of an immediate // offset, make sure a register (or a spill slot) is available for the // register scavenger. Note that if we're indexing off the frame pointer, the // effective stack size is 4 bytes larger since the FP points to the stack // slot of the previous FP. Also, if we have variable sized objects in the // function, stack slot references will often be negative, and some of // our instructions are positive-offset only, so conservatively consider // that case to want a spill slot (or register) as well. Similarly, if // the function adjusts the stack pointer during execution and the // adjustments aren't already part of our stack size estimate, our offset // calculations may be off, so be conservative. // FIXME: We could add logic to be more precise about negative offsets // and which instructions will need a scratch register for them. Is it // worth the effort and added fragility? bool BigStack = (RS && (MFI->estimateStackSize(MF) + ((hasFP(MF) && AFI->hasStackFrame()) ? 4:0) >= estimateRSStackSizeLimit(MF, this))) || MFI->hasVarSizedObjects() || (MFI->adjustsStack() && !canSimplifyCallFramePseudos(MF)); bool ExtraCSSpill = false; if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) { AFI->setHasStackFrame(true); // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled. // Spill LR as well so we can fold BX_RET to the registers restore (LDM). if (!LRSpilled && CS1Spilled) { MRI.setPhysRegUsed(ARM::LR); NumGPRSpills++; SmallVectorImpl::iterator LRPos; LRPos = std::find(UnspilledCS1GPRs.begin(), UnspilledCS1GPRs.end(), (unsigned)ARM::LR); if (LRPos != UnspilledCS1GPRs.end()) UnspilledCS1GPRs.erase(LRPos); ForceLRSpill = false; ExtraCSSpill = true; } if (hasFP(MF)) { MRI.setPhysRegUsed(FramePtr); auto FPPos = std::find(UnspilledCS1GPRs.begin(), UnspilledCS1GPRs.end(), FramePtr); if (FPPos != UnspilledCS1GPRs.end()) UnspilledCS1GPRs.erase(FPPos); NumGPRSpills++; } // If stack and double are 8-byte aligned and we are spilling an odd number // of GPRs, spill one extra callee save GPR so we won't have to pad between // the integer and double callee save areas. unsigned TargetAlign = getStackAlignment(); if (TargetAlign >= 8 && (NumGPRSpills & 1)) { if (CS1Spilled && !UnspilledCS1GPRs.empty()) { for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) { unsigned Reg = UnspilledCS1GPRs[i]; // Don't spill high register if the function is thumb1 if (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg) || Reg == ARM::LR) { MRI.setPhysRegUsed(Reg); if (!MRI.isReserved(Reg)) ExtraCSSpill = true; break; } } } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) { unsigned Reg = UnspilledCS2GPRs.front(); MRI.setPhysRegUsed(Reg); if (!MRI.isReserved(Reg)) ExtraCSSpill = true; } } // Estimate if we might need to scavenge a register at some point in order // to materialize a stack offset. If so, either spill one additional // callee-saved register or reserve a special spill slot to facilitate // register scavenging. Thumb1 needs a spill slot for stack pointer // adjustments also, even when the frame itself is small. if (BigStack && !ExtraCSSpill) { // If any non-reserved CS register isn't spilled, just spill one or two // extra. That should take care of it! unsigned NumExtras = TargetAlign / 4; SmallVector Extras; while (NumExtras && !UnspilledCS1GPRs.empty()) { unsigned Reg = UnspilledCS1GPRs.back(); UnspilledCS1GPRs.pop_back(); if (!MRI.isReserved(Reg) && (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg) || Reg == ARM::LR)) { Extras.push_back(Reg); NumExtras--; } } // For non-Thumb1 functions, also check for hi-reg CS registers if (!AFI->isThumb1OnlyFunction()) { while (NumExtras && !UnspilledCS2GPRs.empty()) { unsigned Reg = UnspilledCS2GPRs.back(); UnspilledCS2GPRs.pop_back(); if (!MRI.isReserved(Reg)) { Extras.push_back(Reg); NumExtras--; } } } if (Extras.size() && NumExtras == 0) { for (unsigned i = 0, e = Extras.size(); i != e; ++i) { MRI.setPhysRegUsed(Extras[i]); } } else if (!AFI->isThumb1OnlyFunction()) { // note: Thumb1 functions spill to R12, not the stack. Reserve a slot // closest to SP or frame pointer. const TargetRegisterClass *RC = &ARM::GPRRegClass; RS->addScavengingFrameIndex(MFI->CreateStackObject(RC->getSize(), RC->getAlignment(), false)); } } } if (ForceLRSpill) { MRI.setPhysRegUsed(ARM::LR); AFI->setLRIsSpilledForFarJump(true); } } void ARMFrameLowering:: eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const { const ARMBaseInstrInfo &TII = *static_cast(MF.getSubtarget().getInstrInfo()); if (!hasReservedCallFrame(MF)) { // If we have alloca, convert as follows: // ADJCALLSTACKDOWN -> sub, sp, sp, amount // ADJCALLSTACKUP -> add, sp, sp, amount MachineInstr *Old = I; DebugLoc dl = Old->getDebugLoc(); unsigned Amount = Old->getOperand(0).getImm(); if (Amount != 0) { // We need to keep the stack aligned properly. To do this, we round the // amount of space needed for the outgoing arguments up to the next // alignment boundary. unsigned Align = getStackAlignment(); Amount = (Amount+Align-1)/Align*Align; ARMFunctionInfo *AFI = MF.getInfo(); assert(!AFI->isThumb1OnlyFunction() && "This eliminateCallFramePseudoInstr does not support Thumb1!"); bool isARM = !AFI->isThumbFunction(); // Replace the pseudo instruction with a new instruction... unsigned Opc = Old->getOpcode(); int PIdx = Old->findFirstPredOperandIdx(); ARMCC::CondCodes Pred = (PIdx == -1) ? ARMCC::AL : (ARMCC::CondCodes)Old->getOperand(PIdx).getImm(); if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) { // Note: PredReg is operand 2 for ADJCALLSTACKDOWN. unsigned PredReg = Old->getOperand(2).getReg(); emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags, Pred, PredReg); } else { // Note: PredReg is operand 3 for ADJCALLSTACKUP. unsigned PredReg = Old->getOperand(3).getReg(); assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP); emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags, Pred, PredReg); } } } MBB.erase(I); } /// Get the minimum constant for ARM that is greater than or equal to the /// argument. In ARM, constants can have any value that can be produced by /// rotating an 8-bit value to the right by an even number of bits within a /// 32-bit word. static uint32_t alignToARMConstant(uint32_t Value) { unsigned Shifted = 0; if (Value == 0) return 0; while (!(Value & 0xC0000000)) { Value = Value << 2; Shifted += 2; } bool Carry = (Value & 0x00FFFFFF); Value = ((Value & 0xFF000000) >> 24) + Carry; if (Value & 0x0000100) Value = Value & 0x000001FC; if (Shifted > 24) Value = Value >> (Shifted - 24); else Value = Value << (24 - Shifted); return Value; } // The stack limit in the TCB is set to this many bytes above the actual // stack limit. static const uint64_t kSplitStackAvailable = 256; // Adjust the function prologue to enable split stacks. This currently only // supports android and linux. // // The ABI of the segmented stack prologue is a little arbitrarily chosen, but // must be well defined in order to allow for consistent implementations of the // __morestack helper function. The ABI is also not a normal ABI in that it // doesn't follow the normal calling conventions because this allows the // prologue of each function to be optimized further. // // Currently, the ABI looks like (when calling __morestack) // // * r4 holds the minimum stack size requested for this function call // * r5 holds the stack size of the arguments to the function // * the beginning of the function is 3 instructions after the call to // __morestack // // Implementations of __morestack should use r4 to allocate a new stack, r5 to // place the arguments on to the new stack, and the 3-instruction knowledge to // jump directly to the body of the function when working on the new stack. // // An old (and possibly no longer compatible) implementation of __morestack for // ARM can be found at [1]. // // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S void ARMFrameLowering::adjustForSegmentedStacks(MachineFunction &MF) const { unsigned Opcode; unsigned CFIIndex; const ARMSubtarget *ST = &MF.getSubtarget(); bool Thumb = ST->isThumb(); // Sadly, this currently doesn't support varargs, platforms other than // android/linux. Note that thumb1/thumb2 are support for android/linux. if (MF.getFunction()->isVarArg()) report_fatal_error("Segmented stacks do not support vararg functions."); if (!ST->isTargetAndroid() && !ST->isTargetLinux()) report_fatal_error("Segmented stacks not supported on this platform."); MachineBasicBlock &prologueMBB = MF.front(); MachineFrameInfo *MFI = MF.getFrameInfo(); MachineModuleInfo &MMI = MF.getMMI(); MCContext &Context = MMI.getContext(); const MCRegisterInfo *MRI = Context.getRegisterInfo(); const ARMBaseInstrInfo &TII = *static_cast(MF.getSubtarget().getInstrInfo()); ARMFunctionInfo *ARMFI = MF.getInfo(); DebugLoc DL; uint64_t StackSize = MFI->getStackSize(); // Do not generate a prologue for functions with a stack of size zero if (StackSize == 0) return; // Use R4 and R5 as scratch registers. // We save R4 and R5 before use and restore them before leaving the function. unsigned ScratchReg0 = ARM::R4; unsigned ScratchReg1 = ARM::R5; uint64_t AlignedStackSize; MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock(); MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock(); MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock(); MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock(); MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock(); for (MachineBasicBlock::livein_iterator i = prologueMBB.livein_begin(), e = prologueMBB.livein_end(); i != e; ++i) { AllocMBB->addLiveIn(*i); GetMBB->addLiveIn(*i); McrMBB->addLiveIn(*i); PrevStackMBB->addLiveIn(*i); PostStackMBB->addLiveIn(*i); } MF.push_front(PostStackMBB); MF.push_front(AllocMBB); MF.push_front(GetMBB); MF.push_front(McrMBB); MF.push_front(PrevStackMBB); // The required stack size that is aligned to ARM constant criterion. AlignedStackSize = alignToARMConstant(StackSize); // When the frame size is less than 256 we just compare the stack // boundary directly to the value of the stack pointer, per gcc. bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable; // We will use two of the callee save registers as scratch registers so we // need to save those registers onto the stack. // We will use SR0 to hold stack limit and SR1 to hold the stack size // requested and arguments for __morestack(). // SR0: Scratch Register #0 // SR1: Scratch Register #1 // push {SR0, SR1} if (Thumb) { AddDefaultPred(BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH))) .addReg(ScratchReg0).addReg(ScratchReg1); } else { AddDefaultPred(BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD)) .addReg(ARM::SP, RegState::Define).addReg(ARM::SP)) .addReg(ScratchReg0).addReg(ScratchReg1); } // Emit the relevant DWARF information about the change in stack pointer as // well as where to find both r4 and r5 (the callee-save registers) CFIIndex = MMI.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -8)); BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex); CFIIndex = MMI.addFrameInst(MCCFIInstruction::createOffset( nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4)); BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex); CFIIndex = MMI.addFrameInst(MCCFIInstruction::createOffset( nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8)); BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex); // mov SR1, sp if (Thumb) { AddDefaultPred(BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1) .addReg(ARM::SP)); } else if (CompareStackPointer) { AddDefaultPred(BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1) .addReg(ARM::SP)).addReg(0); } // sub SR1, sp, #StackSize if (!CompareStackPointer && Thumb) { AddDefaultPred( AddDefaultCC(BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1)) .addReg(ScratchReg1).addImm(AlignedStackSize)); } else if (!CompareStackPointer) { AddDefaultPred(BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1) .addReg(ARM::SP).addImm(AlignedStackSize)).addReg(0); } if (Thumb && ST->isThumb1Only()) { unsigned PCLabelId = ARMFI->createPICLabelUId(); ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create( MF.getFunction()->getContext(), "__STACK_LIMIT", PCLabelId, 0); MachineConstantPool *MCP = MF.getConstantPool(); unsigned CPI = MCP->getConstantPoolIndex(NewCPV, MF.getAlignment()); // ldr SR0, [pc, offset(STACK_LIMIT)] AddDefaultPred(BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0) .addConstantPoolIndex(CPI)); // ldr SR0, [SR0] AddDefaultPred(BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0) .addReg(ScratchReg0).addImm(0)); } else { // Get TLS base address from the coprocessor // mrc p15, #0, SR0, c13, c0, #3 AddDefaultPred(BuildMI(McrMBB, DL, TII.get(ARM::MRC), ScratchReg0) .addImm(15) .addImm(0) .addImm(13) .addImm(0) .addImm(3)); // Use the last tls slot on android and a private field of the TCP on linux. assert(ST->isTargetAndroid() || ST->isTargetLinux()); unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1; // Get the stack limit from the right offset // ldr SR0, [sr0, #4 * TlsOffset] AddDefaultPred(BuildMI(GetMBB, DL, TII.get(ARM::LDRi12), ScratchReg0) .addReg(ScratchReg0).addImm(4 * TlsOffset)); } // Compare stack limit with stack size requested. // cmp SR0, SR1 Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr; AddDefaultPred(BuildMI(GetMBB, DL, TII.get(Opcode)) .addReg(ScratchReg0) .addReg(ScratchReg1)); // This jump is taken if StackLimit < SP - stack required. Opcode = Thumb ? ARM::tBcc : ARM::Bcc; BuildMI(GetMBB, DL, TII.get(Opcode)).addMBB(PostStackMBB) .addImm(ARMCC::LO) .addReg(ARM::CPSR); // Calling __morestack(StackSize, Size of stack arguments). // __morestack knows that the stack size requested is in SR0(r4) // and amount size of stack arguments is in SR1(r5). // Pass first argument for the __morestack by Scratch Register #0. // The amount size of stack required if (Thumb) { AddDefaultPred(AddDefaultCC(BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0)).addImm(AlignedStackSize)); } else { AddDefaultPred(BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0) .addImm(AlignedStackSize)).addReg(0); } // Pass second argument for the __morestack by Scratch Register #1. // The amount size of stack consumed to save function arguments. if (Thumb) { AddDefaultPred( AddDefaultCC(BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1)) .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))); } else { AddDefaultPred(BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1) .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))) .addReg(0); } // push {lr} - Save return address of this function. if (Thumb) { AddDefaultPred(BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH))) .addReg(ARM::LR); } else { AddDefaultPred(BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD)) .addReg(ARM::SP, RegState::Define) .addReg(ARM::SP)) .addReg(ARM::LR); } // Emit the DWARF info about the change in stack as well as where to find the // previous link register CFIIndex = MMI.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -12)); BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex); CFIIndex = MMI.addFrameInst(MCCFIInstruction::createOffset( nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12)); BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex); // Call __morestack(). if (Thumb) { AddDefaultPred(BuildMI(AllocMBB, DL, TII.get(ARM::tBL))) .addExternalSymbol("__morestack"); } else { BuildMI(AllocMBB, DL, TII.get(ARM::BL)) .addExternalSymbol("__morestack"); } // pop {lr} - Restore return address of this original function. if (Thumb) { if (ST->isThumb1Only()) { AddDefaultPred(BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))) .addReg(ScratchReg0); AddDefaultPred(BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR) .addReg(ScratchReg0)); } else { AddDefaultPred(BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST)) .addReg(ARM::LR, RegState::Define) .addReg(ARM::SP, RegState::Define) .addReg(ARM::SP) .addImm(4)); } } else { AddDefaultPred(BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) .addReg(ARM::SP, RegState::Define) .addReg(ARM::SP)) .addReg(ARM::LR); } // Restore SR0 and SR1 in case of __morestack() was called. // __morestack() will skip PostStackMBB block so we need to restore // scratch registers from here. // pop {SR0, SR1} if (Thumb) { AddDefaultPred(BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))) .addReg(ScratchReg0) .addReg(ScratchReg1); } else { AddDefaultPred(BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) .addReg(ARM::SP, RegState::Define) .addReg(ARM::SP)) .addReg(ScratchReg0) .addReg(ScratchReg1); } // Update the CFA offset now that we've popped CFIIndex = MMI.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0)); BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex); // bx lr - Return from this function. Opcode = Thumb ? ARM::tBX_RET : ARM::BX_RET; AddDefaultPred(BuildMI(AllocMBB, DL, TII.get(Opcode))); // Restore SR0 and SR1 in case of __morestack() was not called. // pop {SR0, SR1} if (Thumb) { AddDefaultPred(BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP))) .addReg(ScratchReg0) .addReg(ScratchReg1); } else { AddDefaultPred(BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD)) .addReg(ARM::SP, RegState::Define) .addReg(ARM::SP)) .addReg(ScratchReg0) .addReg(ScratchReg1); } // Update the CFA offset now that we've popped CFIIndex = MMI.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0)); BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex); // Tell debuggers that r4 and r5 are now the same as they were in the // previous function, that they're the "Same Value". CFIIndex = MMI.addFrameInst(MCCFIInstruction::createSameValue( nullptr, MRI->getDwarfRegNum(ScratchReg0, true))); BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex); CFIIndex = MMI.addFrameInst(MCCFIInstruction::createSameValue( nullptr, MRI->getDwarfRegNum(ScratchReg1, true))); BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex); // Organizing MBB lists PostStackMBB->addSuccessor(&prologueMBB); AllocMBB->addSuccessor(PostStackMBB); GetMBB->addSuccessor(PostStackMBB); GetMBB->addSuccessor(AllocMBB); McrMBB->addSuccessor(GetMBB); PrevStackMBB->addSuccessor(McrMBB); #ifdef XDEBUG MF.verify(); #endif }