//===-- ARMISelDAGToDAG.cpp - A dag to dag inst selector for ARM ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines an instruction selector for the ARM target. // //===----------------------------------------------------------------------===// #include "ARM.h" #include "ARMAddressingModes.h" #include "ARMConstantPoolValue.h" #include "ARMISelLowering.h" #include "ARMTargetMachine.h" #include "llvm/CallingConv.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/Intrinsics.h" #include "llvm/LLVMContext.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; //===--------------------------------------------------------------------===// /// ARMDAGToDAGISel - ARM specific code to select ARM machine /// instructions for SelectionDAG operations. /// namespace { class ARMDAGToDAGISel : public SelectionDAGISel { ARMBaseTargetMachine &TM; /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can /// make the right decision when generating code for different targets. const ARMSubtarget *Subtarget; public: explicit ARMDAGToDAGISel(ARMBaseTargetMachine &tm) : SelectionDAGISel(tm), TM(tm), Subtarget(&TM.getSubtarget()) { } virtual const char *getPassName() const { return "ARM Instruction Selection"; } /// getI32Imm - Return a target constant with the specified value, of type i32. inline SDValue getI32Imm(unsigned Imm) { return CurDAG->getTargetConstant(Imm, MVT::i32); } SDNode *Select(SDValue Op); virtual void InstructionSelect(); bool SelectShifterOperandReg(SDValue Op, SDValue N, SDValue &A, SDValue &B, SDValue &C); bool SelectAddrMode2(SDValue Op, SDValue N, SDValue &Base, SDValue &Offset, SDValue &Opc); bool SelectAddrMode2Offset(SDValue Op, SDValue N, SDValue &Offset, SDValue &Opc); bool SelectAddrMode3(SDValue Op, SDValue N, SDValue &Base, SDValue &Offset, SDValue &Opc); bool SelectAddrMode3Offset(SDValue Op, SDValue N, SDValue &Offset, SDValue &Opc); bool SelectAddrMode4(SDValue Op, SDValue N, SDValue &Addr, SDValue &Mode); bool SelectAddrMode5(SDValue Op, SDValue N, SDValue &Base, SDValue &Offset); bool SelectAddrMode6(SDValue Op, SDValue N, SDValue &Addr, SDValue &Update, SDValue &Opc); bool SelectAddrModePC(SDValue Op, SDValue N, SDValue &Offset, SDValue &Label); bool SelectThumbAddrModeRR(SDValue Op, SDValue N, SDValue &Base, SDValue &Offset); bool SelectThumbAddrModeRI5(SDValue Op, SDValue N, unsigned Scale, SDValue &Base, SDValue &OffImm, SDValue &Offset); bool SelectThumbAddrModeS1(SDValue Op, SDValue N, SDValue &Base, SDValue &OffImm, SDValue &Offset); bool SelectThumbAddrModeS2(SDValue Op, SDValue N, SDValue &Base, SDValue &OffImm, SDValue &Offset); bool SelectThumbAddrModeS4(SDValue Op, SDValue N, SDValue &Base, SDValue &OffImm, SDValue &Offset); bool SelectThumbAddrModeSP(SDValue Op, SDValue N, SDValue &Base, SDValue &OffImm); bool SelectT2ShifterOperandReg(SDValue Op, SDValue N, SDValue &BaseReg, SDValue &Opc); bool SelectT2AddrModeImm12(SDValue Op, SDValue N, SDValue &Base, SDValue &OffImm); bool SelectT2AddrModeImm8(SDValue Op, SDValue N, SDValue &Base, SDValue &OffImm); bool SelectT2AddrModeImm8Offset(SDValue Op, SDValue N, SDValue &OffImm); bool SelectT2AddrModeImm8s4(SDValue Op, SDValue N, SDValue &Base, SDValue &OffImm); bool SelectT2AddrModeSoReg(SDValue Op, SDValue N, SDValue &Base, SDValue &OffReg, SDValue &ShImm); // Include the pieces autogenerated from the target description. #include "ARMGenDAGISel.inc" private: /// SelectARMIndexedLoad - Indexed (pre/post inc/dec) load matching code for /// ARM. SDNode *SelectARMIndexedLoad(SDValue Op); SDNode *SelectT2IndexedLoad(SDValue Op); /// SelectDYN_ALLOC - Select dynamic alloc for Thumb. SDNode *SelectDYN_ALLOC(SDValue Op); /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for /// inline asm expressions. virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode, std::vector &OutOps); }; } void ARMDAGToDAGISel::InstructionSelect() { DEBUG(BB->dump()); SelectRoot(*CurDAG); CurDAG->RemoveDeadNodes(); } bool ARMDAGToDAGISel::SelectShifterOperandReg(SDValue Op, SDValue N, SDValue &BaseReg, SDValue &ShReg, SDValue &Opc) { ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N); // Don't match base register only case. That is matched to a separate // lower complexity pattern with explicit register operand. if (ShOpcVal == ARM_AM::no_shift) return false; BaseReg = N.getOperand(0); unsigned ShImmVal = 0; if (ConstantSDNode *RHS = dyn_cast(N.getOperand(1))) { ShReg = CurDAG->getRegister(0, MVT::i32); ShImmVal = RHS->getZExtValue() & 31; } else { ShReg = N.getOperand(1); } Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal), MVT::i32); return true; } bool ARMDAGToDAGISel::SelectAddrMode2(SDValue Op, SDValue N, SDValue &Base, SDValue &Offset, SDValue &Opc) { if (N.getOpcode() == ISD::MUL) { if (ConstantSDNode *RHS = dyn_cast(N.getOperand(1))) { // X * [3,5,9] -> X + X * [2,4,8] etc. int RHSC = (int)RHS->getZExtValue(); if (RHSC & 1) { RHSC = RHSC & ~1; ARM_AM::AddrOpc AddSub = ARM_AM::add; if (RHSC < 0) { AddSub = ARM_AM::sub; RHSC = - RHSC; } if (isPowerOf2_32(RHSC)) { unsigned ShAmt = Log2_32(RHSC); Base = Offset = N.getOperand(0); Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ARM_AM::lsl), MVT::i32); return true; } } } } if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB) { Base = N; if (N.getOpcode() == ISD::FrameIndex) { int FI = cast(N)->getIndex(); Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); } else if (N.getOpcode() == ARMISD::Wrapper) { Base = N.getOperand(0); } Offset = CurDAG->getRegister(0, MVT::i32); Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(ARM_AM::add, 0, ARM_AM::no_shift), MVT::i32); return true; } // Match simple R +/- imm12 operands. if (N.getOpcode() == ISD::ADD) if (ConstantSDNode *RHS = dyn_cast(N.getOperand(1))) { int RHSC = (int)RHS->getZExtValue(); if ((RHSC >= 0 && RHSC < 0x1000) || (RHSC < 0 && RHSC > -0x1000)) { // 12 bits. Base = N.getOperand(0); if (Base.getOpcode() == ISD::FrameIndex) { int FI = cast(Base)->getIndex(); Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); } Offset = CurDAG->getRegister(0, MVT::i32); ARM_AM::AddrOpc AddSub = ARM_AM::add; if (RHSC < 0) { AddSub = ARM_AM::sub; RHSC = - RHSC; } Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, RHSC, ARM_AM::no_shift), MVT::i32); return true; } } // Otherwise this is R +/- [possibly shifted] R ARM_AM::AddrOpc AddSub = N.getOpcode() == ISD::ADD ? ARM_AM::add:ARM_AM::sub; ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(1)); unsigned ShAmt = 0; Base = N.getOperand(0); Offset = N.getOperand(1); if (ShOpcVal != ARM_AM::no_shift) { // Check to see if the RHS of the shift is a constant, if not, we can't fold // it. if (ConstantSDNode *Sh = dyn_cast(N.getOperand(1).getOperand(1))) { ShAmt = Sh->getZExtValue(); Offset = N.getOperand(1).getOperand(0); } else { ShOpcVal = ARM_AM::no_shift; } } // Try matching (R shl C) + (R). if (N.getOpcode() == ISD::ADD && ShOpcVal == ARM_AM::no_shift) { ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0)); if (ShOpcVal != ARM_AM::no_shift) { // Check to see if the RHS of the shift is a constant, if not, we can't // fold it. if (ConstantSDNode *Sh = dyn_cast(N.getOperand(0).getOperand(1))) { ShAmt = Sh->getZExtValue(); Offset = N.getOperand(0).getOperand(0); Base = N.getOperand(1); } else { ShOpcVal = ARM_AM::no_shift; } } } Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal), MVT::i32); return true; } bool ARMDAGToDAGISel::SelectAddrMode2Offset(SDValue Op, SDValue N, SDValue &Offset, SDValue &Opc) { unsigned Opcode = Op.getOpcode(); ISD::MemIndexedMode AM = (Opcode == ISD::LOAD) ? cast(Op)->getAddressingMode() : cast(Op)->getAddressingMode(); ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC) ? ARM_AM::add : ARM_AM::sub; if (ConstantSDNode *C = dyn_cast(N)) { int Val = (int)C->getZExtValue(); if (Val >= 0 && Val < 0x1000) { // 12 bits. Offset = CurDAG->getRegister(0, MVT::i32); Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift), MVT::i32); return true; } } Offset = N; ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N); unsigned ShAmt = 0; if (ShOpcVal != ARM_AM::no_shift) { // Check to see if the RHS of the shift is a constant, if not, we can't fold // it. if (ConstantSDNode *Sh = dyn_cast(N.getOperand(1))) { ShAmt = Sh->getZExtValue(); Offset = N.getOperand(0); } else { ShOpcVal = ARM_AM::no_shift; } } Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal), MVT::i32); return true; } bool ARMDAGToDAGISel::SelectAddrMode3(SDValue Op, SDValue N, SDValue &Base, SDValue &Offset, SDValue &Opc) { if (N.getOpcode() == ISD::SUB) { // X - C is canonicalize to X + -C, no need to handle it here. Base = N.getOperand(0); Offset = N.getOperand(1); Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::sub, 0),MVT::i32); return true; } if (N.getOpcode() != ISD::ADD) { Base = N; if (N.getOpcode() == ISD::FrameIndex) { int FI = cast(N)->getIndex(); Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); } Offset = CurDAG->getRegister(0, MVT::i32); Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0),MVT::i32); return true; } // If the RHS is +/- imm8, fold into addr mode. if (ConstantSDNode *RHS = dyn_cast(N.getOperand(1))) { int RHSC = (int)RHS->getZExtValue(); if ((RHSC >= 0 && RHSC < 256) || (RHSC < 0 && RHSC > -256)) { // note -256 itself isn't allowed. Base = N.getOperand(0); if (Base.getOpcode() == ISD::FrameIndex) { int FI = cast(Base)->getIndex(); Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); } Offset = CurDAG->getRegister(0, MVT::i32); ARM_AM::AddrOpc AddSub = ARM_AM::add; if (RHSC < 0) { AddSub = ARM_AM::sub; RHSC = - RHSC; } Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, RHSC),MVT::i32); return true; } } Base = N.getOperand(0); Offset = N.getOperand(1); Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0), MVT::i32); return true; } bool ARMDAGToDAGISel::SelectAddrMode3Offset(SDValue Op, SDValue N, SDValue &Offset, SDValue &Opc) { unsigned Opcode = Op.getOpcode(); ISD::MemIndexedMode AM = (Opcode == ISD::LOAD) ? cast(Op)->getAddressingMode() : cast(Op)->getAddressingMode(); ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC) ? ARM_AM::add : ARM_AM::sub; if (ConstantSDNode *C = dyn_cast(N)) { int Val = (int)C->getZExtValue(); if (Val >= 0 && Val < 256) { Offset = CurDAG->getRegister(0, MVT::i32); Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, Val), MVT::i32); return true; } } Offset = N; Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, 0), MVT::i32); return true; } bool ARMDAGToDAGISel::SelectAddrMode4(SDValue Op, SDValue N, SDValue &Addr, SDValue &Mode) { Addr = N; Mode = CurDAG->getTargetConstant(0, MVT::i32); return true; } bool ARMDAGToDAGISel::SelectAddrMode5(SDValue Op, SDValue N, SDValue &Base, SDValue &Offset) { if (N.getOpcode() != ISD::ADD) { Base = N; if (N.getOpcode() == ISD::FrameIndex) { int FI = cast(N)->getIndex(); Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); } else if (N.getOpcode() == ARMISD::Wrapper) { Base = N.getOperand(0); } Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0), MVT::i32); return true; } // If the RHS is +/- imm8, fold into addr mode. if (ConstantSDNode *RHS = dyn_cast(N.getOperand(1))) { int RHSC = (int)RHS->getZExtValue(); if ((RHSC & 3) == 0) { // The constant is implicitly multiplied by 4. RHSC >>= 2; if ((RHSC >= 0 && RHSC < 256) || (RHSC < 0 && RHSC > -256)) { // note -256 itself isn't allowed. Base = N.getOperand(0); if (Base.getOpcode() == ISD::FrameIndex) { int FI = cast(Base)->getIndex(); Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); } ARM_AM::AddrOpc AddSub = ARM_AM::add; if (RHSC < 0) { AddSub = ARM_AM::sub; RHSC = - RHSC; } Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(AddSub, RHSC), MVT::i32); return true; } } } Base = N; Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0), MVT::i32); return true; } bool ARMDAGToDAGISel::SelectAddrMode6(SDValue Op, SDValue N, SDValue &Addr, SDValue &Update, SDValue &Opc) { Addr = N; // The optional writeback is handled in ARMLoadStoreOpt. Update = CurDAG->getRegister(0, MVT::i32); Opc = CurDAG->getTargetConstant(ARM_AM::getAM6Opc(false), MVT::i32); return true; } bool ARMDAGToDAGISel::SelectAddrModePC(SDValue Op, SDValue N, SDValue &Offset, SDValue &Label) { if (N.getOpcode() == ARMISD::PIC_ADD && N.hasOneUse()) { Offset = N.getOperand(0); SDValue N1 = N.getOperand(1); Label = CurDAG->getTargetConstant(cast(N1)->getZExtValue(), MVT::i32); return true; } return false; } bool ARMDAGToDAGISel::SelectThumbAddrModeRR(SDValue Op, SDValue N, SDValue &Base, SDValue &Offset){ // FIXME dl should come from the parent load or store, not the address DebugLoc dl = Op.getDebugLoc(); if (N.getOpcode() != ISD::ADD) { ConstantSDNode *NC = dyn_cast(N); if (!NC || NC->getZExtValue() != 0) return false; Base = Offset = N; return true; } Base = N.getOperand(0); Offset = N.getOperand(1); return true; } bool ARMDAGToDAGISel::SelectThumbAddrModeRI5(SDValue Op, SDValue N, unsigned Scale, SDValue &Base, SDValue &OffImm, SDValue &Offset) { if (Scale == 4) { SDValue TmpBase, TmpOffImm; if (SelectThumbAddrModeSP(Op, N, TmpBase, TmpOffImm)) return false; // We want to select tLDRspi / tSTRspi instead. if (N.getOpcode() == ARMISD::Wrapper && N.getOperand(0).getOpcode() == ISD::TargetConstantPool) return false; // We want to select tLDRpci instead. } if (N.getOpcode() != ISD::ADD) { Base = (N.getOpcode() == ARMISD::Wrapper) ? N.getOperand(0) : N; Offset = CurDAG->getRegister(0, MVT::i32); OffImm = CurDAG->getTargetConstant(0, MVT::i32); return true; } // Thumb does not have [sp, r] address mode. RegisterSDNode *LHSR = dyn_cast(N.getOperand(0)); RegisterSDNode *RHSR = dyn_cast(N.getOperand(1)); if ((LHSR && LHSR->getReg() == ARM::SP) || (RHSR && RHSR->getReg() == ARM::SP)) { Base = N; Offset = CurDAG->getRegister(0, MVT::i32); OffImm = CurDAG->getTargetConstant(0, MVT::i32); return true; } // If the RHS is + imm5 * scale, fold into addr mode. if (ConstantSDNode *RHS = dyn_cast(N.getOperand(1))) { int RHSC = (int)RHS->getZExtValue(); if ((RHSC & (Scale-1)) == 0) { // The constant is implicitly multiplied. RHSC /= Scale; if (RHSC >= 0 && RHSC < 32) { Base = N.getOperand(0); Offset = CurDAG->getRegister(0, MVT::i32); OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32); return true; } } } Base = N.getOperand(0); Offset = N.getOperand(1); OffImm = CurDAG->getTargetConstant(0, MVT::i32); return true; } bool ARMDAGToDAGISel::SelectThumbAddrModeS1(SDValue Op, SDValue N, SDValue &Base, SDValue &OffImm, SDValue &Offset) { return SelectThumbAddrModeRI5(Op, N, 1, Base, OffImm, Offset); } bool ARMDAGToDAGISel::SelectThumbAddrModeS2(SDValue Op, SDValue N, SDValue &Base, SDValue &OffImm, SDValue &Offset) { return SelectThumbAddrModeRI5(Op, N, 2, Base, OffImm, Offset); } bool ARMDAGToDAGISel::SelectThumbAddrModeS4(SDValue Op, SDValue N, SDValue &Base, SDValue &OffImm, SDValue &Offset) { return SelectThumbAddrModeRI5(Op, N, 4, Base, OffImm, Offset); } bool ARMDAGToDAGISel::SelectThumbAddrModeSP(SDValue Op, SDValue N, SDValue &Base, SDValue &OffImm) { if (N.getOpcode() == ISD::FrameIndex) { int FI = cast(N)->getIndex(); Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); OffImm = CurDAG->getTargetConstant(0, MVT::i32); return true; } if (N.getOpcode() != ISD::ADD) return false; RegisterSDNode *LHSR = dyn_cast(N.getOperand(0)); if (N.getOperand(0).getOpcode() == ISD::FrameIndex || (LHSR && LHSR->getReg() == ARM::SP)) { // If the RHS is + imm8 * scale, fold into addr mode. if (ConstantSDNode *RHS = dyn_cast(N.getOperand(1))) { int RHSC = (int)RHS->getZExtValue(); if ((RHSC & 3) == 0) { // The constant is implicitly multiplied. RHSC >>= 2; if (RHSC >= 0 && RHSC < 256) { Base = N.getOperand(0); if (Base.getOpcode() == ISD::FrameIndex) { int FI = cast(Base)->getIndex(); Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); } OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32); return true; } } } } return false; } bool ARMDAGToDAGISel::SelectT2ShifterOperandReg(SDValue Op, SDValue N, SDValue &BaseReg, SDValue &Opc) { ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N); // Don't match base register only case. That is matched to a separate // lower complexity pattern with explicit register operand. if (ShOpcVal == ARM_AM::no_shift) return false; BaseReg = N.getOperand(0); unsigned ShImmVal = 0; if (ConstantSDNode *RHS = dyn_cast(N.getOperand(1))) { ShImmVal = RHS->getZExtValue() & 31; Opc = getI32Imm(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal)); return true; } return false; } bool ARMDAGToDAGISel::SelectT2AddrModeImm12(SDValue Op, SDValue N, SDValue &Base, SDValue &OffImm) { // Match simple R + imm12 operands. // Base only. if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB) { if (N.getOpcode() == ISD::FrameIndex) { // Match frame index... int FI = cast(N)->getIndex(); Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); OffImm = CurDAG->getTargetConstant(0, MVT::i32); return true; } else if (N.getOpcode() == ARMISD::Wrapper) { Base = N.getOperand(0); if (Base.getOpcode() == ISD::TargetConstantPool) return false; // We want to select t2LDRpci instead. } else Base = N; OffImm = CurDAG->getTargetConstant(0, MVT::i32); return true; } if (ConstantSDNode *RHS = dyn_cast(N.getOperand(1))) { if (SelectT2AddrModeImm8(Op, N, Base, OffImm)) // Let t2LDRi8 handle (R - imm8). return false; int RHSC = (int)RHS->getZExtValue(); if (N.getOpcode() == ISD::SUB) RHSC = -RHSC; if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned) Base = N.getOperand(0); if (Base.getOpcode() == ISD::FrameIndex) { int FI = cast(Base)->getIndex(); Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); } OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32); return true; } } // Base only. Base = N; OffImm = CurDAG->getTargetConstant(0, MVT::i32); return true; } bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDValue Op, SDValue N, SDValue &Base, SDValue &OffImm) { // Match simple R - imm8 operands. if (N.getOpcode() == ISD::ADD || N.getOpcode() == ISD::SUB) { if (ConstantSDNode *RHS = dyn_cast(N.getOperand(1))) { int RHSC = (int)RHS->getSExtValue(); if (N.getOpcode() == ISD::SUB) RHSC = -RHSC; if ((RHSC >= -255) && (RHSC < 0)) { // 8 bits (always negative) Base = N.getOperand(0); if (Base.getOpcode() == ISD::FrameIndex) { int FI = cast(Base)->getIndex(); Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); } OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32); return true; } } } return false; } bool ARMDAGToDAGISel::SelectT2AddrModeImm8Offset(SDValue Op, SDValue N, SDValue &OffImm){ unsigned Opcode = Op.getOpcode(); ISD::MemIndexedMode AM = (Opcode == ISD::LOAD) ? cast(Op)->getAddressingMode() : cast(Op)->getAddressingMode(); if (ConstantSDNode *RHS = dyn_cast(N)) { int RHSC = (int)RHS->getZExtValue(); if (RHSC >= 0 && RHSC < 0x100) { // 8 bits. OffImm = ((AM == ISD::PRE_INC) || (AM == ISD::POST_INC)) ? CurDAG->getTargetConstant(RHSC, MVT::i32) : CurDAG->getTargetConstant(-RHSC, MVT::i32); return true; } } return false; } bool ARMDAGToDAGISel::SelectT2AddrModeImm8s4(SDValue Op, SDValue N, SDValue &Base, SDValue &OffImm) { if (N.getOpcode() == ISD::ADD) { if (ConstantSDNode *RHS = dyn_cast(N.getOperand(1))) { int RHSC = (int)RHS->getZExtValue(); if (((RHSC & 0x3) == 0) && ((RHSC >= 0 && RHSC < 0x400) || (RHSC < 0 && RHSC > -0x400))) { // 8 bits. Base = N.getOperand(0); OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32); return true; } } } else if (N.getOpcode() == ISD::SUB) { if (ConstantSDNode *RHS = dyn_cast(N.getOperand(1))) { int RHSC = (int)RHS->getZExtValue(); if (((RHSC & 0x3) == 0) && (RHSC >= 0 && RHSC < 0x400)) { // 8 bits. Base = N.getOperand(0); OffImm = CurDAG->getTargetConstant(-RHSC, MVT::i32); return true; } } } return false; } bool ARMDAGToDAGISel::SelectT2AddrModeSoReg(SDValue Op, SDValue N, SDValue &Base, SDValue &OffReg, SDValue &ShImm) { // (R - imm8) should be handled by t2LDRi8. The rest are handled by t2LDRi12. if (N.getOpcode() != ISD::ADD) return false; // Leave (R + imm12) for t2LDRi12, (R - imm8) for t2LDRi8. if (ConstantSDNode *RHS = dyn_cast(N.getOperand(1))) { int RHSC = (int)RHS->getZExtValue(); if (RHSC >= 0 && RHSC < 0x1000) // 12 bits (unsigned) return false; else if (RHSC < 0 && RHSC >= -255) // 8 bits return false; } // Look for (R + R) or (R + (R << [1,2,3])). unsigned ShAmt = 0; Base = N.getOperand(0); OffReg = N.getOperand(1); // Swap if it is ((R << c) + R). ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(OffReg); if (ShOpcVal != ARM_AM::lsl) { ShOpcVal = ARM_AM::getShiftOpcForNode(Base); if (ShOpcVal == ARM_AM::lsl) std::swap(Base, OffReg); } if (ShOpcVal == ARM_AM::lsl) { // Check to see if the RHS of the shift is a constant, if not, we can't fold // it. if (ConstantSDNode *Sh = dyn_cast(OffReg.getOperand(1))) { ShAmt = Sh->getZExtValue(); if (ShAmt >= 4) { ShAmt = 0; ShOpcVal = ARM_AM::no_shift; } else OffReg = OffReg.getOperand(0); } else { ShOpcVal = ARM_AM::no_shift; } } ShImm = CurDAG->getTargetConstant(ShAmt, MVT::i32); return true; } //===--------------------------------------------------------------------===// /// getAL - Returns a ARMCC::AL immediate node. static inline SDValue getAL(SelectionDAG *CurDAG) { return CurDAG->getTargetConstant((uint64_t)ARMCC::AL, MVT::i32); } SDNode *ARMDAGToDAGISel::SelectARMIndexedLoad(SDValue Op) { LoadSDNode *LD = cast(Op); ISD::MemIndexedMode AM = LD->getAddressingMode(); if (AM == ISD::UNINDEXED) return NULL; EVT LoadedVT = LD->getMemoryVT(); SDValue Offset, AMOpc; bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC); unsigned Opcode = 0; bool Match = false; if (LoadedVT == MVT::i32 && SelectAddrMode2Offset(Op, LD->getOffset(), Offset, AMOpc)) { Opcode = isPre ? ARM::LDR_PRE : ARM::LDR_POST; Match = true; } else if (LoadedVT == MVT::i16 && SelectAddrMode3Offset(Op, LD->getOffset(), Offset, AMOpc)) { Match = true; Opcode = (LD->getExtensionType() == ISD::SEXTLOAD) ? (isPre ? ARM::LDRSH_PRE : ARM::LDRSH_POST) : (isPre ? ARM::LDRH_PRE : ARM::LDRH_POST); } else if (LoadedVT == MVT::i8 || LoadedVT == MVT::i1) { if (LD->getExtensionType() == ISD::SEXTLOAD) { if (SelectAddrMode3Offset(Op, LD->getOffset(), Offset, AMOpc)) { Match = true; Opcode = isPre ? ARM::LDRSB_PRE : ARM::LDRSB_POST; } } else { if (SelectAddrMode2Offset(Op, LD->getOffset(), Offset, AMOpc)) { Match = true; Opcode = isPre ? ARM::LDRB_PRE : ARM::LDRB_POST; } } } if (Match) { SDValue Chain = LD->getChain(); SDValue Base = LD->getBasePtr(); SDValue Ops[]= { Base, Offset, AMOpc, getAL(CurDAG), CurDAG->getRegister(0, MVT::i32), Chain }; return CurDAG->getMachineNode(Opcode, Op.getDebugLoc(), MVT::i32, MVT::i32, MVT::Other, Ops, 6); } return NULL; } SDNode *ARMDAGToDAGISel::SelectT2IndexedLoad(SDValue Op) { LoadSDNode *LD = cast(Op); ISD::MemIndexedMode AM = LD->getAddressingMode(); if (AM == ISD::UNINDEXED) return NULL; EVT LoadedVT = LD->getMemoryVT(); bool isSExtLd = LD->getExtensionType() == ISD::SEXTLOAD; SDValue Offset; bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC); unsigned Opcode = 0; bool Match = false; if (SelectT2AddrModeImm8Offset(Op, LD->getOffset(), Offset)) { switch (LoadedVT.getSimpleVT().SimpleTy) { case MVT::i32: Opcode = isPre ? ARM::t2LDR_PRE : ARM::t2LDR_POST; break; case MVT::i16: if (isSExtLd) Opcode = isPre ? ARM::t2LDRSH_PRE : ARM::t2LDRSH_POST; else Opcode = isPre ? ARM::t2LDRH_PRE : ARM::t2LDRH_POST; break; case MVT::i8: case MVT::i1: if (isSExtLd) Opcode = isPre ? ARM::t2LDRSB_PRE : ARM::t2LDRSB_POST; else Opcode = isPre ? ARM::t2LDRB_PRE : ARM::t2LDRB_POST; break; default: return NULL; } Match = true; } if (Match) { SDValue Chain = LD->getChain(); SDValue Base = LD->getBasePtr(); SDValue Ops[]= { Base, Offset, getAL(CurDAG), CurDAG->getRegister(0, MVT::i32), Chain }; return CurDAG->getMachineNode(Opcode, Op.getDebugLoc(), MVT::i32, MVT::i32, MVT::Other, Ops, 5); } return NULL; } SDNode *ARMDAGToDAGISel::SelectDYN_ALLOC(SDValue Op) { SDNode *N = Op.getNode(); DebugLoc dl = N->getDebugLoc(); EVT VT = Op.getValueType(); SDValue Chain = Op.getOperand(0); SDValue Size = Op.getOperand(1); SDValue Align = Op.getOperand(2); SDValue SP = CurDAG->getRegister(ARM::SP, MVT::i32); int32_t AlignVal = cast(Align)->getSExtValue(); if (AlignVal < 0) // We need to align the stack. Use Thumb1 tAND which is the only thumb // instruction that can read and write SP. This matches to a pseudo // instruction that has a chain to ensure the result is written back to // the stack pointer. SP = SDValue(CurDAG->getMachineNode(ARM::tANDsp, dl, VT, SP, Align), 0); bool isC = isa(Size); uint32_t C = isC ? cast(Size)->getZExtValue() : ~0UL; // Handle the most common case for both Thumb1 and Thumb2: // tSUBspi - immediate is between 0 ... 508 inclusive. if (C <= 508 && ((C & 3) == 0)) // FIXME: tSUBspi encode scale 4 implicitly. return CurDAG->SelectNodeTo(N, ARM::tSUBspi_, VT, MVT::Other, SP, CurDAG->getTargetConstant(C/4, MVT::i32), Chain); if (Subtarget->isThumb1Only()) { // Use tADDspr since Thumb1 does not have a sub r, sp, r. ARMISelLowering // should have negated the size operand already. FIXME: We can't insert // new target independent node at this stage so we are forced to negate // it earlier. Is there a better solution? return CurDAG->SelectNodeTo(N, ARM::tADDspr_, VT, MVT::Other, SP, Size, Chain); } else if (Subtarget->isThumb2()) { if (isC && Predicate_t2_so_imm(Size.getNode())) { // t2SUBrSPi SDValue Ops[] = { SP, CurDAG->getTargetConstant(C, MVT::i32), Chain }; return CurDAG->SelectNodeTo(N, ARM::t2SUBrSPi_, VT, MVT::Other, Ops, 3); } else if (isC && Predicate_imm0_4095(Size.getNode())) { // t2SUBrSPi12 SDValue Ops[] = { SP, CurDAG->getTargetConstant(C, MVT::i32), Chain }; return CurDAG->SelectNodeTo(N, ARM::t2SUBrSPi12_, VT, MVT::Other, Ops, 3); } else { // t2SUBrSPs SDValue Ops[] = { SP, Size, getI32Imm(ARM_AM::getSORegOpc(ARM_AM::lsl,0)), Chain }; return CurDAG->SelectNodeTo(N, ARM::t2SUBrSPs_, VT, MVT::Other, Ops, 4); } } // FIXME: Add ADD / SUB sp instructions for ARM. return 0; } SDNode *ARMDAGToDAGISel::Select(SDValue Op) { SDNode *N = Op.getNode(); DebugLoc dl = N->getDebugLoc(); if (N->isMachineOpcode()) return NULL; // Already selected. switch (N->getOpcode()) { default: break; case ISD::Constant: { unsigned Val = cast(N)->getZExtValue(); bool UseCP = true; if (Subtarget->isThumb()) { if (Subtarget->hasThumb2()) // Thumb2 has the MOVT instruction, so all immediates can // be done with MOV + MOVT, at worst. UseCP = 0; else UseCP = (Val > 255 && // MOV ~Val > 255 && // MOV + MVN !ARM_AM::isThumbImmShiftedVal(Val)); // MOV + LSL } else UseCP = (ARM_AM::getSOImmVal(Val) == -1 && // MOV ARM_AM::getSOImmVal(~Val) == -1 && // MVN !ARM_AM::isSOImmTwoPartVal(Val)); // two instrs. if (UseCP) { SDValue CPIdx = CurDAG->getTargetConstantPool(ConstantInt::get( Type::getInt32Ty(*CurDAG->getContext()), Val), TLI.getPointerTy()); SDNode *ResNode; if (Subtarget->isThumb1Only()) { SDValue Pred = CurDAG->getTargetConstant(0xEULL, MVT::i32); SDValue PredReg = CurDAG->getRegister(0, MVT::i32); SDValue Ops[] = { CPIdx, Pred, PredReg, CurDAG->getEntryNode() }; ResNode = CurDAG->getMachineNode(ARM::tLDRcp, dl, MVT::i32, MVT::Other, Ops, 4); } else { SDValue Ops[] = { CPIdx, CurDAG->getRegister(0, MVT::i32), CurDAG->getTargetConstant(0, MVT::i32), getAL(CurDAG), CurDAG->getRegister(0, MVT::i32), CurDAG->getEntryNode() }; ResNode=CurDAG->getMachineNode(ARM::LDRcp, dl, MVT::i32, MVT::Other, Ops, 6); } ReplaceUses(Op, SDValue(ResNode, 0)); return NULL; } // Other cases are autogenerated. break; } case ISD::FrameIndex: { // Selects to ADDri FI, 0 which in turn will become ADDri SP, imm. int FI = cast(N)->getIndex(); SDValue TFI = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); if (Subtarget->isThumb1Only()) { return CurDAG->SelectNodeTo(N, ARM::tADDrSPi, MVT::i32, TFI, CurDAG->getTargetConstant(0, MVT::i32)); } else { unsigned Opc = ((Subtarget->isThumb() && Subtarget->hasThumb2()) ? ARM::t2ADDri : ARM::ADDri); SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32), getAL(CurDAG), CurDAG->getRegister(0, MVT::i32), CurDAG->getRegister(0, MVT::i32) }; return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5); } } case ARMISD::DYN_ALLOC: return SelectDYN_ALLOC(Op); case ISD::MUL: if (Subtarget->isThumb1Only()) break; if (ConstantSDNode *C = dyn_cast(Op.getOperand(1))) { unsigned RHSV = C->getZExtValue(); if (!RHSV) break; if (isPowerOf2_32(RHSV-1)) { // 2^n+1? unsigned ShImm = Log2_32(RHSV-1); if (ShImm >= 32) break; SDValue V = Op.getOperand(0); ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm); SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32); SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); if (Subtarget->isThumb()) { SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0, Reg0 }; return CurDAG->SelectNodeTo(N, ARM::t2ADDrs, MVT::i32, Ops, 6); } else { SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 }; return CurDAG->SelectNodeTo(N, ARM::ADDrs, MVT::i32, Ops, 7); } } if (isPowerOf2_32(RHSV+1)) { // 2^n-1? unsigned ShImm = Log2_32(RHSV+1); if (ShImm >= 32) break; SDValue V = Op.getOperand(0); ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm); SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32); SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); if (Subtarget->isThumb()) { SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0 }; return CurDAG->SelectNodeTo(N, ARM::t2RSBrs, MVT::i32, Ops, 5); } else { SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 }; return CurDAG->SelectNodeTo(N, ARM::RSBrs, MVT::i32, Ops, 7); } } } break; case ARMISD::FMRRD: return CurDAG->getMachineNode(ARM::FMRRD, dl, MVT::i32, MVT::i32, Op.getOperand(0), getAL(CurDAG), CurDAG->getRegister(0, MVT::i32)); case ISD::UMUL_LOHI: { if (Subtarget->isThumb1Only()) break; if (Subtarget->isThumb()) { SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1), getAL(CurDAG), CurDAG->getRegister(0, MVT::i32), CurDAG->getRegister(0, MVT::i32) }; return CurDAG->getMachineNode(ARM::t2UMULL, dl, MVT::i32, MVT::i32, Ops,4); } else { SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1), getAL(CurDAG), CurDAG->getRegister(0, MVT::i32), CurDAG->getRegister(0, MVT::i32) }; return CurDAG->getMachineNode(ARM::UMULL, dl, MVT::i32, MVT::i32, Ops, 5); } } case ISD::SMUL_LOHI: { if (Subtarget->isThumb1Only()) break; if (Subtarget->isThumb()) { SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1), getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) }; return CurDAG->getMachineNode(ARM::t2SMULL, dl, MVT::i32, MVT::i32, Ops,4); } else { SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1), getAL(CurDAG), CurDAG->getRegister(0, MVT::i32), CurDAG->getRegister(0, MVT::i32) }; return CurDAG->getMachineNode(ARM::SMULL, dl, MVT::i32, MVT::i32, Ops, 5); } } case ISD::LOAD: { SDNode *ResNode = 0; if (Subtarget->isThumb() && Subtarget->hasThumb2()) ResNode = SelectT2IndexedLoad(Op); else ResNode = SelectARMIndexedLoad(Op); if (ResNode) return ResNode; // Other cases are autogenerated. break; } case ARMISD::BRCOND: { // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc) // Emits: (Bcc:void (bb:Other):$dst, (imm:i32):$cc) // Pattern complexity = 6 cost = 1 size = 0 // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc) // Emits: (tBcc:void (bb:Other):$dst, (imm:i32):$cc) // Pattern complexity = 6 cost = 1 size = 0 // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc) // Emits: (t2Bcc:void (bb:Other):$dst, (imm:i32):$cc) // Pattern complexity = 6 cost = 1 size = 0 unsigned Opc = Subtarget->isThumb() ? ((Subtarget->hasThumb2()) ? ARM::t2Bcc : ARM::tBcc) : ARM::Bcc; SDValue Chain = Op.getOperand(0); SDValue N1 = Op.getOperand(1); SDValue N2 = Op.getOperand(2); SDValue N3 = Op.getOperand(3); SDValue InFlag = Op.getOperand(4); assert(N1.getOpcode() == ISD::BasicBlock); assert(N2.getOpcode() == ISD::Constant); assert(N3.getOpcode() == ISD::Register); SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned) cast(N2)->getZExtValue()), MVT::i32); SDValue Ops[] = { N1, Tmp2, N3, Chain, InFlag }; SDNode *ResNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, MVT::Flag, Ops, 5); Chain = SDValue(ResNode, 0); if (Op.getNode()->getNumValues() == 2) { InFlag = SDValue(ResNode, 1); ReplaceUses(SDValue(Op.getNode(), 1), InFlag); } ReplaceUses(SDValue(Op.getNode(), 0), SDValue(Chain.getNode(), Chain.getResNo())); return NULL; } case ARMISD::CMOV: { EVT VT = Op.getValueType(); SDValue N0 = Op.getOperand(0); SDValue N1 = Op.getOperand(1); SDValue N2 = Op.getOperand(2); SDValue N3 = Op.getOperand(3); SDValue InFlag = Op.getOperand(4); assert(N2.getOpcode() == ISD::Constant); assert(N3.getOpcode() == ISD::Register); if (!Subtarget->isThumb1Only() && VT == MVT::i32) { // Pattern: (ARMcmov:i32 GPR:i32:$false, so_reg:i32:$true, (imm:i32):$cc) // Emits: (MOVCCs:i32 GPR:i32:$false, so_reg:i32:$true, (imm:i32):$cc) // Pattern complexity = 18 cost = 1 size = 0 SDValue CPTmp0; SDValue CPTmp1; SDValue CPTmp2; if (Subtarget->isThumb()) { if (SelectT2ShifterOperandReg(Op, N1, CPTmp0, CPTmp1)) { unsigned SOVal = cast(CPTmp1)->getZExtValue(); unsigned SOShOp = ARM_AM::getSORegShOp(SOVal); unsigned Opc = 0; switch (SOShOp) { case ARM_AM::lsl: Opc = ARM::t2MOVCClsl; break; case ARM_AM::lsr: Opc = ARM::t2MOVCClsr; break; case ARM_AM::asr: Opc = ARM::t2MOVCCasr; break; case ARM_AM::ror: Opc = ARM::t2MOVCCror; break; default: llvm_unreachable("Unknown so_reg opcode!"); break; } SDValue SOShImm = CurDAG->getTargetConstant(ARM_AM::getSORegOffset(SOVal), MVT::i32); SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned) cast(N2)->getZExtValue()), MVT::i32); SDValue Ops[] = { N0, CPTmp0, SOShImm, Tmp2, N3, InFlag }; return CurDAG->SelectNodeTo(Op.getNode(), Opc, MVT::i32,Ops, 6); } } else { if (SelectShifterOperandReg(Op, N1, CPTmp0, CPTmp1, CPTmp2)) { SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned) cast(N2)->getZExtValue()), MVT::i32); SDValue Ops[] = { N0, CPTmp0, CPTmp1, CPTmp2, Tmp2, N3, InFlag }; return CurDAG->SelectNodeTo(Op.getNode(), ARM::MOVCCs, MVT::i32, Ops, 7); } } // Pattern: (ARMcmov:i32 GPR:i32:$false, // (imm:i32)<>:$true, // (imm:i32):$cc) // Emits: (MOVCCi:i32 GPR:i32:$false, // (so_imm:i32 (imm:i32):$true), (imm:i32):$cc) // Pattern complexity = 10 cost = 1 size = 0 if (N3.getOpcode() == ISD::Constant) { if (Subtarget->isThumb()) { if (Predicate_t2_so_imm(N3.getNode())) { SDValue Tmp1 = CurDAG->getTargetConstant(((unsigned) cast(N1)->getZExtValue()), MVT::i32); SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned) cast(N2)->getZExtValue()), MVT::i32); SDValue Ops[] = { N0, Tmp1, Tmp2, N3, InFlag }; return CurDAG->SelectNodeTo(Op.getNode(), ARM::t2MOVCCi, MVT::i32, Ops, 5); } } else { if (Predicate_so_imm(N3.getNode())) { SDValue Tmp1 = CurDAG->getTargetConstant(((unsigned) cast(N1)->getZExtValue()), MVT::i32); SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned) cast(N2)->getZExtValue()), MVT::i32); SDValue Ops[] = { N0, Tmp1, Tmp2, N3, InFlag }; return CurDAG->SelectNodeTo(Op.getNode(), ARM::MOVCCi, MVT::i32, Ops, 5); } } } } // Pattern: (ARMcmov:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc) // Emits: (MOVCCr:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc) // Pattern complexity = 6 cost = 1 size = 0 // // Pattern: (ARMcmov:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc) // Emits: (tMOVCCr:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc) // Pattern complexity = 6 cost = 11 size = 0 // // Also FCPYScc and FCPYDcc. SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned) cast(N2)->getZExtValue()), MVT::i32); SDValue Ops[] = { N0, N1, Tmp2, N3, InFlag }; unsigned Opc = 0; switch (VT.getSimpleVT().SimpleTy) { default: assert(false && "Illegal conditional move type!"); break; case MVT::i32: Opc = Subtarget->isThumb() ? (Subtarget->hasThumb2() ? ARM::t2MOVCCr : ARM::tMOVCCr_pseudo) : ARM::MOVCCr; break; case MVT::f32: Opc = ARM::FCPYScc; break; case MVT::f64: Opc = ARM::FCPYDcc; break; } return CurDAG->SelectNodeTo(Op.getNode(), Opc, VT, Ops, 5); } case ARMISD::CNEG: { EVT VT = Op.getValueType(); SDValue N0 = Op.getOperand(0); SDValue N1 = Op.getOperand(1); SDValue N2 = Op.getOperand(2); SDValue N3 = Op.getOperand(3); SDValue InFlag = Op.getOperand(4); assert(N2.getOpcode() == ISD::Constant); assert(N3.getOpcode() == ISD::Register); SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned) cast(N2)->getZExtValue()), MVT::i32); SDValue Ops[] = { N0, N1, Tmp2, N3, InFlag }; unsigned Opc = 0; switch (VT.getSimpleVT().SimpleTy) { default: assert(false && "Illegal conditional move type!"); break; case MVT::f32: Opc = ARM::FNEGScc; break; case MVT::f64: Opc = ARM::FNEGDcc; break; } return CurDAG->SelectNodeTo(Op.getNode(), Opc, VT, Ops, 5); } case ARMISD::VZIP: { unsigned Opc = 0; EVT VT = N->getValueType(0); switch (VT.getSimpleVT().SimpleTy) { default: return NULL; case MVT::v8i8: Opc = ARM::VZIPd8; break; case MVT::v4i16: Opc = ARM::VZIPd16; break; case MVT::v2f32: case MVT::v2i32: Opc = ARM::VZIPd32; break; case MVT::v16i8: Opc = ARM::VZIPq8; break; case MVT::v8i16: Opc = ARM::VZIPq16; break; case MVT::v4f32: case MVT::v4i32: Opc = ARM::VZIPq32; break; } return CurDAG->getMachineNode(Opc, dl, VT, VT, N->getOperand(0), N->getOperand(1)); } case ARMISD::VUZP: { unsigned Opc = 0; EVT VT = N->getValueType(0); switch (VT.getSimpleVT().SimpleTy) { default: return NULL; case MVT::v8i8: Opc = ARM::VUZPd8; break; case MVT::v4i16: Opc = ARM::VUZPd16; break; case MVT::v2f32: case MVT::v2i32: Opc = ARM::VUZPd32; break; case MVT::v16i8: Opc = ARM::VUZPq8; break; case MVT::v8i16: Opc = ARM::VUZPq16; break; case MVT::v4f32: case MVT::v4i32: Opc = ARM::VUZPq32; break; } return CurDAG->getMachineNode(Opc, dl, VT, VT, N->getOperand(0), N->getOperand(1)); } case ARMISD::VTRN: { unsigned Opc = 0; EVT VT = N->getValueType(0); switch (VT.getSimpleVT().SimpleTy) { default: return NULL; case MVT::v8i8: Opc = ARM::VTRNd8; break; case MVT::v4i16: Opc = ARM::VTRNd16; break; case MVT::v2f32: case MVT::v2i32: Opc = ARM::VTRNd32; break; case MVT::v16i8: Opc = ARM::VTRNq8; break; case MVT::v8i16: Opc = ARM::VTRNq16; break; case MVT::v4f32: case MVT::v4i32: Opc = ARM::VTRNq32; break; } return CurDAG->getMachineNode(Opc, dl, VT, VT, N->getOperand(0), N->getOperand(1)); } case ISD::INTRINSIC_VOID: case ISD::INTRINSIC_W_CHAIN: { unsigned IntNo = cast(N->getOperand(1))->getZExtValue(); EVT VT = N->getValueType(0); unsigned Opc = 0; switch (IntNo) { default: break; case Intrinsic::arm_neon_vld2: { SDValue MemAddr, MemUpdate, MemOpc; if (!SelectAddrMode6(Op, N->getOperand(2), MemAddr, MemUpdate, MemOpc)) return NULL; switch (VT.getSimpleVT().SimpleTy) { default: llvm_unreachable("unhandled vld2 type"); case MVT::v8i8: Opc = ARM::VLD2d8; break; case MVT::v4i16: Opc = ARM::VLD2d16; break; case MVT::v2f32: case MVT::v2i32: Opc = ARM::VLD2d32; break; } SDValue Chain = N->getOperand(0); const SDValue Ops[] = { MemAddr, MemUpdate, MemOpc, Chain }; return CurDAG->getMachineNode(Opc, dl, VT, VT, MVT::Other, Ops, 4); } case Intrinsic::arm_neon_vld3: { SDValue MemAddr, MemUpdate, MemOpc; if (!SelectAddrMode6(Op, N->getOperand(2), MemAddr, MemUpdate, MemOpc)) return NULL; switch (VT.getSimpleVT().SimpleTy) { default: llvm_unreachable("unhandled vld3 type"); case MVT::v8i8: Opc = ARM::VLD3d8; break; case MVT::v4i16: Opc = ARM::VLD3d16; break; case MVT::v2f32: case MVT::v2i32: Opc = ARM::VLD3d32; break; } SDValue Chain = N->getOperand(0); const SDValue Ops[] = { MemAddr, MemUpdate, MemOpc, Chain }; return CurDAG->getMachineNode(Opc, dl, VT, VT, VT, MVT::Other, Ops, 4); } case Intrinsic::arm_neon_vld4: { SDValue MemAddr, MemUpdate, MemOpc; if (!SelectAddrMode6(Op, N->getOperand(2), MemAddr, MemUpdate, MemOpc)) return NULL; switch (VT.getSimpleVT().SimpleTy) { default: llvm_unreachable("unhandled vld4 type"); case MVT::v8i8: Opc = ARM::VLD4d8; break; case MVT::v4i16: Opc = ARM::VLD4d16; break; case MVT::v2f32: case MVT::v2i32: Opc = ARM::VLD4d32; break; } SDValue Chain = N->getOperand(0); const SDValue Ops[] = { MemAddr, MemUpdate, MemOpc, Chain }; std::vector ResTys(4, VT); ResTys.push_back(MVT::Other); return CurDAG->getMachineNode(Opc, dl, ResTys, Ops, 4); } case Intrinsic::arm_neon_vld2lane: { SDValue MemAddr, MemUpdate, MemOpc; if (!SelectAddrMode6(Op, N->getOperand(2), MemAddr, MemUpdate, MemOpc)) return NULL; switch (VT.getSimpleVT().SimpleTy) { default: llvm_unreachable("unhandled vld2lane type"); case MVT::v8i8: Opc = ARM::VLD2LNd8; break; case MVT::v4i16: Opc = ARM::VLD2LNd16; break; case MVT::v2f32: case MVT::v2i32: Opc = ARM::VLD2LNd32; break; } SDValue Chain = N->getOperand(0); const SDValue Ops[] = { MemAddr, MemUpdate, MemOpc, N->getOperand(3), N->getOperand(4), N->getOperand(5), Chain }; return CurDAG->getMachineNode(Opc, dl, VT, VT, MVT::Other, Ops, 7); } case Intrinsic::arm_neon_vld3lane: { SDValue MemAddr, MemUpdate, MemOpc; if (!SelectAddrMode6(Op, N->getOperand(2), MemAddr, MemUpdate, MemOpc)) return NULL; switch (VT.getSimpleVT().SimpleTy) { default: llvm_unreachable("unhandled vld3lane type"); case MVT::v8i8: Opc = ARM::VLD3LNd8; break; case MVT::v4i16: Opc = ARM::VLD3LNd16; break; case MVT::v2f32: case MVT::v2i32: Opc = ARM::VLD3LNd32; break; } SDValue Chain = N->getOperand(0); const SDValue Ops[] = { MemAddr, MemUpdate, MemOpc, N->getOperand(3), N->getOperand(4), N->getOperand(5), N->getOperand(6), Chain }; return CurDAG->getMachineNode(Opc, dl, VT, VT, VT, MVT::Other, Ops, 8); } case Intrinsic::arm_neon_vld4lane: { SDValue MemAddr, MemUpdate, MemOpc; if (!SelectAddrMode6(Op, N->getOperand(2), MemAddr, MemUpdate, MemOpc)) return NULL; switch (VT.getSimpleVT().SimpleTy) { default: llvm_unreachable("unhandled vld4lane type"); case MVT::v8i8: Opc = ARM::VLD4LNd8; break; case MVT::v4i16: Opc = ARM::VLD4LNd16; break; case MVT::v2f32: case MVT::v2i32: Opc = ARM::VLD4LNd32; break; } SDValue Chain = N->getOperand(0); const SDValue Ops[] = { MemAddr, MemUpdate, MemOpc, N->getOperand(3), N->getOperand(4), N->getOperand(5), N->getOperand(6), N->getOperand(7), Chain }; std::vector ResTys(4, VT); ResTys.push_back(MVT::Other); return CurDAG->getMachineNode(Opc, dl, ResTys, Ops, 9); } case Intrinsic::arm_neon_vst2: { SDValue MemAddr, MemUpdate, MemOpc; if (!SelectAddrMode6(Op, N->getOperand(2), MemAddr, MemUpdate, MemOpc)) return NULL; switch (N->getOperand(3).getValueType().getSimpleVT().SimpleTy) { default: llvm_unreachable("unhandled vst2 type"); case MVT::v8i8: Opc = ARM::VST2d8; break; case MVT::v4i16: Opc = ARM::VST2d16; break; case MVT::v2f32: case MVT::v2i32: Opc = ARM::VST2d32; break; } SDValue Chain = N->getOperand(0); const SDValue Ops[] = { MemAddr, MemUpdate, MemOpc, N->getOperand(3), N->getOperand(4), Chain }; return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 6); } case Intrinsic::arm_neon_vst3: { SDValue MemAddr, MemUpdate, MemOpc; if (!SelectAddrMode6(Op, N->getOperand(2), MemAddr, MemUpdate, MemOpc)) return NULL; switch (N->getOperand(3).getValueType().getSimpleVT().SimpleTy) { default: llvm_unreachable("unhandled vst3 type"); case MVT::v8i8: Opc = ARM::VST3d8; break; case MVT::v4i16: Opc = ARM::VST3d16; break; case MVT::v2f32: case MVT::v2i32: Opc = ARM::VST3d32; break; } SDValue Chain = N->getOperand(0); const SDValue Ops[] = { MemAddr, MemUpdate, MemOpc, N->getOperand(3), N->getOperand(4), N->getOperand(5), Chain }; return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7); } case Intrinsic::arm_neon_vst4: { SDValue MemAddr, MemUpdate, MemOpc; if (!SelectAddrMode6(Op, N->getOperand(2), MemAddr, MemUpdate, MemOpc)) return NULL; switch (N->getOperand(3).getValueType().getSimpleVT().SimpleTy) { default: llvm_unreachable("unhandled vst4 type"); case MVT::v8i8: Opc = ARM::VST4d8; break; case MVT::v4i16: Opc = ARM::VST4d16; break; case MVT::v2f32: case MVT::v2i32: Opc = ARM::VST4d32; break; } SDValue Chain = N->getOperand(0); const SDValue Ops[] = { MemAddr, MemUpdate, MemOpc, N->getOperand(3), N->getOperand(4), N->getOperand(5), N->getOperand(6), Chain }; return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 8); } case Intrinsic::arm_neon_vst2lane: { SDValue MemAddr, MemUpdate, MemOpc; if (!SelectAddrMode6(Op, N->getOperand(2), MemAddr, MemUpdate, MemOpc)) return NULL; switch (N->getOperand(3).getValueType().getSimpleVT().SimpleTy) { default: llvm_unreachable("unhandled vst2lane type"); case MVT::v8i8: Opc = ARM::VST2LNd8; break; case MVT::v4i16: Opc = ARM::VST2LNd16; break; case MVT::v2f32: case MVT::v2i32: Opc = ARM::VST2LNd32; break; } SDValue Chain = N->getOperand(0); const SDValue Ops[] = { MemAddr, MemUpdate, MemOpc, N->getOperand(3), N->getOperand(4), N->getOperand(5), Chain }; return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7); } case Intrinsic::arm_neon_vst3lane: { SDValue MemAddr, MemUpdate, MemOpc; if (!SelectAddrMode6(Op, N->getOperand(2), MemAddr, MemUpdate, MemOpc)) return NULL; switch (N->getOperand(3).getValueType().getSimpleVT().SimpleTy) { default: llvm_unreachable("unhandled vst3lane type"); case MVT::v8i8: Opc = ARM::VST3LNd8; break; case MVT::v4i16: Opc = ARM::VST3LNd16; break; case MVT::v2f32: case MVT::v2i32: Opc = ARM::VST3LNd32; break; } SDValue Chain = N->getOperand(0); const SDValue Ops[] = { MemAddr, MemUpdate, MemOpc, N->getOperand(3), N->getOperand(4), N->getOperand(5), N->getOperand(6), Chain }; return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 8); } case Intrinsic::arm_neon_vst4lane: { SDValue MemAddr, MemUpdate, MemOpc; if (!SelectAddrMode6(Op, N->getOperand(2), MemAddr, MemUpdate, MemOpc)) return NULL; switch (N->getOperand(3).getValueType().getSimpleVT().SimpleTy) { default: llvm_unreachable("unhandled vst4lane type"); case MVT::v8i8: Opc = ARM::VST4LNd8; break; case MVT::v4i16: Opc = ARM::VST4LNd16; break; case MVT::v2f32: case MVT::v2i32: Opc = ARM::VST4LNd32; break; } SDValue Chain = N->getOperand(0); const SDValue Ops[] = { MemAddr, MemUpdate, MemOpc, N->getOperand(3), N->getOperand(4), N->getOperand(5), N->getOperand(6), N->getOperand(7), Chain }; return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 9); } } } } return SelectCode(Op); } bool ARMDAGToDAGISel:: SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode, std::vector &OutOps) { assert(ConstraintCode == 'm' && "unexpected asm memory constraint"); SDValue Base, Offset, Opc; if (!SelectAddrMode2(Op, Op, Base, Offset, Opc)) return true; OutOps.push_back(Base); OutOps.push_back(Offset); OutOps.push_back(Opc); return false; } /// createARMISelDag - This pass converts a legalized DAG into a /// ARM-specific DAG, ready for instruction scheduling. /// FunctionPass *llvm::createARMISelDag(ARMBaseTargetMachine &TM) { return new ARMDAGToDAGISel(TM); }