//===-- ARMISelDAGToDAG.cpp - A dag to dag inst selector for ARM ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines an instruction selector for the ARM target. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "arm-isel" #include "ARM.h" #include "ARMAddressingModes.h" #include "ARMTargetMachine.h" #include "llvm/CallingConv.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/Intrinsics.h" #include "llvm/LLVMContext.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; static cl::opt DisableShifterOp("disable-shifter-op", cl::Hidden, cl::desc("Disable isel of shifter-op"), cl::init(false)); //===--------------------------------------------------------------------===// /// ARMDAGToDAGISel - ARM specific code to select ARM machine /// instructions for SelectionDAG operations. /// namespace { class ARMDAGToDAGISel : public SelectionDAGISel { ARMBaseTargetMachine &TM; /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can /// make the right decision when generating code for different targets. const ARMSubtarget *Subtarget; public: explicit ARMDAGToDAGISel(ARMBaseTargetMachine &tm, CodeGenOpt::Level OptLevel) : SelectionDAGISel(tm, OptLevel), TM(tm), Subtarget(&TM.getSubtarget()) { } virtual const char *getPassName() const { return "ARM Instruction Selection"; } /// getI32Imm - Return a target constant of type i32 with the specified /// value. inline SDValue getI32Imm(unsigned Imm) { return CurDAG->getTargetConstant(Imm, MVT::i32); } SDNode *Select(SDNode *N); bool SelectShifterOperandReg(SDNode *Op, SDValue N, SDValue &A, SDValue &B, SDValue &C); bool SelectAddrMode2(SDNode *Op, SDValue N, SDValue &Base, SDValue &Offset, SDValue &Opc); bool SelectAddrMode2Offset(SDNode *Op, SDValue N, SDValue &Offset, SDValue &Opc); bool SelectAddrMode3(SDNode *Op, SDValue N, SDValue &Base, SDValue &Offset, SDValue &Opc); bool SelectAddrMode3Offset(SDNode *Op, SDValue N, SDValue &Offset, SDValue &Opc); bool SelectAddrMode4(SDNode *Op, SDValue N, SDValue &Addr, SDValue &Mode); bool SelectAddrMode5(SDNode *Op, SDValue N, SDValue &Base, SDValue &Offset); bool SelectAddrMode6(SDNode *Op, SDValue N, SDValue &Addr, SDValue &Align); bool SelectAddrModePC(SDNode *Op, SDValue N, SDValue &Offset, SDValue &Label); bool SelectThumbAddrModeRR(SDNode *Op, SDValue N, SDValue &Base, SDValue &Offset); bool SelectThumbAddrModeRI5(SDNode *Op, SDValue N, unsigned Scale, SDValue &Base, SDValue &OffImm, SDValue &Offset); bool SelectThumbAddrModeS1(SDNode *Op, SDValue N, SDValue &Base, SDValue &OffImm, SDValue &Offset); bool SelectThumbAddrModeS2(SDNode *Op, SDValue N, SDValue &Base, SDValue &OffImm, SDValue &Offset); bool SelectThumbAddrModeS4(SDNode *Op, SDValue N, SDValue &Base, SDValue &OffImm, SDValue &Offset); bool SelectThumbAddrModeSP(SDNode *Op, SDValue N, SDValue &Base, SDValue &OffImm); bool SelectT2ShifterOperandReg(SDNode *Op, SDValue N, SDValue &BaseReg, SDValue &Opc); bool SelectT2AddrModeImm12(SDNode *Op, SDValue N, SDValue &Base, SDValue &OffImm); bool SelectT2AddrModeImm8(SDNode *Op, SDValue N, SDValue &Base, SDValue &OffImm); bool SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N, SDValue &OffImm); bool SelectT2AddrModeImm8s4(SDNode *Op, SDValue N, SDValue &Base, SDValue &OffImm); bool SelectT2AddrModeSoReg(SDNode *Op, SDValue N, SDValue &Base, SDValue &OffReg, SDValue &ShImm); // Include the pieces autogenerated from the target description. #include "ARMGenDAGISel.inc" private: /// SelectARMIndexedLoad - Indexed (pre/post inc/dec) load matching code for /// ARM. SDNode *SelectARMIndexedLoad(SDNode *N); SDNode *SelectT2IndexedLoad(SDNode *N); /// SelectVLD - Select NEON load intrinsics. NumVecs should be /// 1, 2, 3 or 4. The opcode arrays specify the instructions used for /// loads of D registers and even subregs and odd subregs of Q registers. /// For NumVecs <= 2, QOpcodes1 is not used. SDNode *SelectVLD(SDNode *N, unsigned NumVecs, unsigned *DOpcodes, unsigned *QOpcodes0, unsigned *QOpcodes1); /// SelectVST - Select NEON store intrinsics. NumVecs should /// be 1, 2, 3 or 4. The opcode arrays specify the instructions used for /// stores of D registers and even subregs and odd subregs of Q registers. /// For NumVecs <= 2, QOpcodes1 is not used. SDNode *SelectVST(SDNode *N, unsigned NumVecs, unsigned *DOpcodes, unsigned *QOpcodes0, unsigned *QOpcodes1); /// SelectVLDSTLane - Select NEON load/store lane intrinsics. NumVecs should /// be 2, 3 or 4. The opcode arrays specify the instructions used for /// load/store of D registers and even subregs and odd subregs of Q registers. SDNode *SelectVLDSTLane(SDNode *N, bool IsLoad, unsigned NumVecs, unsigned *DOpcodes, unsigned *QOpcodes0, unsigned *QOpcodes1); /// SelectVTBL - Select NEON VTBL and VTBX intrinsics. NumVecs should be 2, /// 3 or 4. These are custom-selected so that a REG_SEQUENCE can be /// generated to force the table registers to be consecutive. SDNode *SelectVTBL(SDNode *N, bool IsExt, unsigned NumVecs, unsigned Opc); /// SelectV6T2BitfieldExtractOp - Select SBFX/UBFX instructions for ARM. SDNode *SelectV6T2BitfieldExtractOp(SDNode *N, bool isSigned); /// SelectCMOVOp - Select CMOV instructions for ARM. SDNode *SelectCMOVOp(SDNode *N); SDNode *SelectT2CMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal, ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag); SDNode *SelectARMCMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal, ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag); SDNode *SelectT2CMOVSoImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal, ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag); SDNode *SelectARMCMOVSoImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal, ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag); SDNode *SelectConcatVector(SDNode *N); /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for /// inline asm expressions. virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode, std::vector &OutOps); // Form pairs of consecutive S, D, or Q registers. SDNode *PairSRegs(EVT VT, SDValue V0, SDValue V1); SDNode *PairDRegs(EVT VT, SDValue V0, SDValue V1); SDNode *PairQRegs(EVT VT, SDValue V0, SDValue V1); // Form sequences of 4 consecutive S, D, or Q registers. SDNode *QuadSRegs(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3); SDNode *QuadDRegs(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3); SDNode *QuadQRegs(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3); // Form sequences of 8 consecutive D registers. SDNode *OctoDRegs(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3, SDValue V4, SDValue V5, SDValue V6, SDValue V7); }; } /// isInt32Immediate - This method tests to see if the node is a 32-bit constant /// operand. If so Imm will receive the 32-bit value. static bool isInt32Immediate(SDNode *N, unsigned &Imm) { if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) { Imm = cast(N)->getZExtValue(); return true; } return false; } // isInt32Immediate - This method tests to see if a constant operand. // If so Imm will receive the 32 bit value. static bool isInt32Immediate(SDValue N, unsigned &Imm) { return isInt32Immediate(N.getNode(), Imm); } // isOpcWithIntImmediate - This method tests to see if the node is a specific // opcode and that it has a immediate integer right operand. // If so Imm will receive the 32 bit value. static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) { return N->getOpcode() == Opc && isInt32Immediate(N->getOperand(1).getNode(), Imm); } bool ARMDAGToDAGISel::SelectShifterOperandReg(SDNode *Op, SDValue N, SDValue &BaseReg, SDValue &ShReg, SDValue &Opc) { if (DisableShifterOp) return false; ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N); // Don't match base register only case. That is matched to a separate // lower complexity pattern with explicit register operand. if (ShOpcVal == ARM_AM::no_shift) return false; BaseReg = N.getOperand(0); unsigned ShImmVal = 0; if (ConstantSDNode *RHS = dyn_cast(N.getOperand(1))) { ShReg = CurDAG->getRegister(0, MVT::i32); ShImmVal = RHS->getZExtValue() & 31; } else { ShReg = N.getOperand(1); } Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal), MVT::i32); return true; } bool ARMDAGToDAGISel::SelectAddrMode2(SDNode *Op, SDValue N, SDValue &Base, SDValue &Offset, SDValue &Opc) { if (N.getOpcode() == ISD::MUL) { if (ConstantSDNode *RHS = dyn_cast(N.getOperand(1))) { // X * [3,5,9] -> X + X * [2,4,8] etc. int RHSC = (int)RHS->getZExtValue(); if (RHSC & 1) { RHSC = RHSC & ~1; ARM_AM::AddrOpc AddSub = ARM_AM::add; if (RHSC < 0) { AddSub = ARM_AM::sub; RHSC = - RHSC; } if (isPowerOf2_32(RHSC)) { unsigned ShAmt = Log2_32(RHSC); Base = Offset = N.getOperand(0); Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ARM_AM::lsl), MVT::i32); return true; } } } } if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB) { Base = N; if (N.getOpcode() == ISD::FrameIndex) { int FI = cast(N)->getIndex(); Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); } else if (N.getOpcode() == ARMISD::Wrapper && !(Subtarget->useMovt() && N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) { Base = N.getOperand(0); } Offset = CurDAG->getRegister(0, MVT::i32); Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(ARM_AM::add, 0, ARM_AM::no_shift), MVT::i32); return true; } // Match simple R +/- imm12 operands. if (N.getOpcode() == ISD::ADD) if (ConstantSDNode *RHS = dyn_cast(N.getOperand(1))) { int RHSC = (int)RHS->getZExtValue(); if ((RHSC >= 0 && RHSC < 0x1000) || (RHSC < 0 && RHSC > -0x1000)) { // 12 bits. Base = N.getOperand(0); if (Base.getOpcode() == ISD::FrameIndex) { int FI = cast(Base)->getIndex(); Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); } Offset = CurDAG->getRegister(0, MVT::i32); ARM_AM::AddrOpc AddSub = ARM_AM::add; if (RHSC < 0) { AddSub = ARM_AM::sub; RHSC = - RHSC; } Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, RHSC, ARM_AM::no_shift), MVT::i32); return true; } } // Otherwise this is R +/- [possibly shifted] R. ARM_AM::AddrOpc AddSub = N.getOpcode() == ISD::ADD ? ARM_AM::add:ARM_AM::sub; ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(1)); unsigned ShAmt = 0; Base = N.getOperand(0); Offset = N.getOperand(1); if (ShOpcVal != ARM_AM::no_shift) { // Check to see if the RHS of the shift is a constant, if not, we can't fold // it. if (ConstantSDNode *Sh = dyn_cast(N.getOperand(1).getOperand(1))) { ShAmt = Sh->getZExtValue(); Offset = N.getOperand(1).getOperand(0); } else { ShOpcVal = ARM_AM::no_shift; } } // Try matching (R shl C) + (R). if (N.getOpcode() == ISD::ADD && ShOpcVal == ARM_AM::no_shift) { ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0)); if (ShOpcVal != ARM_AM::no_shift) { // Check to see if the RHS of the shift is a constant, if not, we can't // fold it. if (ConstantSDNode *Sh = dyn_cast(N.getOperand(0).getOperand(1))) { ShAmt = Sh->getZExtValue(); Offset = N.getOperand(0).getOperand(0); Base = N.getOperand(1); } else { ShOpcVal = ARM_AM::no_shift; } } } Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal), MVT::i32); return true; } bool ARMDAGToDAGISel::SelectAddrMode2Offset(SDNode *Op, SDValue N, SDValue &Offset, SDValue &Opc) { unsigned Opcode = Op->getOpcode(); ISD::MemIndexedMode AM = (Opcode == ISD::LOAD) ? cast(Op)->getAddressingMode() : cast(Op)->getAddressingMode(); ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC) ? ARM_AM::add : ARM_AM::sub; if (ConstantSDNode *C = dyn_cast(N)) { int Val = (int)C->getZExtValue(); if (Val >= 0 && Val < 0x1000) { // 12 bits. Offset = CurDAG->getRegister(0, MVT::i32); Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift), MVT::i32); return true; } } Offset = N; ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N); unsigned ShAmt = 0; if (ShOpcVal != ARM_AM::no_shift) { // Check to see if the RHS of the shift is a constant, if not, we can't fold // it. if (ConstantSDNode *Sh = dyn_cast(N.getOperand(1))) { ShAmt = Sh->getZExtValue(); Offset = N.getOperand(0); } else { ShOpcVal = ARM_AM::no_shift; } } Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal), MVT::i32); return true; } bool ARMDAGToDAGISel::SelectAddrMode3(SDNode *Op, SDValue N, SDValue &Base, SDValue &Offset, SDValue &Opc) { if (N.getOpcode() == ISD::SUB) { // X - C is canonicalize to X + -C, no need to handle it here. Base = N.getOperand(0); Offset = N.getOperand(1); Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::sub, 0),MVT::i32); return true; } if (N.getOpcode() != ISD::ADD) { Base = N; if (N.getOpcode() == ISD::FrameIndex) { int FI = cast(N)->getIndex(); Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); } Offset = CurDAG->getRegister(0, MVT::i32); Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0),MVT::i32); return true; } // If the RHS is +/- imm8, fold into addr mode. if (ConstantSDNode *RHS = dyn_cast(N.getOperand(1))) { int RHSC = (int)RHS->getZExtValue(); if ((RHSC >= 0 && RHSC < 256) || (RHSC < 0 && RHSC > -256)) { // note -256 itself isn't allowed. Base = N.getOperand(0); if (Base.getOpcode() == ISD::FrameIndex) { int FI = cast(Base)->getIndex(); Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); } Offset = CurDAG->getRegister(0, MVT::i32); ARM_AM::AddrOpc AddSub = ARM_AM::add; if (RHSC < 0) { AddSub = ARM_AM::sub; RHSC = - RHSC; } Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, RHSC),MVT::i32); return true; } } Base = N.getOperand(0); Offset = N.getOperand(1); Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0), MVT::i32); return true; } bool ARMDAGToDAGISel::SelectAddrMode3Offset(SDNode *Op, SDValue N, SDValue &Offset, SDValue &Opc) { unsigned Opcode = Op->getOpcode(); ISD::MemIndexedMode AM = (Opcode == ISD::LOAD) ? cast(Op)->getAddressingMode() : cast(Op)->getAddressingMode(); ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC) ? ARM_AM::add : ARM_AM::sub; if (ConstantSDNode *C = dyn_cast(N)) { int Val = (int)C->getZExtValue(); if (Val >= 0 && Val < 256) { Offset = CurDAG->getRegister(0, MVT::i32); Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, Val), MVT::i32); return true; } } Offset = N; Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, 0), MVT::i32); return true; } bool ARMDAGToDAGISel::SelectAddrMode4(SDNode *Op, SDValue N, SDValue &Addr, SDValue &Mode) { Addr = N; Mode = CurDAG->getTargetConstant(0, MVT::i32); return true; } bool ARMDAGToDAGISel::SelectAddrMode5(SDNode *Op, SDValue N, SDValue &Base, SDValue &Offset) { if (N.getOpcode() != ISD::ADD) { Base = N; if (N.getOpcode() == ISD::FrameIndex) { int FI = cast(N)->getIndex(); Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); } else if (N.getOpcode() == ARMISD::Wrapper && !(Subtarget->useMovt() && N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) { Base = N.getOperand(0); } Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0), MVT::i32); return true; } // If the RHS is +/- imm8, fold into addr mode. if (ConstantSDNode *RHS = dyn_cast(N.getOperand(1))) { int RHSC = (int)RHS->getZExtValue(); if ((RHSC & 3) == 0) { // The constant is implicitly multiplied by 4. RHSC >>= 2; if ((RHSC >= 0 && RHSC < 256) || (RHSC < 0 && RHSC > -256)) { // note -256 itself isn't allowed. Base = N.getOperand(0); if (Base.getOpcode() == ISD::FrameIndex) { int FI = cast(Base)->getIndex(); Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); } ARM_AM::AddrOpc AddSub = ARM_AM::add; if (RHSC < 0) { AddSub = ARM_AM::sub; RHSC = - RHSC; } Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(AddSub, RHSC), MVT::i32); return true; } } } Base = N; Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0), MVT::i32); return true; } bool ARMDAGToDAGISel::SelectAddrMode6(SDNode *Op, SDValue N, SDValue &Addr, SDValue &Align) { Addr = N; // Default to no alignment. Align = CurDAG->getTargetConstant(0, MVT::i32); return true; } bool ARMDAGToDAGISel::SelectAddrModePC(SDNode *Op, SDValue N, SDValue &Offset, SDValue &Label) { if (N.getOpcode() == ARMISD::PIC_ADD && N.hasOneUse()) { Offset = N.getOperand(0); SDValue N1 = N.getOperand(1); Label = CurDAG->getTargetConstant(cast(N1)->getZExtValue(), MVT::i32); return true; } return false; } bool ARMDAGToDAGISel::SelectThumbAddrModeRR(SDNode *Op, SDValue N, SDValue &Base, SDValue &Offset){ // FIXME dl should come from the parent load or store, not the address if (N.getOpcode() != ISD::ADD) { ConstantSDNode *NC = dyn_cast(N); if (!NC || !NC->isNullValue()) return false; Base = Offset = N; return true; } Base = N.getOperand(0); Offset = N.getOperand(1); return true; } bool ARMDAGToDAGISel::SelectThumbAddrModeRI5(SDNode *Op, SDValue N, unsigned Scale, SDValue &Base, SDValue &OffImm, SDValue &Offset) { if (Scale == 4) { SDValue TmpBase, TmpOffImm; if (SelectThumbAddrModeSP(Op, N, TmpBase, TmpOffImm)) return false; // We want to select tLDRspi / tSTRspi instead. if (N.getOpcode() == ARMISD::Wrapper && N.getOperand(0).getOpcode() == ISD::TargetConstantPool) return false; // We want to select tLDRpci instead. } if (N.getOpcode() != ISD::ADD) { if (N.getOpcode() == ARMISD::Wrapper && !(Subtarget->useMovt() && N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) { Base = N.getOperand(0); } else Base = N; Offset = CurDAG->getRegister(0, MVT::i32); OffImm = CurDAG->getTargetConstant(0, MVT::i32); return true; } // Thumb does not have [sp, r] address mode. RegisterSDNode *LHSR = dyn_cast(N.getOperand(0)); RegisterSDNode *RHSR = dyn_cast(N.getOperand(1)); if ((LHSR && LHSR->getReg() == ARM::SP) || (RHSR && RHSR->getReg() == ARM::SP)) { Base = N; Offset = CurDAG->getRegister(0, MVT::i32); OffImm = CurDAG->getTargetConstant(0, MVT::i32); return true; } // If the RHS is + imm5 * scale, fold into addr mode. if (ConstantSDNode *RHS = dyn_cast(N.getOperand(1))) { int RHSC = (int)RHS->getZExtValue(); if ((RHSC & (Scale-1)) == 0) { // The constant is implicitly multiplied. RHSC /= Scale; if (RHSC >= 0 && RHSC < 32) { Base = N.getOperand(0); Offset = CurDAG->getRegister(0, MVT::i32); OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32); return true; } } } Base = N.getOperand(0); Offset = N.getOperand(1); OffImm = CurDAG->getTargetConstant(0, MVT::i32); return true; } bool ARMDAGToDAGISel::SelectThumbAddrModeS1(SDNode *Op, SDValue N, SDValue &Base, SDValue &OffImm, SDValue &Offset) { return SelectThumbAddrModeRI5(Op, N, 1, Base, OffImm, Offset); } bool ARMDAGToDAGISel::SelectThumbAddrModeS2(SDNode *Op, SDValue N, SDValue &Base, SDValue &OffImm, SDValue &Offset) { return SelectThumbAddrModeRI5(Op, N, 2, Base, OffImm, Offset); } bool ARMDAGToDAGISel::SelectThumbAddrModeS4(SDNode *Op, SDValue N, SDValue &Base, SDValue &OffImm, SDValue &Offset) { return SelectThumbAddrModeRI5(Op, N, 4, Base, OffImm, Offset); } bool ARMDAGToDAGISel::SelectThumbAddrModeSP(SDNode *Op, SDValue N, SDValue &Base, SDValue &OffImm) { if (N.getOpcode() == ISD::FrameIndex) { int FI = cast(N)->getIndex(); Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); OffImm = CurDAG->getTargetConstant(0, MVT::i32); return true; } if (N.getOpcode() != ISD::ADD) return false; RegisterSDNode *LHSR = dyn_cast(N.getOperand(0)); if (N.getOperand(0).getOpcode() == ISD::FrameIndex || (LHSR && LHSR->getReg() == ARM::SP)) { // If the RHS is + imm8 * scale, fold into addr mode. if (ConstantSDNode *RHS = dyn_cast(N.getOperand(1))) { int RHSC = (int)RHS->getZExtValue(); if ((RHSC & 3) == 0) { // The constant is implicitly multiplied. RHSC >>= 2; if (RHSC >= 0 && RHSC < 256) { Base = N.getOperand(0); if (Base.getOpcode() == ISD::FrameIndex) { int FI = cast(Base)->getIndex(); Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); } OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32); return true; } } } } return false; } bool ARMDAGToDAGISel::SelectT2ShifterOperandReg(SDNode *Op, SDValue N, SDValue &BaseReg, SDValue &Opc) { if (DisableShifterOp) return false; ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N); // Don't match base register only case. That is matched to a separate // lower complexity pattern with explicit register operand. if (ShOpcVal == ARM_AM::no_shift) return false; BaseReg = N.getOperand(0); unsigned ShImmVal = 0; if (ConstantSDNode *RHS = dyn_cast(N.getOperand(1))) { ShImmVal = RHS->getZExtValue() & 31; Opc = getI32Imm(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal)); return true; } return false; } bool ARMDAGToDAGISel::SelectT2AddrModeImm12(SDNode *Op, SDValue N, SDValue &Base, SDValue &OffImm) { // Match simple R + imm12 operands. // Base only. if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB) { if (N.getOpcode() == ISD::FrameIndex) { // Match frame index... int FI = cast(N)->getIndex(); Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); OffImm = CurDAG->getTargetConstant(0, MVT::i32); return true; } else if (N.getOpcode() == ARMISD::Wrapper && !(Subtarget->useMovt() && N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) { Base = N.getOperand(0); if (Base.getOpcode() == ISD::TargetConstantPool) return false; // We want to select t2LDRpci instead. } else Base = N; OffImm = CurDAG->getTargetConstant(0, MVT::i32); return true; } if (ConstantSDNode *RHS = dyn_cast(N.getOperand(1))) { if (SelectT2AddrModeImm8(Op, N, Base, OffImm)) // Let t2LDRi8 handle (R - imm8). return false; int RHSC = (int)RHS->getZExtValue(); if (N.getOpcode() == ISD::SUB) RHSC = -RHSC; if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned) Base = N.getOperand(0); if (Base.getOpcode() == ISD::FrameIndex) { int FI = cast(Base)->getIndex(); Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); } OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32); return true; } } // Base only. Base = N; OffImm = CurDAG->getTargetConstant(0, MVT::i32); return true; } bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDNode *Op, SDValue N, SDValue &Base, SDValue &OffImm) { // Match simple R - imm8 operands. if (N.getOpcode() == ISD::ADD || N.getOpcode() == ISD::SUB) { if (ConstantSDNode *RHS = dyn_cast(N.getOperand(1))) { int RHSC = (int)RHS->getSExtValue(); if (N.getOpcode() == ISD::SUB) RHSC = -RHSC; if ((RHSC >= -255) && (RHSC < 0)) { // 8 bits (always negative) Base = N.getOperand(0); if (Base.getOpcode() == ISD::FrameIndex) { int FI = cast(Base)->getIndex(); Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); } OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32); return true; } } } return false; } bool ARMDAGToDAGISel::SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N, SDValue &OffImm){ unsigned Opcode = Op->getOpcode(); ISD::MemIndexedMode AM = (Opcode == ISD::LOAD) ? cast(Op)->getAddressingMode() : cast(Op)->getAddressingMode(); if (ConstantSDNode *RHS = dyn_cast(N)) { int RHSC = (int)RHS->getZExtValue(); if (RHSC >= 0 && RHSC < 0x100) { // 8 bits. OffImm = ((AM == ISD::PRE_INC) || (AM == ISD::POST_INC)) ? CurDAG->getTargetConstant(RHSC, MVT::i32) : CurDAG->getTargetConstant(-RHSC, MVT::i32); return true; } } return false; } bool ARMDAGToDAGISel::SelectT2AddrModeImm8s4(SDNode *Op, SDValue N, SDValue &Base, SDValue &OffImm) { if (N.getOpcode() == ISD::ADD) { if (ConstantSDNode *RHS = dyn_cast(N.getOperand(1))) { int RHSC = (int)RHS->getZExtValue(); // 8 bits. if (((RHSC & 0x3) == 0) && ((RHSC >= 0 && RHSC < 0x400) || (RHSC < 0 && RHSC > -0x400))) { Base = N.getOperand(0); OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32); return true; } } } else if (N.getOpcode() == ISD::SUB) { if (ConstantSDNode *RHS = dyn_cast(N.getOperand(1))) { int RHSC = (int)RHS->getZExtValue(); // 8 bits. if (((RHSC & 0x3) == 0) && (RHSC >= 0 && RHSC < 0x400)) { Base = N.getOperand(0); OffImm = CurDAG->getTargetConstant(-RHSC, MVT::i32); return true; } } } return false; } bool ARMDAGToDAGISel::SelectT2AddrModeSoReg(SDNode *Op, SDValue N, SDValue &Base, SDValue &OffReg, SDValue &ShImm) { // (R - imm8) should be handled by t2LDRi8. The rest are handled by t2LDRi12. if (N.getOpcode() != ISD::ADD) return false; // Leave (R + imm12) for t2LDRi12, (R - imm8) for t2LDRi8. if (ConstantSDNode *RHS = dyn_cast(N.getOperand(1))) { int RHSC = (int)RHS->getZExtValue(); if (RHSC >= 0 && RHSC < 0x1000) // 12 bits (unsigned) return false; else if (RHSC < 0 && RHSC >= -255) // 8 bits return false; } // Look for (R + R) or (R + (R << [1,2,3])). unsigned ShAmt = 0; Base = N.getOperand(0); OffReg = N.getOperand(1); // Swap if it is ((R << c) + R). ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(OffReg); if (ShOpcVal != ARM_AM::lsl) { ShOpcVal = ARM_AM::getShiftOpcForNode(Base); if (ShOpcVal == ARM_AM::lsl) std::swap(Base, OffReg); } if (ShOpcVal == ARM_AM::lsl) { // Check to see if the RHS of the shift is a constant, if not, we can't fold // it. if (ConstantSDNode *Sh = dyn_cast(OffReg.getOperand(1))) { ShAmt = Sh->getZExtValue(); if (ShAmt >= 4) { ShAmt = 0; ShOpcVal = ARM_AM::no_shift; } else OffReg = OffReg.getOperand(0); } else { ShOpcVal = ARM_AM::no_shift; } } ShImm = CurDAG->getTargetConstant(ShAmt, MVT::i32); return true; } //===--------------------------------------------------------------------===// /// getAL - Returns a ARMCC::AL immediate node. static inline SDValue getAL(SelectionDAG *CurDAG) { return CurDAG->getTargetConstant((uint64_t)ARMCC::AL, MVT::i32); } SDNode *ARMDAGToDAGISel::SelectARMIndexedLoad(SDNode *N) { LoadSDNode *LD = cast(N); ISD::MemIndexedMode AM = LD->getAddressingMode(); if (AM == ISD::UNINDEXED) return NULL; EVT LoadedVT = LD->getMemoryVT(); SDValue Offset, AMOpc; bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC); unsigned Opcode = 0; bool Match = false; if (LoadedVT == MVT::i32 && SelectAddrMode2Offset(N, LD->getOffset(), Offset, AMOpc)) { Opcode = isPre ? ARM::LDR_PRE : ARM::LDR_POST; Match = true; } else if (LoadedVT == MVT::i16 && SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) { Match = true; Opcode = (LD->getExtensionType() == ISD::SEXTLOAD) ? (isPre ? ARM::LDRSH_PRE : ARM::LDRSH_POST) : (isPre ? ARM::LDRH_PRE : ARM::LDRH_POST); } else if (LoadedVT == MVT::i8 || LoadedVT == MVT::i1) { if (LD->getExtensionType() == ISD::SEXTLOAD) { if (SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) { Match = true; Opcode = isPre ? ARM::LDRSB_PRE : ARM::LDRSB_POST; } } else { if (SelectAddrMode2Offset(N, LD->getOffset(), Offset, AMOpc)) { Match = true; Opcode = isPre ? ARM::LDRB_PRE : ARM::LDRB_POST; } } } if (Match) { SDValue Chain = LD->getChain(); SDValue Base = LD->getBasePtr(); SDValue Ops[]= { Base, Offset, AMOpc, getAL(CurDAG), CurDAG->getRegister(0, MVT::i32), Chain }; return CurDAG->getMachineNode(Opcode, N->getDebugLoc(), MVT::i32, MVT::i32, MVT::Other, Ops, 6); } return NULL; } SDNode *ARMDAGToDAGISel::SelectT2IndexedLoad(SDNode *N) { LoadSDNode *LD = cast(N); ISD::MemIndexedMode AM = LD->getAddressingMode(); if (AM == ISD::UNINDEXED) return NULL; EVT LoadedVT = LD->getMemoryVT(); bool isSExtLd = LD->getExtensionType() == ISD::SEXTLOAD; SDValue Offset; bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC); unsigned Opcode = 0; bool Match = false; if (SelectT2AddrModeImm8Offset(N, LD->getOffset(), Offset)) { switch (LoadedVT.getSimpleVT().SimpleTy) { case MVT::i32: Opcode = isPre ? ARM::t2LDR_PRE : ARM::t2LDR_POST; break; case MVT::i16: if (isSExtLd) Opcode = isPre ? ARM::t2LDRSH_PRE : ARM::t2LDRSH_POST; else Opcode = isPre ? ARM::t2LDRH_PRE : ARM::t2LDRH_POST; break; case MVT::i8: case MVT::i1: if (isSExtLd) Opcode = isPre ? ARM::t2LDRSB_PRE : ARM::t2LDRSB_POST; else Opcode = isPre ? ARM::t2LDRB_PRE : ARM::t2LDRB_POST; break; default: return NULL; } Match = true; } if (Match) { SDValue Chain = LD->getChain(); SDValue Base = LD->getBasePtr(); SDValue Ops[]= { Base, Offset, getAL(CurDAG), CurDAG->getRegister(0, MVT::i32), Chain }; return CurDAG->getMachineNode(Opcode, N->getDebugLoc(), MVT::i32, MVT::i32, MVT::Other, Ops, 5); } return NULL; } /// PairSRegs - Form a D register from a pair of S registers. /// SDNode *ARMDAGToDAGISel::PairSRegs(EVT VT, SDValue V0, SDValue V1) { DebugLoc dl = V0.getNode()->getDebugLoc(); SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, MVT::i32); SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, MVT::i32); const SDValue Ops[] = { V0, SubReg0, V1, SubReg1 }; return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 4); } /// PairDRegs - Form a quad register from a pair of D registers. /// SDNode *ARMDAGToDAGISel::PairDRegs(EVT VT, SDValue V0, SDValue V1) { DebugLoc dl = V0.getNode()->getDebugLoc(); SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32); SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32); const SDValue Ops[] = { V0, SubReg0, V1, SubReg1 }; return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 4); } /// PairQRegs - Form 4 consecutive D registers from a pair of Q registers. /// SDNode *ARMDAGToDAGISel::PairQRegs(EVT VT, SDValue V0, SDValue V1) { DebugLoc dl = V0.getNode()->getDebugLoc(); SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, MVT::i32); SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, MVT::i32); const SDValue Ops[] = { V0, SubReg0, V1, SubReg1 }; return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 4); } /// QuadSRegs - Form 4 consecutive S registers. /// SDNode *ARMDAGToDAGISel::QuadSRegs(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3) { DebugLoc dl = V0.getNode()->getDebugLoc(); SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, MVT::i32); SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, MVT::i32); SDValue SubReg2 = CurDAG->getTargetConstant(ARM::ssub_2, MVT::i32); SDValue SubReg3 = CurDAG->getTargetConstant(ARM::ssub_3, MVT::i32); const SDValue Ops[] = { V0, SubReg0, V1, SubReg1, V2, SubReg2, V3, SubReg3 }; return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 8); } /// QuadDRegs - Form 4 consecutive D registers. /// SDNode *ARMDAGToDAGISel::QuadDRegs(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3) { DebugLoc dl = V0.getNode()->getDebugLoc(); SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32); SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32); SDValue SubReg2 = CurDAG->getTargetConstant(ARM::dsub_2, MVT::i32); SDValue SubReg3 = CurDAG->getTargetConstant(ARM::dsub_3, MVT::i32); const SDValue Ops[] = { V0, SubReg0, V1, SubReg1, V2, SubReg2, V3, SubReg3 }; return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 8); } /// QuadQRegs - Form 4 consecutive Q registers. /// SDNode *ARMDAGToDAGISel::QuadQRegs(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3) { DebugLoc dl = V0.getNode()->getDebugLoc(); SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, MVT::i32); SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, MVT::i32); SDValue SubReg2 = CurDAG->getTargetConstant(ARM::qsub_2, MVT::i32); SDValue SubReg3 = CurDAG->getTargetConstant(ARM::qsub_3, MVT::i32); const SDValue Ops[] = { V0, SubReg0, V1, SubReg1, V2, SubReg2, V3, SubReg3 }; return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 8); } /// OctoDRegs - Form 8 consecutive D registers. /// SDNode *ARMDAGToDAGISel::OctoDRegs(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3, SDValue V4, SDValue V5, SDValue V6, SDValue V7) { DebugLoc dl = V0.getNode()->getDebugLoc(); SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32); SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32); SDValue SubReg2 = CurDAG->getTargetConstant(ARM::dsub_2, MVT::i32); SDValue SubReg3 = CurDAG->getTargetConstant(ARM::dsub_3, MVT::i32); SDValue SubReg4 = CurDAG->getTargetConstant(ARM::dsub_4, MVT::i32); SDValue SubReg5 = CurDAG->getTargetConstant(ARM::dsub_5, MVT::i32); SDValue SubReg6 = CurDAG->getTargetConstant(ARM::dsub_6, MVT::i32); SDValue SubReg7 = CurDAG->getTargetConstant(ARM::dsub_7, MVT::i32); const SDValue Ops[] ={ V0, SubReg0, V1, SubReg1, V2, SubReg2, V3, SubReg3, V4, SubReg4, V5, SubReg5, V6, SubReg6, V7, SubReg7 }; return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 16); } /// GetNEONSubregVT - Given a type for a 128-bit NEON vector, return the type /// for a 64-bit subregister of the vector. static EVT GetNEONSubregVT(EVT VT) { switch (VT.getSimpleVT().SimpleTy) { default: llvm_unreachable("unhandled NEON type"); case MVT::v16i8: return MVT::v8i8; case MVT::v8i16: return MVT::v4i16; case MVT::v4f32: return MVT::v2f32; case MVT::v4i32: return MVT::v2i32; case MVT::v2i64: return MVT::v1i64; } } SDNode *ARMDAGToDAGISel::SelectVLD(SDNode *N, unsigned NumVecs, unsigned *DOpcodes, unsigned *QOpcodes0, unsigned *QOpcodes1) { assert(NumVecs >= 1 && NumVecs <= 4 && "VLD NumVecs out-of-range"); DebugLoc dl = N->getDebugLoc(); SDValue MemAddr, Align; if (!SelectAddrMode6(N, N->getOperand(2), MemAddr, Align)) return NULL; SDValue Chain = N->getOperand(0); EVT VT = N->getValueType(0); bool is64BitVector = VT.is64BitVector(); unsigned OpcodeIndex; switch (VT.getSimpleVT().SimpleTy) { default: llvm_unreachable("unhandled vld type"); // Double-register operations: case MVT::v8i8: OpcodeIndex = 0; break; case MVT::v4i16: OpcodeIndex = 1; break; case MVT::v2f32: case MVT::v2i32: OpcodeIndex = 2; break; case MVT::v1i64: OpcodeIndex = 3; break; // Quad-register operations: case MVT::v16i8: OpcodeIndex = 0; break; case MVT::v8i16: OpcodeIndex = 1; break; case MVT::v4f32: case MVT::v4i32: OpcodeIndex = 2; break; case MVT::v2i64: OpcodeIndex = 3; assert(NumVecs == 1 && "v2i64 type only supported for VLD1"); break; } SDValue Pred = getAL(CurDAG); SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); if (is64BitVector) { unsigned Opc = DOpcodes[OpcodeIndex]; const SDValue Ops[] = { MemAddr, Align, Pred, Reg0, Chain }; std::vector ResTys(NumVecs, VT); ResTys.push_back(MVT::Other); SDNode *VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops, 5); if (NumVecs < 2) return VLd; SDValue RegSeq; SDValue V0 = SDValue(VLd, 0); SDValue V1 = SDValue(VLd, 1); // Form a REG_SEQUENCE to force register allocation. if (NumVecs == 2) RegSeq = SDValue(PairDRegs(MVT::v2i64, V0, V1), 0); else { SDValue V2 = SDValue(VLd, 2); // If it's a vld3, form a quad D-register but discard the last part. SDValue V3 = (NumVecs == 3) ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0) : SDValue(VLd, 3); RegSeq = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0); } assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering"); for (unsigned Vec = 0; Vec < NumVecs; ++Vec) { SDValue D = CurDAG->getTargetExtractSubreg(ARM::dsub_0+Vec, dl, VT, RegSeq); ReplaceUses(SDValue(N, Vec), D); } ReplaceUses(SDValue(N, NumVecs), SDValue(VLd, NumVecs)); return NULL; } EVT RegVT = GetNEONSubregVT(VT); if (NumVecs <= 2) { // Quad registers are directly supported for VLD1 and VLD2, // loading pairs of D regs. unsigned Opc = QOpcodes0[OpcodeIndex]; const SDValue Ops[] = { MemAddr, Align, Pred, Reg0, Chain }; std::vector ResTys(2 * NumVecs, RegVT); ResTys.push_back(MVT::Other); SDNode *VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops, 5); Chain = SDValue(VLd, 2 * NumVecs); // Combine the even and odd subregs to produce the result. if (NumVecs == 1) { SDNode *Q = PairDRegs(VT, SDValue(VLd, 0), SDValue(VLd, 1)); ReplaceUses(SDValue(N, 0), SDValue(Q, 0)); } else { SDValue QQ = SDValue(QuadDRegs(MVT::v4i64, SDValue(VLd, 0), SDValue(VLd, 1), SDValue(VLd, 2), SDValue(VLd, 3)), 0); SDValue Q0 = CurDAG->getTargetExtractSubreg(ARM::qsub_0, dl, VT, QQ); SDValue Q1 = CurDAG->getTargetExtractSubreg(ARM::qsub_1, dl, VT, QQ); ReplaceUses(SDValue(N, 0), Q0); ReplaceUses(SDValue(N, 1), Q1); } } else { // Otherwise, quad registers are loaded with two separate instructions, // where one loads the even registers and the other loads the odd registers. std::vector ResTys(NumVecs, RegVT); ResTys.push_back(MemAddr.getValueType()); ResTys.push_back(MVT::Other); // Load the even subregs. unsigned Opc = QOpcodes0[OpcodeIndex]; const SDValue OpsA[] = { MemAddr, Align, Reg0, Pred, Reg0, Chain }; SDNode *VLdA = CurDAG->getMachineNode(Opc, dl, ResTys, OpsA, 6); Chain = SDValue(VLdA, NumVecs+1); // Load the odd subregs. Opc = QOpcodes1[OpcodeIndex]; const SDValue OpsB[] = { SDValue(VLdA, NumVecs), Align, Reg0, Pred, Reg0, Chain }; SDNode *VLdB = CurDAG->getMachineNode(Opc, dl, ResTys, OpsB, 6); Chain = SDValue(VLdB, NumVecs+1); SDValue V0 = SDValue(VLdA, 0); SDValue V1 = SDValue(VLdB, 0); SDValue V2 = SDValue(VLdA, 1); SDValue V3 = SDValue(VLdB, 1); SDValue V4 = SDValue(VLdA, 2); SDValue V5 = SDValue(VLdB, 2); SDValue V6 = (NumVecs == 3) ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,RegVT), 0) : SDValue(VLdA, 3); SDValue V7 = (NumVecs == 3) ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,RegVT), 0) : SDValue(VLdB, 3); SDValue RegSeq = SDValue(OctoDRegs(MVT::v8i64, V0, V1, V2, V3, V4, V5, V6, V7), 0); // Extract out the 3 / 4 Q registers. assert(ARM::qsub_3 == ARM::qsub_0+3 && "Unexpected subreg numbering"); for (unsigned Vec = 0; Vec < NumVecs; ++Vec) { SDValue Q = CurDAG->getTargetExtractSubreg(ARM::qsub_0+Vec, dl, VT, RegSeq); ReplaceUses(SDValue(N, Vec), Q); } } ReplaceUses(SDValue(N, NumVecs), Chain); return NULL; } SDNode *ARMDAGToDAGISel::SelectVST(SDNode *N, unsigned NumVecs, unsigned *DOpcodes, unsigned *QOpcodes0, unsigned *QOpcodes1) { assert(NumVecs >= 1 && NumVecs <= 4 && "VST NumVecs out-of-range"); DebugLoc dl = N->getDebugLoc(); SDValue MemAddr, Align; if (!SelectAddrMode6(N, N->getOperand(2), MemAddr, Align)) return NULL; SDValue Chain = N->getOperand(0); EVT VT = N->getOperand(3).getValueType(); bool is64BitVector = VT.is64BitVector(); unsigned OpcodeIndex; switch (VT.getSimpleVT().SimpleTy) { default: llvm_unreachable("unhandled vst type"); // Double-register operations: case MVT::v8i8: OpcodeIndex = 0; break; case MVT::v4i16: OpcodeIndex = 1; break; case MVT::v2f32: case MVT::v2i32: OpcodeIndex = 2; break; case MVT::v1i64: OpcodeIndex = 3; break; // Quad-register operations: case MVT::v16i8: OpcodeIndex = 0; break; case MVT::v8i16: OpcodeIndex = 1; break; case MVT::v4f32: case MVT::v4i32: OpcodeIndex = 2; break; case MVT::v2i64: OpcodeIndex = 3; assert(NumVecs == 1 && "v2i64 type only supported for VST1"); break; } SDValue Pred = getAL(CurDAG); SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); SmallVector Ops; Ops.push_back(MemAddr); Ops.push_back(Align); if (is64BitVector) { if (NumVecs >= 2) { SDValue RegSeq; SDValue V0 = N->getOperand(0+3); SDValue V1 = N->getOperand(1+3); // Form a REG_SEQUENCE to force register allocation. if (NumVecs == 2) RegSeq = SDValue(PairDRegs(MVT::v2i64, V0, V1), 0); else { SDValue V2 = N->getOperand(2+3); // If it's a vld3, form a quad D-register and leave the last part as // an undef. SDValue V3 = (NumVecs == 3) ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0) : N->getOperand(3+3); RegSeq = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0); } // Now extract the D registers back out. Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_0, dl, VT, RegSeq)); Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_1, dl, VT, RegSeq)); if (NumVecs > 2) Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_2, dl, VT, RegSeq)); if (NumVecs > 3) Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_3, dl, VT, RegSeq)); } else { for (unsigned Vec = 0; Vec < NumVecs; ++Vec) Ops.push_back(N->getOperand(Vec+3)); } Ops.push_back(Pred); Ops.push_back(Reg0); // predicate register Ops.push_back(Chain); unsigned Opc = DOpcodes[OpcodeIndex]; return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops.data(), NumVecs+5); } EVT RegVT = GetNEONSubregVT(VT); if (NumVecs <= 2) { // Quad registers are directly supported for VST1 and VST2, // storing pairs of D regs. unsigned Opc = QOpcodes0[OpcodeIndex]; if (NumVecs == 2) { // First extract the pair of Q registers. SDValue Q0 = N->getOperand(3); SDValue Q1 = N->getOperand(4); // Form a QQ register. SDValue QQ = SDValue(PairQRegs(MVT::v4i64, Q0, Q1), 0); // Now extract the D registers back out. Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_0, dl, RegVT, QQ)); Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_1, dl, RegVT, QQ)); Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_2, dl, RegVT, QQ)); Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_3, dl, RegVT, QQ)); Ops.push_back(Pred); Ops.push_back(Reg0); // predicate register Ops.push_back(Chain); return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops.data(), 5 + 4); } else { for (unsigned Vec = 0; Vec < NumVecs; ++Vec) { Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_0, dl, RegVT, N->getOperand(Vec+3))); Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_1, dl, RegVT, N->getOperand(Vec+3))); } Ops.push_back(Pred); Ops.push_back(Reg0); // predicate register Ops.push_back(Chain); return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops.data(), 5 + 2 * NumVecs); } } // Otherwise, quad registers are stored with two separate instructions, // where one stores the even registers and the other stores the odd registers. // Form the QQQQ REG_SEQUENCE. SDValue V[8]; for (unsigned Vec = 0, i = 0; Vec < NumVecs; ++Vec, i+=2) { V[i] = CurDAG->getTargetExtractSubreg(ARM::dsub_0, dl, RegVT, N->getOperand(Vec+3)); V[i+1] = CurDAG->getTargetExtractSubreg(ARM::dsub_1, dl, RegVT, N->getOperand(Vec+3)); } if (NumVecs == 3) V[6] = V[7] = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, RegVT), 0); SDValue RegSeq = SDValue(OctoDRegs(MVT::v8i64, V[0], V[1], V[2], V[3], V[4], V[5], V[6], V[7]), 0); // Store the even D registers. assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering"); Ops.push_back(Reg0); // post-access address offset for (unsigned Vec = 0; Vec < NumVecs; ++Vec) Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_0+Vec*2, dl, RegVT, RegSeq)); Ops.push_back(Pred); Ops.push_back(Reg0); // predicate register Ops.push_back(Chain); unsigned Opc = QOpcodes0[OpcodeIndex]; SDNode *VStA = CurDAG->getMachineNode(Opc, dl, MemAddr.getValueType(), MVT::Other, Ops.data(), NumVecs+6); Chain = SDValue(VStA, 1); // Store the odd D registers. Ops[0] = SDValue(VStA, 0); // MemAddr for (unsigned Vec = 0; Vec < NumVecs; ++Vec) Ops[Vec+3] = CurDAG->getTargetExtractSubreg(ARM::dsub_1+Vec*2, dl, RegVT, RegSeq); Ops[NumVecs+5] = Chain; Opc = QOpcodes1[OpcodeIndex]; SDNode *VStB = CurDAG->getMachineNode(Opc, dl, MemAddr.getValueType(), MVT::Other, Ops.data(), NumVecs+6); Chain = SDValue(VStB, 1); ReplaceUses(SDValue(N, 0), Chain); return NULL; } SDNode *ARMDAGToDAGISel::SelectVLDSTLane(SDNode *N, bool IsLoad, unsigned NumVecs, unsigned *DOpcodes, unsigned *QOpcodes0, unsigned *QOpcodes1) { assert(NumVecs >=2 && NumVecs <= 4 && "VLDSTLane NumVecs out-of-range"); DebugLoc dl = N->getDebugLoc(); SDValue MemAddr, Align; if (!SelectAddrMode6(N, N->getOperand(2), MemAddr, Align)) return NULL; SDValue Chain = N->getOperand(0); unsigned Lane = cast(N->getOperand(NumVecs+3))->getZExtValue(); EVT VT = IsLoad ? N->getValueType(0) : N->getOperand(3).getValueType(); bool is64BitVector = VT.is64BitVector(); // Quad registers are handled by load/store of subregs. Find the subreg info. unsigned NumElts = 0; bool Even = false; EVT RegVT = VT; if (!is64BitVector) { RegVT = GetNEONSubregVT(VT); NumElts = RegVT.getVectorNumElements(); Even = Lane < NumElts; } unsigned OpcodeIndex; switch (VT.getSimpleVT().SimpleTy) { default: llvm_unreachable("unhandled vld/vst lane type"); // Double-register operations: case MVT::v8i8: OpcodeIndex = 0; break; case MVT::v4i16: OpcodeIndex = 1; break; case MVT::v2f32: case MVT::v2i32: OpcodeIndex = 2; break; // Quad-register operations: case MVT::v8i16: OpcodeIndex = 0; break; case MVT::v4f32: case MVT::v4i32: OpcodeIndex = 1; break; } SDValue Pred = getAL(CurDAG); SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); SmallVector Ops; Ops.push_back(MemAddr); Ops.push_back(Align); unsigned Opc = 0; if (is64BitVector) { Opc = DOpcodes[OpcodeIndex]; SDValue RegSeq; SDValue V0 = N->getOperand(0+3); SDValue V1 = N->getOperand(1+3); if (NumVecs == 2) { RegSeq = SDValue(PairDRegs(MVT::v2i64, V0, V1), 0); } else { SDValue V2 = N->getOperand(2+3); SDValue V3 = (NumVecs == 3) ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0) : N->getOperand(3+3); RegSeq = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0); } // Now extract the D registers back out. Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_0, dl, VT, RegSeq)); Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_1, dl, VT, RegSeq)); if (NumVecs > 2) Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_2, dl, VT,RegSeq)); if (NumVecs > 3) Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_3, dl, VT,RegSeq)); } else { // Check if this is loading the even or odd subreg of a Q register. if (Lane < NumElts) { Opc = QOpcodes0[OpcodeIndex]; } else { Lane -= NumElts; Opc = QOpcodes1[OpcodeIndex]; } SDValue RegSeq; SDValue V0 = N->getOperand(0+3); SDValue V1 = N->getOperand(1+3); if (NumVecs == 2) { RegSeq = SDValue(PairQRegs(MVT::v4i64, V0, V1), 0); } else { SDValue V2 = N->getOperand(2+3); SDValue V3 = (NumVecs == 3) ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0) : N->getOperand(3+3); RegSeq = SDValue(QuadQRegs(MVT::v8i64, V0, V1, V2, V3), 0); } // Extract the subregs of the input vector. unsigned SubIdx = Even ? ARM::dsub_0 : ARM::dsub_1; for (unsigned Vec = 0; Vec < NumVecs; ++Vec) Ops.push_back(CurDAG->getTargetExtractSubreg(SubIdx+Vec*2, dl, RegVT, RegSeq)); } Ops.push_back(getI32Imm(Lane)); Ops.push_back(Pred); Ops.push_back(Reg0); Ops.push_back(Chain); if (!IsLoad) return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops.data(), NumVecs+6); std::vector ResTys(NumVecs, RegVT); ResTys.push_back(MVT::Other); SDNode *VLdLn = CurDAG->getMachineNode(Opc, dl, ResTys, Ops.data(),NumVecs+6); // Form a REG_SEQUENCE to force register allocation. SDValue RegSeq; if (is64BitVector) { SDValue V0 = SDValue(VLdLn, 0); SDValue V1 = SDValue(VLdLn, 1); if (NumVecs == 2) { RegSeq = SDValue(PairDRegs(MVT::v2i64, V0, V1), 0); } else { SDValue V2 = SDValue(VLdLn, 2); // If it's a vld3, form a quad D-register but discard the last part. SDValue V3 = (NumVecs == 3) ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0) : SDValue(VLdLn, 3); RegSeq = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0); } } else { // For 128-bit vectors, take the 64-bit results of the load and insert // them as subregs into the result. SDValue V[8]; for (unsigned Vec = 0, i = 0; Vec < NumVecs; ++Vec, i+=2) { if (Even) { V[i] = SDValue(VLdLn, Vec); V[i+1] = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, RegVT), 0); } else { V[i] = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, RegVT), 0); V[i+1] = SDValue(VLdLn, Vec); } } if (NumVecs == 3) V[6] = V[7] = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, RegVT), 0); if (NumVecs == 2) RegSeq = SDValue(QuadDRegs(MVT::v4i64, V[0], V[1], V[2], V[3]), 0); else RegSeq = SDValue(OctoDRegs(MVT::v8i64, V[0], V[1], V[2], V[3], V[4], V[5], V[6], V[7]), 0); } assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering"); assert(ARM::qsub_3 == ARM::qsub_0+3 && "Unexpected subreg numbering"); unsigned SubIdx = is64BitVector ? ARM::dsub_0 : ARM::qsub_0; for (unsigned Vec = 0; Vec < NumVecs; ++Vec) ReplaceUses(SDValue(N, Vec), CurDAG->getTargetExtractSubreg(SubIdx+Vec, dl, VT, RegSeq)); ReplaceUses(SDValue(N, NumVecs), SDValue(VLdLn, NumVecs)); return NULL; } SDNode *ARMDAGToDAGISel::SelectVTBL(SDNode *N, bool IsExt, unsigned NumVecs, unsigned Opc) { assert(NumVecs >= 2 && NumVecs <= 4 && "VTBL NumVecs out-of-range"); DebugLoc dl = N->getDebugLoc(); EVT VT = N->getValueType(0); unsigned FirstTblReg = IsExt ? 2 : 1; // Form a REG_SEQUENCE to force register allocation. SDValue RegSeq; SDValue V0 = N->getOperand(FirstTblReg + 0); SDValue V1 = N->getOperand(FirstTblReg + 1); if (NumVecs == 2) RegSeq = SDValue(PairDRegs(MVT::v16i8, V0, V1), 0); else { SDValue V2 = N->getOperand(FirstTblReg + 2); // If it's a vtbl3, form a quad D-register and leave the last part as // an undef. SDValue V3 = (NumVecs == 3) ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0) : N->getOperand(FirstTblReg + 3); RegSeq = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0); } // Now extract the D registers back out. SmallVector Ops; if (IsExt) Ops.push_back(N->getOperand(1)); Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_0, dl, VT, RegSeq)); Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_1, dl, VT, RegSeq)); if (NumVecs > 2) Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_2, dl, VT, RegSeq)); if (NumVecs > 3) Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_3, dl, VT, RegSeq)); Ops.push_back(N->getOperand(FirstTblReg + NumVecs)); Ops.push_back(getAL(CurDAG)); // predicate Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // predicate register return CurDAG->getMachineNode(Opc, dl, VT, Ops.data(), Ops.size()); } SDNode *ARMDAGToDAGISel::SelectV6T2BitfieldExtractOp(SDNode *N, bool isSigned) { if (!Subtarget->hasV6T2Ops()) return NULL; unsigned Opc = isSigned ? (Subtarget->isThumb() ? ARM::t2SBFX : ARM::SBFX) : (Subtarget->isThumb() ? ARM::t2UBFX : ARM::UBFX); // For unsigned extracts, check for a shift right and mask unsigned And_imm = 0; if (N->getOpcode() == ISD::AND) { if (isOpcWithIntImmediate(N, ISD::AND, And_imm)) { // The immediate is a mask of the low bits iff imm & (imm+1) == 0 if (And_imm & (And_imm + 1)) return NULL; unsigned Srl_imm = 0; if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRL, Srl_imm)) { assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!"); unsigned Width = CountTrailingOnes_32(And_imm); unsigned LSB = Srl_imm; SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); SDValue Ops[] = { N->getOperand(0).getOperand(0), CurDAG->getTargetConstant(LSB, MVT::i32), CurDAG->getTargetConstant(Width, MVT::i32), getAL(CurDAG), Reg0 }; return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5); } } return NULL; } // Otherwise, we're looking for a shift of a shift unsigned Shl_imm = 0; if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, Shl_imm)) { assert(Shl_imm > 0 && Shl_imm < 32 && "bad amount in shift node!"); unsigned Srl_imm = 0; if (isInt32Immediate(N->getOperand(1), Srl_imm)) { assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!"); unsigned Width = 32 - Srl_imm; int LSB = Srl_imm - Shl_imm; if (LSB < 0) return NULL; SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); SDValue Ops[] = { N->getOperand(0).getOperand(0), CurDAG->getTargetConstant(LSB, MVT::i32), CurDAG->getTargetConstant(Width, MVT::i32), getAL(CurDAG), Reg0 }; return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5); } } return NULL; } SDNode *ARMDAGToDAGISel:: SelectT2CMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal, ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) { SDValue CPTmp0; SDValue CPTmp1; if (SelectT2ShifterOperandReg(N, TrueVal, CPTmp0, CPTmp1)) { unsigned SOVal = cast(CPTmp1)->getZExtValue(); unsigned SOShOp = ARM_AM::getSORegShOp(SOVal); unsigned Opc = 0; switch (SOShOp) { case ARM_AM::lsl: Opc = ARM::t2MOVCClsl; break; case ARM_AM::lsr: Opc = ARM::t2MOVCClsr; break; case ARM_AM::asr: Opc = ARM::t2MOVCCasr; break; case ARM_AM::ror: Opc = ARM::t2MOVCCror; break; default: llvm_unreachable("Unknown so_reg opcode!"); break; } SDValue SOShImm = CurDAG->getTargetConstant(ARM_AM::getSORegOffset(SOVal), MVT::i32); SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32); SDValue Ops[] = { FalseVal, CPTmp0, SOShImm, CC, CCR, InFlag }; return CurDAG->SelectNodeTo(N, Opc, MVT::i32,Ops, 6); } return 0; } SDNode *ARMDAGToDAGISel:: SelectARMCMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal, ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) { SDValue CPTmp0; SDValue CPTmp1; SDValue CPTmp2; if (SelectShifterOperandReg(N, TrueVal, CPTmp0, CPTmp1, CPTmp2)) { SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32); SDValue Ops[] = { FalseVal, CPTmp0, CPTmp1, CPTmp2, CC, CCR, InFlag }; return CurDAG->SelectNodeTo(N, ARM::MOVCCs, MVT::i32, Ops, 7); } return 0; } SDNode *ARMDAGToDAGISel:: SelectT2CMOVSoImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal, ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) { ConstantSDNode *T = dyn_cast(TrueVal); if (!T) return 0; if (Predicate_t2_so_imm(TrueVal.getNode())) { SDValue True = CurDAG->getTargetConstant(T->getZExtValue(), MVT::i32); SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32); SDValue Ops[] = { FalseVal, True, CC, CCR, InFlag }; return CurDAG->SelectNodeTo(N, ARM::t2MOVCCi, MVT::i32, Ops, 5); } return 0; } SDNode *ARMDAGToDAGISel:: SelectARMCMOVSoImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal, ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) { ConstantSDNode *T = dyn_cast(TrueVal); if (!T) return 0; if (Predicate_so_imm(TrueVal.getNode())) { SDValue True = CurDAG->getTargetConstant(T->getZExtValue(), MVT::i32); SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32); SDValue Ops[] = { FalseVal, True, CC, CCR, InFlag }; return CurDAG->SelectNodeTo(N, ARM::MOVCCi, MVT::i32, Ops, 5); } return 0; } SDNode *ARMDAGToDAGISel::SelectCMOVOp(SDNode *N) { EVT VT = N->getValueType(0); SDValue FalseVal = N->getOperand(0); SDValue TrueVal = N->getOperand(1); SDValue CC = N->getOperand(2); SDValue CCR = N->getOperand(3); SDValue InFlag = N->getOperand(4); assert(CC.getOpcode() == ISD::Constant); assert(CCR.getOpcode() == ISD::Register); ARMCC::CondCodes CCVal = (ARMCC::CondCodes)cast(CC)->getZExtValue(); if (!Subtarget->isThumb1Only() && VT == MVT::i32) { // Pattern: (ARMcmov:i32 GPR:i32:$false, so_reg:i32:$true, (imm:i32):$cc) // Emits: (MOVCCs:i32 GPR:i32:$false, so_reg:i32:$true, (imm:i32):$cc) // Pattern complexity = 18 cost = 1 size = 0 SDValue CPTmp0; SDValue CPTmp1; SDValue CPTmp2; if (Subtarget->isThumb()) { SDNode *Res = SelectT2CMOVShiftOp(N, FalseVal, TrueVal, CCVal, CCR, InFlag); if (!Res) Res = SelectT2CMOVShiftOp(N, TrueVal, FalseVal, ARMCC::getOppositeCondition(CCVal), CCR, InFlag); if (Res) return Res; } else { SDNode *Res = SelectARMCMOVShiftOp(N, FalseVal, TrueVal, CCVal, CCR, InFlag); if (!Res) Res = SelectARMCMOVShiftOp(N, TrueVal, FalseVal, ARMCC::getOppositeCondition(CCVal), CCR, InFlag); if (Res) return Res; } // Pattern: (ARMcmov:i32 GPR:i32:$false, // (imm:i32)<>:$true, // (imm:i32):$cc) // Emits: (MOVCCi:i32 GPR:i32:$false, // (so_imm:i32 (imm:i32):$true), (imm:i32):$cc) // Pattern complexity = 10 cost = 1 size = 0 if (Subtarget->isThumb()) { SDNode *Res = SelectT2CMOVSoImmOp(N, FalseVal, TrueVal, CCVal, CCR, InFlag); if (!Res) Res = SelectT2CMOVSoImmOp(N, TrueVal, FalseVal, ARMCC::getOppositeCondition(CCVal), CCR, InFlag); if (Res) return Res; } else { SDNode *Res = SelectARMCMOVSoImmOp(N, FalseVal, TrueVal, CCVal, CCR, InFlag); if (!Res) Res = SelectARMCMOVSoImmOp(N, TrueVal, FalseVal, ARMCC::getOppositeCondition(CCVal), CCR, InFlag); if (Res) return Res; } } // Pattern: (ARMcmov:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc) // Emits: (MOVCCr:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc) // Pattern complexity = 6 cost = 1 size = 0 // // Pattern: (ARMcmov:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc) // Emits: (tMOVCCr:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc) // Pattern complexity = 6 cost = 11 size = 0 // // Also FCPYScc and FCPYDcc. SDValue Tmp2 = CurDAG->getTargetConstant(CCVal, MVT::i32); SDValue Ops[] = { FalseVal, TrueVal, Tmp2, CCR, InFlag }; unsigned Opc = 0; switch (VT.getSimpleVT().SimpleTy) { default: assert(false && "Illegal conditional move type!"); break; case MVT::i32: Opc = Subtarget->isThumb() ? (Subtarget->hasThumb2() ? ARM::t2MOVCCr : ARM::tMOVCCr_pseudo) : ARM::MOVCCr; break; case MVT::f32: Opc = ARM::VMOVScc; break; case MVT::f64: Opc = ARM::VMOVDcc; break; } return CurDAG->SelectNodeTo(N, Opc, VT, Ops, 5); } SDNode *ARMDAGToDAGISel::SelectConcatVector(SDNode *N) { // The only time a CONCAT_VECTORS operation can have legal types is when // two 64-bit vectors are concatenated to a 128-bit vector. EVT VT = N->getValueType(0); if (!VT.is128BitVector() || N->getNumOperands() != 2) llvm_unreachable("unexpected CONCAT_VECTORS"); DebugLoc dl = N->getDebugLoc(); SDValue V0 = N->getOperand(0); SDValue V1 = N->getOperand(1); SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32); SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32); const SDValue Ops[] = { V0, SubReg0, V1, SubReg1 }; return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 4); } SDNode *ARMDAGToDAGISel::Select(SDNode *N) { DebugLoc dl = N->getDebugLoc(); if (N->isMachineOpcode()) return NULL; // Already selected. switch (N->getOpcode()) { default: break; case ISD::Constant: { unsigned Val = cast(N)->getZExtValue(); bool UseCP = true; if (Subtarget->hasThumb2()) // Thumb2-aware targets have the MOVT instruction, so all immediates can // be done with MOV + MOVT, at worst. UseCP = 0; else { if (Subtarget->isThumb()) { UseCP = (Val > 255 && // MOV ~Val > 255 && // MOV + MVN !ARM_AM::isThumbImmShiftedVal(Val)); // MOV + LSL } else UseCP = (ARM_AM::getSOImmVal(Val) == -1 && // MOV ARM_AM::getSOImmVal(~Val) == -1 && // MVN !ARM_AM::isSOImmTwoPartVal(Val)); // two instrs. } if (UseCP) { SDValue CPIdx = CurDAG->getTargetConstantPool(ConstantInt::get( Type::getInt32Ty(*CurDAG->getContext()), Val), TLI.getPointerTy()); SDNode *ResNode; if (Subtarget->isThumb1Only()) { SDValue Pred = getAL(CurDAG); SDValue PredReg = CurDAG->getRegister(0, MVT::i32); SDValue Ops[] = { CPIdx, Pred, PredReg, CurDAG->getEntryNode() }; ResNode = CurDAG->getMachineNode(ARM::tLDRcp, dl, MVT::i32, MVT::Other, Ops, 4); } else { SDValue Ops[] = { CPIdx, CurDAG->getRegister(0, MVT::i32), CurDAG->getTargetConstant(0, MVT::i32), getAL(CurDAG), CurDAG->getRegister(0, MVT::i32), CurDAG->getEntryNode() }; ResNode=CurDAG->getMachineNode(ARM::LDRcp, dl, MVT::i32, MVT::Other, Ops, 6); } ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0)); return NULL; } // Other cases are autogenerated. break; } case ISD::FrameIndex: { // Selects to ADDri FI, 0 which in turn will become ADDri SP, imm. int FI = cast(N)->getIndex(); SDValue TFI = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); if (Subtarget->isThumb1Only()) { return CurDAG->SelectNodeTo(N, ARM::tADDrSPi, MVT::i32, TFI, CurDAG->getTargetConstant(0, MVT::i32)); } else { unsigned Opc = ((Subtarget->isThumb() && Subtarget->hasThumb2()) ? ARM::t2ADDri : ARM::ADDri); SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32), getAL(CurDAG), CurDAG->getRegister(0, MVT::i32), CurDAG->getRegister(0, MVT::i32) }; return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5); } } case ISD::SRL: if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false)) return I; break; case ISD::SRA: if (SDNode *I = SelectV6T2BitfieldExtractOp(N, true)) return I; break; case ISD::MUL: if (Subtarget->isThumb1Only()) break; if (ConstantSDNode *C = dyn_cast(N->getOperand(1))) { unsigned RHSV = C->getZExtValue(); if (!RHSV) break; if (isPowerOf2_32(RHSV-1)) { // 2^n+1? unsigned ShImm = Log2_32(RHSV-1); if (ShImm >= 32) break; SDValue V = N->getOperand(0); ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm); SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32); SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); if (Subtarget->isThumb()) { SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0, Reg0 }; return CurDAG->SelectNodeTo(N, ARM::t2ADDrs, MVT::i32, Ops, 6); } else { SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 }; return CurDAG->SelectNodeTo(N, ARM::ADDrs, MVT::i32, Ops, 7); } } if (isPowerOf2_32(RHSV+1)) { // 2^n-1? unsigned ShImm = Log2_32(RHSV+1); if (ShImm >= 32) break; SDValue V = N->getOperand(0); ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm); SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32); SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); if (Subtarget->isThumb()) { SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0, Reg0 }; return CurDAG->SelectNodeTo(N, ARM::t2RSBrs, MVT::i32, Ops, 6); } else { SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 }; return CurDAG->SelectNodeTo(N, ARM::RSBrs, MVT::i32, Ops, 7); } } } break; case ISD::AND: { // Check for unsigned bitfield extract if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false)) return I; // (and (or x, c2), c1) and top 16-bits of c1 and c2 match, lower 16-bits // of c1 are 0xffff, and lower 16-bit of c2 are 0. That is, the top 16-bits // are entirely contributed by c2 and lower 16-bits are entirely contributed // by x. That's equal to (or (and x, 0xffff), (and c1, 0xffff0000)). // Select it to: "movt x, ((c1 & 0xffff) >> 16) EVT VT = N->getValueType(0); if (VT != MVT::i32) break; unsigned Opc = (Subtarget->isThumb() && Subtarget->hasThumb2()) ? ARM::t2MOVTi16 : (Subtarget->hasV6T2Ops() ? ARM::MOVTi16 : 0); if (!Opc) break; SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); ConstantSDNode *N1C = dyn_cast(N1); if (!N1C) break; if (N0.getOpcode() == ISD::OR && N0.getNode()->hasOneUse()) { SDValue N2 = N0.getOperand(1); ConstantSDNode *N2C = dyn_cast(N2); if (!N2C) break; unsigned N1CVal = N1C->getZExtValue(); unsigned N2CVal = N2C->getZExtValue(); if ((N1CVal & 0xffff0000U) == (N2CVal & 0xffff0000U) && (N1CVal & 0xffffU) == 0xffffU && (N2CVal & 0xffffU) == 0x0U) { SDValue Imm16 = CurDAG->getTargetConstant((N2CVal & 0xFFFF0000U) >> 16, MVT::i32); SDValue Ops[] = { N0.getOperand(0), Imm16, getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) }; return CurDAG->getMachineNode(Opc, dl, VT, Ops, 4); } } break; } case ARMISD::VMOVRRD: return CurDAG->getMachineNode(ARM::VMOVRRD, dl, MVT::i32, MVT::i32, N->getOperand(0), getAL(CurDAG), CurDAG->getRegister(0, MVT::i32)); case ISD::UMUL_LOHI: { if (Subtarget->isThumb1Only()) break; if (Subtarget->isThumb()) { SDValue Ops[] = { N->getOperand(0), N->getOperand(1), getAL(CurDAG), CurDAG->getRegister(0, MVT::i32), CurDAG->getRegister(0, MVT::i32) }; return CurDAG->getMachineNode(ARM::t2UMULL, dl, MVT::i32, MVT::i32,Ops,4); } else { SDValue Ops[] = { N->getOperand(0), N->getOperand(1), getAL(CurDAG), CurDAG->getRegister(0, MVT::i32), CurDAG->getRegister(0, MVT::i32) }; return CurDAG->getMachineNode(ARM::UMULL, dl, MVT::i32, MVT::i32, Ops, 5); } } case ISD::SMUL_LOHI: { if (Subtarget->isThumb1Only()) break; if (Subtarget->isThumb()) { SDValue Ops[] = { N->getOperand(0), N->getOperand(1), getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) }; return CurDAG->getMachineNode(ARM::t2SMULL, dl, MVT::i32, MVT::i32,Ops,4); } else { SDValue Ops[] = { N->getOperand(0), N->getOperand(1), getAL(CurDAG), CurDAG->getRegister(0, MVT::i32), CurDAG->getRegister(0, MVT::i32) }; return CurDAG->getMachineNode(ARM::SMULL, dl, MVT::i32, MVT::i32, Ops, 5); } } case ISD::LOAD: { SDNode *ResNode = 0; if (Subtarget->isThumb() && Subtarget->hasThumb2()) ResNode = SelectT2IndexedLoad(N); else ResNode = SelectARMIndexedLoad(N); if (ResNode) return ResNode; // VLDMQ must be custom-selected for "v2f64 load" to set the AM5Opc value. if (Subtarget->hasVFP2() && N->getValueType(0).getSimpleVT().SimpleTy == MVT::v2f64) { SDValue Chain = N->getOperand(0); SDValue AM5Opc = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::ia, 4), MVT::i32); SDValue Pred = getAL(CurDAG); SDValue PredReg = CurDAG->getRegister(0, MVT::i32); SDValue Ops[] = { N->getOperand(1), AM5Opc, Pred, PredReg, Chain }; MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); MemOp[0] = cast(N)->getMemOperand(); SDNode *Ret = CurDAG->getMachineNode(ARM::VLDMQ, dl, MVT::v2f64, MVT::Other, Ops, 5); cast(Ret)->setMemRefs(MemOp, MemOp + 1); return Ret; } // Other cases are autogenerated. break; } case ISD::STORE: { // VSTMQ must be custom-selected for "v2f64 store" to set the AM5Opc value. if (Subtarget->hasVFP2() && N->getOperand(1).getValueType().getSimpleVT().SimpleTy == MVT::v2f64) { SDValue Chain = N->getOperand(0); SDValue AM5Opc = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::ia, 4), MVT::i32); SDValue Pred = getAL(CurDAG); SDValue PredReg = CurDAG->getRegister(0, MVT::i32); SDValue Ops[] = { N->getOperand(1), N->getOperand(2), AM5Opc, Pred, PredReg, Chain }; MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); MemOp[0] = cast(N)->getMemOperand(); SDNode *Ret = CurDAG->getMachineNode(ARM::VSTMQ, dl, MVT::Other, Ops, 6); cast(Ret)->setMemRefs(MemOp, MemOp + 1); return Ret; } // Other cases are autogenerated. break; } case ARMISD::BRCOND: { // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc) // Emits: (Bcc:void (bb:Other):$dst, (imm:i32):$cc) // Pattern complexity = 6 cost = 1 size = 0 // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc) // Emits: (tBcc:void (bb:Other):$dst, (imm:i32):$cc) // Pattern complexity = 6 cost = 1 size = 0 // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc) // Emits: (t2Bcc:void (bb:Other):$dst, (imm:i32):$cc) // Pattern complexity = 6 cost = 1 size = 0 unsigned Opc = Subtarget->isThumb() ? ((Subtarget->hasThumb2()) ? ARM::t2Bcc : ARM::tBcc) : ARM::Bcc; SDValue Chain = N->getOperand(0); SDValue N1 = N->getOperand(1); SDValue N2 = N->getOperand(2); SDValue N3 = N->getOperand(3); SDValue InFlag = N->getOperand(4); assert(N1.getOpcode() == ISD::BasicBlock); assert(N2.getOpcode() == ISD::Constant); assert(N3.getOpcode() == ISD::Register); SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned) cast(N2)->getZExtValue()), MVT::i32); SDValue Ops[] = { N1, Tmp2, N3, Chain, InFlag }; SDNode *ResNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, MVT::Flag, Ops, 5); Chain = SDValue(ResNode, 0); if (N->getNumValues() == 2) { InFlag = SDValue(ResNode, 1); ReplaceUses(SDValue(N, 1), InFlag); } ReplaceUses(SDValue(N, 0), SDValue(Chain.getNode(), Chain.getResNo())); return NULL; } case ARMISD::CMOV: return SelectCMOVOp(N); case ARMISD::CNEG: { EVT VT = N->getValueType(0); SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); SDValue N2 = N->getOperand(2); SDValue N3 = N->getOperand(3); SDValue InFlag = N->getOperand(4); assert(N2.getOpcode() == ISD::Constant); assert(N3.getOpcode() == ISD::Register); SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned) cast(N2)->getZExtValue()), MVT::i32); SDValue Ops[] = { N0, N1, Tmp2, N3, InFlag }; unsigned Opc = 0; switch (VT.getSimpleVT().SimpleTy) { default: assert(false && "Illegal conditional move type!"); break; case MVT::f32: Opc = ARM::VNEGScc; break; case MVT::f64: Opc = ARM::VNEGDcc; break; } return CurDAG->SelectNodeTo(N, Opc, VT, Ops, 5); } case ARMISD::VZIP: { unsigned Opc = 0; EVT VT = N->getValueType(0); switch (VT.getSimpleVT().SimpleTy) { default: return NULL; case MVT::v8i8: Opc = ARM::VZIPd8; break; case MVT::v4i16: Opc = ARM::VZIPd16; break; case MVT::v2f32: case MVT::v2i32: Opc = ARM::VZIPd32; break; case MVT::v16i8: Opc = ARM::VZIPq8; break; case MVT::v8i16: Opc = ARM::VZIPq16; break; case MVT::v4f32: case MVT::v4i32: Opc = ARM::VZIPq32; break; } SDValue Pred = getAL(CurDAG); SDValue PredReg = CurDAG->getRegister(0, MVT::i32); SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg }; return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4); } case ARMISD::VUZP: { unsigned Opc = 0; EVT VT = N->getValueType(0); switch (VT.getSimpleVT().SimpleTy) { default: return NULL; case MVT::v8i8: Opc = ARM::VUZPd8; break; case MVT::v4i16: Opc = ARM::VUZPd16; break; case MVT::v2f32: case MVT::v2i32: Opc = ARM::VUZPd32; break; case MVT::v16i8: Opc = ARM::VUZPq8; break; case MVT::v8i16: Opc = ARM::VUZPq16; break; case MVT::v4f32: case MVT::v4i32: Opc = ARM::VUZPq32; break; } SDValue Pred = getAL(CurDAG); SDValue PredReg = CurDAG->getRegister(0, MVT::i32); SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg }; return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4); } case ARMISD::VTRN: { unsigned Opc = 0; EVT VT = N->getValueType(0); switch (VT.getSimpleVT().SimpleTy) { default: return NULL; case MVT::v8i8: Opc = ARM::VTRNd8; break; case MVT::v4i16: Opc = ARM::VTRNd16; break; case MVT::v2f32: case MVT::v2i32: Opc = ARM::VTRNd32; break; case MVT::v16i8: Opc = ARM::VTRNq8; break; case MVT::v8i16: Opc = ARM::VTRNq16; break; case MVT::v4f32: case MVT::v4i32: Opc = ARM::VTRNq32; break; } SDValue Pred = getAL(CurDAG); SDValue PredReg = CurDAG->getRegister(0, MVT::i32); SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg }; return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4); } case ARMISD::BUILD_VECTOR: { EVT VecVT = N->getValueType(0); EVT EltVT = VecVT.getVectorElementType(); unsigned NumElts = VecVT.getVectorNumElements(); if (EltVT.getSimpleVT() == MVT::f64) { assert(NumElts == 2 && "unexpected type for BUILD_VECTOR"); return PairDRegs(VecVT, N->getOperand(0), N->getOperand(1)); } assert(EltVT.getSimpleVT() == MVT::f32 && "unexpected type for BUILD_VECTOR"); if (NumElts == 2) return PairSRegs(VecVT, N->getOperand(0), N->getOperand(1)); assert(NumElts == 4 && "unexpected type for BUILD_VECTOR"); return QuadSRegs(VecVT, N->getOperand(0), N->getOperand(1), N->getOperand(2), N->getOperand(3)); } case ISD::INTRINSIC_VOID: case ISD::INTRINSIC_W_CHAIN: { unsigned IntNo = cast(N->getOperand(1))->getZExtValue(); switch (IntNo) { default: break; case Intrinsic::arm_neon_vld1: { unsigned DOpcodes[] = { ARM::VLD1d8, ARM::VLD1d16, ARM::VLD1d32, ARM::VLD1d64 }; unsigned QOpcodes[] = { ARM::VLD1q8, ARM::VLD1q16, ARM::VLD1q32, ARM::VLD1q64 }; return SelectVLD(N, 1, DOpcodes, QOpcodes, 0); } case Intrinsic::arm_neon_vld2: { unsigned DOpcodes[] = { ARM::VLD2d8, ARM::VLD2d16, ARM::VLD2d32, ARM::VLD1q64 }; unsigned QOpcodes[] = { ARM::VLD2q8, ARM::VLD2q16, ARM::VLD2q32 }; return SelectVLD(N, 2, DOpcodes, QOpcodes, 0); } case Intrinsic::arm_neon_vld3: { unsigned DOpcodes[] = { ARM::VLD3d8, ARM::VLD3d16, ARM::VLD3d32, ARM::VLD1d64T }; unsigned QOpcodes0[] = { ARM::VLD3q8_UPD, ARM::VLD3q16_UPD, ARM::VLD3q32_UPD }; unsigned QOpcodes1[] = { ARM::VLD3q8odd_UPD, ARM::VLD3q16odd_UPD, ARM::VLD3q32odd_UPD }; return SelectVLD(N, 3, DOpcodes, QOpcodes0, QOpcodes1); } case Intrinsic::arm_neon_vld4: { unsigned DOpcodes[] = { ARM::VLD4d8, ARM::VLD4d16, ARM::VLD4d32, ARM::VLD1d64Q }; unsigned QOpcodes0[] = { ARM::VLD4q8_UPD, ARM::VLD4q16_UPD, ARM::VLD4q32_UPD }; unsigned QOpcodes1[] = { ARM::VLD4q8odd_UPD, ARM::VLD4q16odd_UPD, ARM::VLD4q32odd_UPD }; return SelectVLD(N, 4, DOpcodes, QOpcodes0, QOpcodes1); } case Intrinsic::arm_neon_vld2lane: { unsigned DOpcodes[] = { ARM::VLD2LNd8, ARM::VLD2LNd16, ARM::VLD2LNd32 }; unsigned QOpcodes0[] = { ARM::VLD2LNq16, ARM::VLD2LNq32 }; unsigned QOpcodes1[] = { ARM::VLD2LNq16odd, ARM::VLD2LNq32odd }; return SelectVLDSTLane(N, true, 2, DOpcodes, QOpcodes0, QOpcodes1); } case Intrinsic::arm_neon_vld3lane: { unsigned DOpcodes[] = { ARM::VLD3LNd8, ARM::VLD3LNd16, ARM::VLD3LNd32 }; unsigned QOpcodes0[] = { ARM::VLD3LNq16, ARM::VLD3LNq32 }; unsigned QOpcodes1[] = { ARM::VLD3LNq16odd, ARM::VLD3LNq32odd }; return SelectVLDSTLane(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1); } case Intrinsic::arm_neon_vld4lane: { unsigned DOpcodes[] = { ARM::VLD4LNd8, ARM::VLD4LNd16, ARM::VLD4LNd32 }; unsigned QOpcodes0[] = { ARM::VLD4LNq16, ARM::VLD4LNq32 }; unsigned QOpcodes1[] = { ARM::VLD4LNq16odd, ARM::VLD4LNq32odd }; return SelectVLDSTLane(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1); } case Intrinsic::arm_neon_vst1: { unsigned DOpcodes[] = { ARM::VST1d8, ARM::VST1d16, ARM::VST1d32, ARM::VST1d64 }; unsigned QOpcodes[] = { ARM::VST1q8, ARM::VST1q16, ARM::VST1q32, ARM::VST1q64 }; return SelectVST(N, 1, DOpcodes, QOpcodes, 0); } case Intrinsic::arm_neon_vst2: { unsigned DOpcodes[] = { ARM::VST2d8, ARM::VST2d16, ARM::VST2d32, ARM::VST1q64 }; unsigned QOpcodes[] = { ARM::VST2q8, ARM::VST2q16, ARM::VST2q32 }; return SelectVST(N, 2, DOpcodes, QOpcodes, 0); } case Intrinsic::arm_neon_vst3: { unsigned DOpcodes[] = { ARM::VST3d8, ARM::VST3d16, ARM::VST3d32, ARM::VST1d64T }; unsigned QOpcodes0[] = { ARM::VST3q8_UPD, ARM::VST3q16_UPD, ARM::VST3q32_UPD }; unsigned QOpcodes1[] = { ARM::VST3q8odd_UPD, ARM::VST3q16odd_UPD, ARM::VST3q32odd_UPD }; return SelectVST(N, 3, DOpcodes, QOpcodes0, QOpcodes1); } case Intrinsic::arm_neon_vst4: { unsigned DOpcodes[] = { ARM::VST4d8, ARM::VST4d16, ARM::VST4d32, ARM::VST1d64Q }; unsigned QOpcodes0[] = { ARM::VST4q8_UPD, ARM::VST4q16_UPD, ARM::VST4q32_UPD }; unsigned QOpcodes1[] = { ARM::VST4q8odd_UPD, ARM::VST4q16odd_UPD, ARM::VST4q32odd_UPD }; return SelectVST(N, 4, DOpcodes, QOpcodes0, QOpcodes1); } case Intrinsic::arm_neon_vst2lane: { unsigned DOpcodes[] = { ARM::VST2LNd8, ARM::VST2LNd16, ARM::VST2LNd32 }; unsigned QOpcodes0[] = { ARM::VST2LNq16, ARM::VST2LNq32 }; unsigned QOpcodes1[] = { ARM::VST2LNq16odd, ARM::VST2LNq32odd }; return SelectVLDSTLane(N, false, 2, DOpcodes, QOpcodes0, QOpcodes1); } case Intrinsic::arm_neon_vst3lane: { unsigned DOpcodes[] = { ARM::VST3LNd8, ARM::VST3LNd16, ARM::VST3LNd32 }; unsigned QOpcodes0[] = { ARM::VST3LNq16, ARM::VST3LNq32 }; unsigned QOpcodes1[] = { ARM::VST3LNq16odd, ARM::VST3LNq32odd }; return SelectVLDSTLane(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1); } case Intrinsic::arm_neon_vst4lane: { unsigned DOpcodes[] = { ARM::VST4LNd8, ARM::VST4LNd16, ARM::VST4LNd32 }; unsigned QOpcodes0[] = { ARM::VST4LNq16, ARM::VST4LNq32 }; unsigned QOpcodes1[] = { ARM::VST4LNq16odd, ARM::VST4LNq32odd }; return SelectVLDSTLane(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1); } } break; } case ISD::INTRINSIC_WO_CHAIN: { unsigned IntNo = cast(N->getOperand(0))->getZExtValue(); switch (IntNo) { default: break; case Intrinsic::arm_neon_vtbl2: return SelectVTBL(N, false, 2, ARM::VTBL2); case Intrinsic::arm_neon_vtbl3: return SelectVTBL(N, false, 3, ARM::VTBL3); case Intrinsic::arm_neon_vtbl4: return SelectVTBL(N, false, 4, ARM::VTBL4); case Intrinsic::arm_neon_vtbx2: return SelectVTBL(N, true, 2, ARM::VTBX2); case Intrinsic::arm_neon_vtbx3: return SelectVTBL(N, true, 3, ARM::VTBX3); case Intrinsic::arm_neon_vtbx4: return SelectVTBL(N, true, 4, ARM::VTBX4); } break; } case ISD::CONCAT_VECTORS: return SelectConcatVector(N); } return SelectCode(N); } bool ARMDAGToDAGISel:: SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode, std::vector &OutOps) { assert(ConstraintCode == 'm' && "unexpected asm memory constraint"); // Require the address to be in a register. That is safe for all ARM // variants and it is hard to do anything much smarter without knowing // how the operand is used. OutOps.push_back(Op); return false; } /// createARMISelDag - This pass converts a legalized DAG into a /// ARM-specific DAG, ready for instruction scheduling. /// FunctionPass *llvm::createARMISelDag(ARMBaseTargetMachine &TM, CodeGenOpt::Level OptLevel) { return new ARMDAGToDAGISel(TM, OptLevel); }