//===-- ARMISelLowering.h - ARM DAG Lowering Interface ----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the interfaces that ARM uses to lower LLVM code into a // selection DAG. // //===----------------------------------------------------------------------===// #ifndef ARMISELLOWERING_H #define ARMISELLOWERING_H #include "ARM.h" #include "ARMSubtarget.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/FastISel.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetRegisterInfo.h" #include namespace llvm { class ARMConstantPoolValue; namespace ARMISD { // ARM Specific DAG Nodes enum NodeType { // Start the numbering where the builtin ops and target ops leave off. FIRST_NUMBER = ISD::BUILTIN_OP_END, Wrapper, // Wrapper - A wrapper node for TargetConstantPool, // TargetExternalSymbol, and TargetGlobalAddress. WrapperDYN, // WrapperDYN - A wrapper node for TargetGlobalAddress in // DYN mode. WrapperPIC, // WrapperPIC - A wrapper node for TargetGlobalAddress in // PIC mode. WrapperJT, // WrapperJT - A wrapper node for TargetJumpTable // Add pseudo op to model memcpy for struct byval. COPY_STRUCT_BYVAL, CALL, // Function call. CALL_PRED, // Function call that's predicable. CALL_NOLINK, // Function call with branch not branch-and-link. tCALL, // Thumb function call. BRCOND, // Conditional branch. BR_JT, // Jumptable branch. BR2_JT, // Jumptable branch (2 level - jumptable entry is a jump). RET_FLAG, // Return with a flag operand. PIC_ADD, // Add with a PC operand and a PIC label. CMP, // ARM compare instructions. CMN, // ARM CMN instructions. CMPZ, // ARM compare that sets only Z flag. CMPFP, // ARM VFP compare instruction, sets FPSCR. CMPFPw0, // ARM VFP compare against zero instruction, sets FPSCR. FMSTAT, // ARM fmstat instruction. CMOV, // ARM conditional move instructions. BCC_i64, RBIT, // ARM bitreverse instruction FTOSI, // FP to sint within a FP register. FTOUI, // FP to uint within a FP register. SITOF, // sint to FP within a FP register. UITOF, // uint to FP within a FP register. SRL_FLAG, // V,Flag = srl_flag X -> srl X, 1 + save carry out. SRA_FLAG, // V,Flag = sra_flag X -> sra X, 1 + save carry out. RRX, // V = RRX X, Flag -> srl X, 1 + shift in carry flag. ADDC, // Add with carry ADDE, // Add using carry SUBC, // Sub with carry SUBE, // Sub using carry VMOVRRD, // double to two gprs. VMOVDRR, // Two gprs to double. EH_SJLJ_SETJMP, // SjLj exception handling setjmp. EH_SJLJ_LONGJMP, // SjLj exception handling longjmp. TC_RETURN, // Tail call return pseudo. THREAD_POINTER, DYN_ALLOC, // Dynamic allocation on the stack. MEMBARRIER, // Memory barrier (DMB) MEMBARRIER_MCR, // Memory barrier (MCR) PRELOAD, // Preload VCEQ, // Vector compare equal. VCEQZ, // Vector compare equal to zero. VCGE, // Vector compare greater than or equal. VCGEZ, // Vector compare greater than or equal to zero. VCLEZ, // Vector compare less than or equal to zero. VCGEU, // Vector compare unsigned greater than or equal. VCGT, // Vector compare greater than. VCGTZ, // Vector compare greater than zero. VCLTZ, // Vector compare less than zero. VCGTU, // Vector compare unsigned greater than. VTST, // Vector test bits. // Vector shift by immediate: VSHL, // ...left VSHRs, // ...right (signed) VSHRu, // ...right (unsigned) VSHLLs, // ...left long (signed) VSHLLu, // ...left long (unsigned) VSHLLi, // ...left long (with maximum shift count) VSHRN, // ...right narrow // Vector rounding shift by immediate: VRSHRs, // ...right (signed) VRSHRu, // ...right (unsigned) VRSHRN, // ...right narrow // Vector saturating shift by immediate: VQSHLs, // ...left (signed) VQSHLu, // ...left (unsigned) VQSHLsu, // ...left (signed to unsigned) VQSHRNs, // ...right narrow (signed) VQSHRNu, // ...right narrow (unsigned) VQSHRNsu, // ...right narrow (signed to unsigned) // Vector saturating rounding shift by immediate: VQRSHRNs, // ...right narrow (signed) VQRSHRNu, // ...right narrow (unsigned) VQRSHRNsu, // ...right narrow (signed to unsigned) // Vector shift and insert: VSLI, // ...left VSRI, // ...right // Vector get lane (VMOV scalar to ARM core register) // (These are used for 8- and 16-bit element types only.) VGETLANEu, // zero-extend vector extract element VGETLANEs, // sign-extend vector extract element // Vector move immediate and move negated immediate: VMOVIMM, VMVNIMM, // Vector move f32 immediate: VMOVFPIMM, // Vector duplicate: VDUP, VDUPLANE, // Vector shuffles: VEXT, // extract VREV64, // reverse elements within 64-bit doublewords VREV32, // reverse elements within 32-bit words VREV16, // reverse elements within 16-bit halfwords VZIP, // zip (interleave) VUZP, // unzip (deinterleave) VTRN, // transpose VTBL1, // 1-register shuffle with mask VTBL2, // 2-register shuffle with mask // Vector multiply long: VMULLs, // ...signed VMULLu, // ...unsigned UMLAL, // 64bit Unsigned Accumulate Multiply SMLAL, // 64bit Signed Accumulate Multiply // Operands of the standard BUILD_VECTOR node are not legalized, which // is fine if BUILD_VECTORs are always lowered to shuffles or other // operations, but for ARM some BUILD_VECTORs are legal as-is and their // operands need to be legalized. Define an ARM-specific version of // BUILD_VECTOR for this purpose. BUILD_VECTOR, // Floating-point max and min: FMAX, FMIN, // Bit-field insert BFI, // Vector OR with immediate VORRIMM, // Vector AND with NOT of immediate VBICIMM, // Vector bitwise select VBSL, // Vector load N-element structure to all lanes: VLD2DUP = ISD::FIRST_TARGET_MEMORY_OPCODE, VLD3DUP, VLD4DUP, // NEON loads with post-increment base updates: VLD1_UPD, VLD2_UPD, VLD3_UPD, VLD4_UPD, VLD2LN_UPD, VLD3LN_UPD, VLD4LN_UPD, VLD2DUP_UPD, VLD3DUP_UPD, VLD4DUP_UPD, // NEON stores with post-increment base updates: VST1_UPD, VST2_UPD, VST3_UPD, VST4_UPD, VST2LN_UPD, VST3LN_UPD, VST4LN_UPD, // 64-bit atomic ops (value split into two registers) ATOMADD64_DAG, ATOMSUB64_DAG, ATOMOR64_DAG, ATOMXOR64_DAG, ATOMAND64_DAG, ATOMNAND64_DAG, ATOMSWAP64_DAG, ATOMCMPXCHG64_DAG, ATOMMIN64_DAG, ATOMUMIN64_DAG, ATOMMAX64_DAG, ATOMUMAX64_DAG }; } /// Define some predicates that are used for node matching. namespace ARM { bool isBitFieldInvertedMask(unsigned v); } //===--------------------------------------------------------------------===// // ARMTargetLowering - ARM Implementation of the TargetLowering interface class ARMTargetLowering : public TargetLowering { public: explicit ARMTargetLowering(TargetMachine &TM); virtual unsigned getJumpTableEncoding() const; virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const; /// ReplaceNodeResults - Replace the results of node with an illegal result /// type with new values built out of custom code. /// virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl&Results, SelectionDAG &DAG) const; virtual const char *getTargetNodeName(unsigned Opcode) const; virtual bool isSelectSupported(SelectSupportKind Kind) const { // ARM does not support scalar condition selects on vectors. return (Kind != ScalarCondVectorVal); } /// getSetCCResultType - Return the value type to use for ISD::SETCC. virtual EVT getSetCCResultType(LLVMContext &Context, EVT VT) const; virtual MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const; virtual void AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const; SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const; virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const; bool isDesirableToTransformToIntegerOp(unsigned Opc, EVT VT) const; /// allowsUnalignedMemoryAccesses - Returns true if the target allows /// unaligned memory accesses of the specified type. Returns whether it /// is "fast" by reference in the second argument. virtual bool allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const; virtual EVT getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc, MachineFunction &MF) const; using TargetLowering::isZExtFree; virtual bool isZExtFree(SDValue Val, EVT VT2) const; virtual bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const; /// isLegalAddressingMode - Return true if the addressing mode represented /// by AM is legal for this target, for a load/store of the specified type. virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty)const; bool isLegalT2ScaledAddressingMode(const AddrMode &AM, EVT VT) const; /// isLegalICmpImmediate - Return true if the specified immediate is legal /// icmp immediate, that is the target has icmp instructions which can /// compare a register against the immediate without having to materialize /// the immediate into a register. virtual bool isLegalICmpImmediate(int64_t Imm) const; /// isLegalAddImmediate - Return true if the specified immediate is legal /// add immediate, that is the target has add instructions which can /// add a register and the immediate without having to materialize /// the immediate into a register. virtual bool isLegalAddImmediate(int64_t Imm) const; /// getPreIndexedAddressParts - returns true by value, base pointer and /// offset pointer and addressing mode by reference if the node's address /// can be legally represented as pre-indexed load / store address. virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const; /// getPostIndexedAddressParts - returns true by value, base pointer and /// offset pointer and addressing mode by reference if this node can be /// combined with a load / store to form a post-indexed load / store. virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const; virtual void computeMaskedBitsForTargetNode(const SDValue Op, APInt &KnownZero, APInt &KnownOne, const SelectionDAG &DAG, unsigned Depth) const; virtual bool ExpandInlineAsm(CallInst *CI) const; ConstraintType getConstraintType(const std::string &Constraint) const; /// Examine constraint string and operand type and determine a weight value. /// The operand object must already have been set up with the operand type. ConstraintWeight getSingleConstraintMatchWeight( AsmOperandInfo &info, const char *constraint) const; std::pair getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const; /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops /// vector. If it is invalid, don't add anything to Ops. If hasMemory is /// true it means one of the asm constraint of the inline asm instruction /// being processed is 'm'. virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, std::vector &Ops, SelectionDAG &DAG) const; const ARMSubtarget* getSubtarget() const { return Subtarget; } /// getRegClassFor - Return the register class that should be used for the /// specified value type. virtual const TargetRegisterClass *getRegClassFor(MVT VT) const; /// getMaximalGlobalOffset - Returns the maximal possible offset which can /// be used for loads / stores from the global. virtual unsigned getMaximalGlobalOffset() const; /// createFastISel - This method returns a target specific FastISel object, /// or null if the target does not support "fast" ISel. virtual FastISel *createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo) const; Sched::Preference getSchedulingPreference(SDNode *N) const; bool isShuffleMaskLegal(const SmallVectorImpl &M, EVT VT) const; bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const; /// isFPImmLegal - Returns true if the target can instruction select the /// specified FP immediate natively. If false, the legalizer will /// materialize the FP immediate as a load from a constant pool. virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const; virtual bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I, unsigned Intrinsic) const; protected: std::pair findRepresentativeClass(MVT VT) const; private: /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can /// make the right decision when generating code for different targets. const ARMSubtarget *Subtarget; const TargetRegisterInfo *RegInfo; const InstrItineraryData *Itins; /// ARMPCLabelIndex - Keep track of the number of ARM PC labels created. /// unsigned ARMPCLabelIndex; void addTypeForNEON(MVT VT, MVT PromotedLdStVT, MVT PromotedBitwiseVT); void addDRTypeForNEON(MVT VT); void addQRTypeForNEON(MVT VT); typedef SmallVector, 8> RegsToPassVector; void PassF64ArgInRegs(SDLoc dl, SelectionDAG &DAG, SDValue Chain, SDValue &Arg, RegsToPassVector &RegsToPass, CCValAssign &VA, CCValAssign &NextVA, SDValue &StackPtr, SmallVectorImpl &MemOpChains, ISD::ArgFlagsTy Flags) const; SDValue GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA, SDValue &Root, SelectionDAG &DAG, SDLoc dl) const; CCAssignFn *CCAssignFnForNode(CallingConv::ID CC, bool Return, bool isVarArg) const; SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg, SDLoc dl, SelectionDAG &DAG, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const; SDValue LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const; SDValue LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const; SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *Subtarget) const; SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const; SDValue LowerGlobalAddressDarwin(SDValue Op, SelectionDAG &DAG) const; SDValue LowerGlobalAddressELF(SDValue Op, SelectionDAG &DAG) const; SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const; SDValue LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG) const; SDValue LowerToTLSExecModels(GlobalAddressSDNode *GA, SelectionDAG &DAG, TLSModel::Model model) const; SDValue LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerBR_JT(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const; SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const; SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const; SDValue LowerShiftRightParts(SDValue Op, SelectionDAG &DAG) const; SDValue LowerShiftLeftParts(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const; SDValue LowerConstantFP(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST) const; SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST) const; SDValue LowerDivRem(SDValue Op, SelectionDAG &DAG) const; /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be /// expanded to FMAs when this method returns true, otherwise fmuladd is /// expanded to fmul + fadd. /// /// ARM supports both fused and unfused multiply-add operations; we already /// lower a pair of fmul and fadd to the latter so it's not clear that there /// would be a gain or that the gain would be worthwhile enough to risk /// correctness bugs. virtual bool isFMAFasterThanFMulAndFAdd(EVT VT) const { return false; } SDValue ReconstructShuffle(SDValue Op, SelectionDAG &DAG) const; SDValue LowerCallResult(SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, SDLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals, bool isThisReturn, SDValue ThisVal) const; virtual SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, SDLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const; int StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG, SDLoc dl, SDValue &Chain, const Value *OrigArg, unsigned InRegsParamRecordIdx, unsigned OffsetFromOrigArg, unsigned ArgOffset, unsigned ArgSize, bool ForceMutable) const; void VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG, SDLoc dl, SDValue &Chain, unsigned ArgOffset, bool ForceMutable = false) const; void computeRegArea(CCState &CCInfo, MachineFunction &MF, unsigned InRegsParamRecordIdx, unsigned ArgSize, unsigned &ArgRegsSize, unsigned &ArgRegsSaveSize) const; virtual SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI, SmallVectorImpl &InVals) const; /// HandleByVal - Target-specific cleanup for ByVal support. virtual void HandleByVal(CCState *, unsigned &, unsigned) const; /// IsEligibleForTailCallOptimization - Check whether the call is eligible /// for tail call optimization. Targets which want to do tail call /// optimization should implement this function. bool IsEligibleForTailCallOptimization(SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg, bool isCalleeStructRet, bool isCallerStructRet, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SmallVectorImpl &Ins, SelectionDAG& DAG) const; virtual bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, const SmallVectorImpl &Outs, LLVMContext &Context) const; virtual SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, SDLoc dl, SelectionDAG &DAG) const; virtual bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const; virtual bool mayBeEmittedAsTailCall(CallInst *CI) const; SDValue getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDValue &ARMcc, SelectionDAG &DAG, SDLoc dl) const; SDValue getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG, SDLoc dl) const; SDValue duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const; SDValue OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const; MachineBasicBlock *EmitAtomicCmpSwap(MachineInstr *MI, MachineBasicBlock *BB, unsigned Size) const; MachineBasicBlock *EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, unsigned Size, unsigned BinOpcode) const; MachineBasicBlock *EmitAtomicBinary64(MachineInstr *MI, MachineBasicBlock *BB, unsigned Op1, unsigned Op2, bool NeedsCarry = false, bool IsCmpxchg = false, bool IsMinMax = false, ARMCC::CondCodes CC = ARMCC::AL) const; MachineBasicBlock * EmitAtomicBinaryMinMax(MachineInstr *MI, MachineBasicBlock *BB, unsigned Size, bool signExtend, ARMCC::CondCodes Cond) const; void SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB, MachineBasicBlock *DispatchBB, int FI) const; MachineBasicBlock *EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const; bool RemapAddSubWithFlags(MachineInstr *MI, MachineBasicBlock *BB) const; MachineBasicBlock *EmitStructByval(MachineInstr *MI, MachineBasicBlock *MBB) const; }; enum NEONModImmType { VMOVModImm, VMVNModImm, OtherModImm }; namespace ARM { FastISel *createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo); } } #endif // ARMISELLOWERING_H