//===-- ARMLoadStoreOptimizer.cpp - ARM load / store opt. pass ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a pass that performs load / store related peephole // optimizations. This pass should be run after register allocation. // //===----------------------------------------------------------------------===// #include "ARM.h" #include "ARMBaseInstrInfo.h" #include "ARMBaseRegisterInfo.h" #include "ARMISelLowering.h" #include "ARMMachineFunctionInfo.h" #include "ARMSubtarget.h" #include "MCTargetDesc/ARMAddressingModes.h" #include "Thumb1RegisterInfo.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RegisterScavenging.h" #include "llvm/CodeGen/SelectionDAGNodes.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" using namespace llvm; #define DEBUG_TYPE "arm-ldst-opt" STATISTIC(NumLDMGened , "Number of ldm instructions generated"); STATISTIC(NumSTMGened , "Number of stm instructions generated"); STATISTIC(NumVLDMGened, "Number of vldm instructions generated"); STATISTIC(NumVSTMGened, "Number of vstm instructions generated"); STATISTIC(NumLdStMoved, "Number of load / store instructions moved"); STATISTIC(NumLDRDFormed,"Number of ldrd created before allocation"); STATISTIC(NumSTRDFormed,"Number of strd created before allocation"); STATISTIC(NumLDRD2LDM, "Number of ldrd instructions turned back into ldm"); STATISTIC(NumSTRD2STM, "Number of strd instructions turned back into stm"); STATISTIC(NumLDRD2LDR, "Number of ldrd instructions turned back into ldr's"); STATISTIC(NumSTRD2STR, "Number of strd instructions turned back into str's"); /// ARMAllocLoadStoreOpt - Post- register allocation pass the combine /// load / store instructions to form ldm / stm instructions. namespace { struct ARMLoadStoreOpt : public MachineFunctionPass { static char ID; ARMLoadStoreOpt() : MachineFunctionPass(ID) {} const TargetInstrInfo *TII; const TargetRegisterInfo *TRI; const ARMSubtarget *STI; const TargetLowering *TL; ARMFunctionInfo *AFI; RegScavenger *RS; bool isThumb1, isThumb2; bool runOnMachineFunction(MachineFunction &Fn) override; const char *getPassName() const override { return "ARM load / store optimization pass"; } private: struct MemOpQueueEntry { int Offset; unsigned Reg; bool isKill; unsigned Position; MachineBasicBlock::iterator MBBI; bool Merged; MemOpQueueEntry(int o, unsigned r, bool k, unsigned p, MachineBasicBlock::iterator i) : Offset(o), Reg(r), isKill(k), Position(p), MBBI(i), Merged(false) {} }; typedef SmallVector MemOpQueue; typedef MemOpQueue::iterator MemOpQueueIter; void findUsesOfImpDef(SmallVectorImpl &UsesOfImpDefs, const MemOpQueue &MemOps, unsigned DefReg, unsigned RangeBegin, unsigned RangeEnd); void UpdateBaseRegUses(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, DebugLoc dl, unsigned Base, unsigned WordOffset, ARMCC::CondCodes Pred, unsigned PredReg); bool MergeOps(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, int Offset, unsigned Base, bool BaseKill, int Opcode, ARMCC::CondCodes Pred, unsigned PredReg, unsigned Scratch, DebugLoc dl, ArrayRef > Regs, ArrayRef ImpDefs); void MergeOpsUpdate(MachineBasicBlock &MBB, MemOpQueue &MemOps, unsigned memOpsBegin, unsigned memOpsEnd, unsigned insertAfter, int Offset, unsigned Base, bool BaseKill, int Opcode, ARMCC::CondCodes Pred, unsigned PredReg, unsigned Scratch, DebugLoc dl, SmallVectorImpl &Merges); void MergeLDR_STR(MachineBasicBlock &MBB, unsigned SIndex, unsigned Base, int Opcode, unsigned Size, ARMCC::CondCodes Pred, unsigned PredReg, unsigned Scratch, MemOpQueue &MemOps, SmallVectorImpl &Merges); void AdvanceRS(MachineBasicBlock &MBB, MemOpQueue &MemOps); bool FixInvalidRegPairOp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI); bool MergeBaseUpdateLoadStore(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const TargetInstrInfo *TII, bool &Advance, MachineBasicBlock::iterator &I); bool MergeBaseUpdateLSMultiple(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, bool &Advance, MachineBasicBlock::iterator &I); bool LoadStoreMultipleOpti(MachineBasicBlock &MBB); bool MergeReturnIntoLDM(MachineBasicBlock &MBB); }; char ARMLoadStoreOpt::ID = 0; } static bool definesCPSR(const MachineInstr *MI) { for (const auto &MO : MI->operands()) { if (!MO.isReg()) continue; if (MO.isDef() && MO.getReg() == ARM::CPSR && !MO.isDead()) // If the instruction has live CPSR def, then it's not safe to fold it // into load / store. return true; } return false; } static int getMemoryOpOffset(const MachineInstr *MI) { int Opcode = MI->getOpcode(); bool isAM3 = Opcode == ARM::LDRD || Opcode == ARM::STRD; unsigned NumOperands = MI->getDesc().getNumOperands(); unsigned OffField = MI->getOperand(NumOperands-3).getImm(); if (Opcode == ARM::t2LDRi12 || Opcode == ARM::t2LDRi8 || Opcode == ARM::t2STRi12 || Opcode == ARM::t2STRi8 || Opcode == ARM::t2LDRDi8 || Opcode == ARM::t2STRDi8 || Opcode == ARM::LDRi12 || Opcode == ARM::STRi12) return OffField; // Thumb1 immediate offsets are scaled by 4 if (Opcode == ARM::tLDRi || Opcode == ARM::tSTRi || Opcode == ARM::tLDRspi || Opcode == ARM::tSTRspi) return OffField * 4; int Offset = isAM3 ? ARM_AM::getAM3Offset(OffField) : ARM_AM::getAM5Offset(OffField) * 4; ARM_AM::AddrOpc Op = isAM3 ? ARM_AM::getAM3Op(OffField) : ARM_AM::getAM5Op(OffField); if (Op == ARM_AM::sub) return -Offset; return Offset; } static int getLoadStoreMultipleOpcode(int Opcode, ARM_AM::AMSubMode Mode) { switch (Opcode) { default: llvm_unreachable("Unhandled opcode!"); case ARM::LDRi12: ++NumLDMGened; switch (Mode) { default: llvm_unreachable("Unhandled submode!"); case ARM_AM::ia: return ARM::LDMIA; case ARM_AM::da: return ARM::LDMDA; case ARM_AM::db: return ARM::LDMDB; case ARM_AM::ib: return ARM::LDMIB; } case ARM::STRi12: ++NumSTMGened; switch (Mode) { default: llvm_unreachable("Unhandled submode!"); case ARM_AM::ia: return ARM::STMIA; case ARM_AM::da: return ARM::STMDA; case ARM_AM::db: return ARM::STMDB; case ARM_AM::ib: return ARM::STMIB; } case ARM::tLDRi: case ARM::tLDRspi: // tLDMIA is writeback-only - unless the base register is in the input // reglist. ++NumLDMGened; switch (Mode) { default: llvm_unreachable("Unhandled submode!"); case ARM_AM::ia: return ARM::tLDMIA; } case ARM::tSTRi: case ARM::tSTRspi: // There is no non-writeback tSTMIA either. ++NumSTMGened; switch (Mode) { default: llvm_unreachable("Unhandled submode!"); case ARM_AM::ia: return ARM::tSTMIA_UPD; } case ARM::t2LDRi8: case ARM::t2LDRi12: ++NumLDMGened; switch (Mode) { default: llvm_unreachable("Unhandled submode!"); case ARM_AM::ia: return ARM::t2LDMIA; case ARM_AM::db: return ARM::t2LDMDB; } case ARM::t2STRi8: case ARM::t2STRi12: ++NumSTMGened; switch (Mode) { default: llvm_unreachable("Unhandled submode!"); case ARM_AM::ia: return ARM::t2STMIA; case ARM_AM::db: return ARM::t2STMDB; } case ARM::VLDRS: ++NumVLDMGened; switch (Mode) { default: llvm_unreachable("Unhandled submode!"); case ARM_AM::ia: return ARM::VLDMSIA; case ARM_AM::db: return 0; // Only VLDMSDB_UPD exists. } case ARM::VSTRS: ++NumVSTMGened; switch (Mode) { default: llvm_unreachable("Unhandled submode!"); case ARM_AM::ia: return ARM::VSTMSIA; case ARM_AM::db: return 0; // Only VSTMSDB_UPD exists. } case ARM::VLDRD: ++NumVLDMGened; switch (Mode) { default: llvm_unreachable("Unhandled submode!"); case ARM_AM::ia: return ARM::VLDMDIA; case ARM_AM::db: return 0; // Only VLDMDDB_UPD exists. } case ARM::VSTRD: ++NumVSTMGened; switch (Mode) { default: llvm_unreachable("Unhandled submode!"); case ARM_AM::ia: return ARM::VSTMDIA; case ARM_AM::db: return 0; // Only VSTMDDB_UPD exists. } } } namespace llvm { namespace ARM_AM { AMSubMode getLoadStoreMultipleSubMode(int Opcode) { switch (Opcode) { default: llvm_unreachable("Unhandled opcode!"); case ARM::LDMIA_RET: case ARM::LDMIA: case ARM::LDMIA_UPD: case ARM::STMIA: case ARM::STMIA_UPD: case ARM::tLDMIA: case ARM::tLDMIA_UPD: case ARM::tSTMIA_UPD: case ARM::t2LDMIA_RET: case ARM::t2LDMIA: case ARM::t2LDMIA_UPD: case ARM::t2STMIA: case ARM::t2STMIA_UPD: case ARM::VLDMSIA: case ARM::VLDMSIA_UPD: case ARM::VSTMSIA: case ARM::VSTMSIA_UPD: case ARM::VLDMDIA: case ARM::VLDMDIA_UPD: case ARM::VSTMDIA: case ARM::VSTMDIA_UPD: return ARM_AM::ia; case ARM::LDMDA: case ARM::LDMDA_UPD: case ARM::STMDA: case ARM::STMDA_UPD: return ARM_AM::da; case ARM::LDMDB: case ARM::LDMDB_UPD: case ARM::STMDB: case ARM::STMDB_UPD: case ARM::t2LDMDB: case ARM::t2LDMDB_UPD: case ARM::t2STMDB: case ARM::t2STMDB_UPD: case ARM::VLDMSDB_UPD: case ARM::VSTMSDB_UPD: case ARM::VLDMDDB_UPD: case ARM::VSTMDDB_UPD: return ARM_AM::db; case ARM::LDMIB: case ARM::LDMIB_UPD: case ARM::STMIB: case ARM::STMIB_UPD: return ARM_AM::ib; } } } // end namespace ARM_AM } // end namespace llvm static bool isT1i32Load(unsigned Opc) { return Opc == ARM::tLDRi || Opc == ARM::tLDRspi; } static bool isT2i32Load(unsigned Opc) { return Opc == ARM::t2LDRi12 || Opc == ARM::t2LDRi8; } static bool isi32Load(unsigned Opc) { return Opc == ARM::LDRi12 || isT1i32Load(Opc) || isT2i32Load(Opc) ; } static bool isT1i32Store(unsigned Opc) { return Opc == ARM::tSTRi || Opc == ARM::tSTRspi; } static bool isT2i32Store(unsigned Opc) { return Opc == ARM::t2STRi12 || Opc == ARM::t2STRi8; } static bool isi32Store(unsigned Opc) { return Opc == ARM::STRi12 || isT1i32Store(Opc) || isT2i32Store(Opc); } static unsigned getImmScale(unsigned Opc) { switch (Opc) { default: llvm_unreachable("Unhandled opcode!"); case ARM::tLDRi: case ARM::tSTRi: case ARM::tLDRspi: case ARM::tSTRspi: return 1; case ARM::tLDRHi: case ARM::tSTRHi: return 2; case ARM::tLDRBi: case ARM::tSTRBi: return 4; } } /// Update future uses of the base register with the offset introduced /// due to writeback. This function only works on Thumb1. void ARMLoadStoreOpt::UpdateBaseRegUses(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, DebugLoc dl, unsigned Base, unsigned WordOffset, ARMCC::CondCodes Pred, unsigned PredReg) { assert(isThumb1 && "Can only update base register uses for Thumb1!"); // Start updating any instructions with immediate offsets. Insert a SUB before // the first non-updateable instruction (if any). for (; MBBI != MBB.end(); ++MBBI) { bool InsertSub = false; unsigned Opc = MBBI->getOpcode(); if (MBBI->readsRegister(Base)) { int Offset; bool IsLoad = Opc == ARM::tLDRi || Opc == ARM::tLDRHi || Opc == ARM::tLDRBi; bool IsStore = Opc == ARM::tSTRi || Opc == ARM::tSTRHi || Opc == ARM::tSTRBi; if (IsLoad || IsStore) { // Loads and stores with immediate offsets can be updated, but only if // the new offset isn't negative. // The MachineOperand containing the offset immediate is the last one // before predicates. MachineOperand &MO = MBBI->getOperand(MBBI->getDesc().getNumOperands() - 3); // The offsets are scaled by 1, 2 or 4 depending on the Opcode. Offset = MO.getImm() - WordOffset * getImmScale(Opc); // If storing the base register, it needs to be reset first. unsigned InstrSrcReg = MBBI->getOperand(0).getReg(); if (Offset >= 0 && !(IsStore && InstrSrcReg == Base)) MO.setImm(Offset); else InsertSub = true; } else if ((Opc == ARM::tSUBi8 || Opc == ARM::tADDi8) && !definesCPSR(MBBI)) { // SUBS/ADDS using this register, with a dead def of the CPSR. // Merge it with the update; if the merged offset is too large, // insert a new sub instead. MachineOperand &MO = MBBI->getOperand(MBBI->getDesc().getNumOperands() - 3); Offset = (Opc == ARM::tSUBi8) ? MO.getImm() + WordOffset * 4 : MO.getImm() - WordOffset * 4 ; if (Offset >= 0 && TL->isLegalAddImmediate(Offset)) { // FIXME: Swap ADDS<->SUBS if Offset < 0, erase instruction if // Offset == 0. MO.setImm(Offset); // The base register has now been reset, so exit early. return; } else { InsertSub = true; } } else { // Can't update the instruction. InsertSub = true; } } else if (definesCPSR(MBBI) || MBBI->isCall() || MBBI->isBranch()) { // Since SUBS sets the condition flags, we can't place the base reset // after an instruction that has a live CPSR def. // The base register might also contain an argument for a function call. InsertSub = true; } if (InsertSub) { // An instruction above couldn't be updated, so insert a sub. AddDefaultT1CC(BuildMI(MBB, MBBI, dl, TII->get(ARM::tSUBi8), Base), true) .addReg(Base, getKillRegState(false)).addImm(WordOffset * 4) .addImm(Pred).addReg(PredReg); return; } if (MBBI->killsRegister(Base)) // Register got killed. Stop updating. return; } // End of block was reached. if (MBB.succ_size() > 0) { // FIXME: Because of a bug, live registers are sometimes missing from // the successor blocks' live-in sets. This means we can't trust that // information and *always* have to reset at the end of a block. // See PR21029. if (MBBI != MBB.end()) --MBBI; AddDefaultT1CC( BuildMI(MBB, MBBI, dl, TII->get(ARM::tSUBi8), Base), true) .addReg(Base, getKillRegState(false)).addImm(WordOffset * 4) .addImm(Pred).addReg(PredReg); } } /// MergeOps - Create and insert a LDM or STM with Base as base register and /// registers in Regs as the register operands that would be loaded / stored. /// It returns true if the transformation is done. bool ARMLoadStoreOpt::MergeOps(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, int Offset, unsigned Base, bool BaseKill, int Opcode, ARMCC::CondCodes Pred, unsigned PredReg, unsigned Scratch, DebugLoc dl, ArrayRef > Regs, ArrayRef ImpDefs) { // Only a single register to load / store. Don't bother. unsigned NumRegs = Regs.size(); if (NumRegs <= 1) return false; // For Thumb1 targets, it might be necessary to clobber the CPSR to merge. // Compute liveness information for that register to make the decision. bool SafeToClobberCPSR = !isThumb1 || (MBB.computeRegisterLiveness(TRI, ARM::CPSR, std::prev(MBBI), 15) == MachineBasicBlock::LQR_Dead); bool Writeback = isThumb1; // Thumb1 LDM/STM have base reg writeback. // Exception: If the base register is in the input reglist, Thumb1 LDM is // non-writeback. // It's also not possible to merge an STR of the base register in Thumb1. if (isThumb1) for (unsigned I = 0; I < NumRegs; ++I) if (Base == Regs[I].first) { assert(Base != ARM::SP && "Thumb1 does not allow SP in register list"); if (Opcode == ARM::tLDRi) { Writeback = false; break; } else if (Opcode == ARM::tSTRi) { return false; } } ARM_AM::AMSubMode Mode = ARM_AM::ia; // VFP and Thumb2 do not support IB or DA modes. Thumb1 only supports IA. bool isNotVFP = isi32Load(Opcode) || isi32Store(Opcode); bool haveIBAndDA = isNotVFP && !isThumb2 && !isThumb1; if (Offset == 4 && haveIBAndDA) { Mode = ARM_AM::ib; } else if (Offset == -4 * (int)NumRegs + 4 && haveIBAndDA) { Mode = ARM_AM::da; } else if (Offset == -4 * (int)NumRegs && isNotVFP && !isThumb1) { // VLDM/VSTM do not support DB mode without also updating the base reg. Mode = ARM_AM::db; } else if (Offset != 0 || Opcode == ARM::tLDRspi || Opcode == ARM::tSTRspi) { // Check if this is a supported opcode before inserting instructions to // calculate a new base register. if (!getLoadStoreMultipleOpcode(Opcode, Mode)) return false; // If starting offset isn't zero, insert a MI to materialize a new base. // But only do so if it is cost effective, i.e. merging more than two // loads / stores. if (NumRegs <= 2) return false; // On Thumb1, it's not worth materializing a new base register without // clobbering the CPSR (i.e. not using ADDS/SUBS). if (!SafeToClobberCPSR) return false; unsigned NewBase; if (isi32Load(Opcode)) { // If it is a load, then just use one of the destination register to // use as the new base. NewBase = Regs[NumRegs-1].first; } else { // Use the scratch register to use as a new base. NewBase = Scratch; if (NewBase == 0) return false; } int BaseOpc = isThumb2 ? ARM::t2ADDri : (isThumb1 && Base == ARM::SP) ? ARM::tADDrSPi : (isThumb1 && Offset < 8) ? ARM::tADDi3 : isThumb1 ? ARM::tADDi8 : ARM::ADDri; if (Offset < 0) { Offset = - Offset; BaseOpc = isThumb2 ? ARM::t2SUBri : (isThumb1 && Offset < 8 && Base != ARM::SP) ? ARM::tSUBi3 : isThumb1 ? ARM::tSUBi8 : ARM::SUBri; } if (!TL->isLegalAddImmediate(Offset)) // FIXME: Try add with register operand? return false; // Probably not worth it then. if (isThumb1) { // Thumb1: depending on immediate size, use either // ADDS NewBase, Base, #imm3 // or // MOV NewBase, Base // ADDS NewBase, #imm8. if (Base != NewBase && (BaseOpc == ARM::tADDi8 || BaseOpc == ARM::tSUBi8)) { // Need to insert a MOV to the new base first. if (isARMLowRegister(NewBase) && isARMLowRegister(Base) && !STI->hasV6Ops()) { // thumbv4t doesn't have lo->lo copies, and we can't predicate tMOVSr if (Pred != ARMCC::AL) return false; BuildMI(MBB, MBBI, dl, TII->get(ARM::tMOVSr), NewBase) .addReg(Base, getKillRegState(BaseKill)); } else BuildMI(MBB, MBBI, dl, TII->get(ARM::tMOVr), NewBase) .addReg(Base, getKillRegState(BaseKill)) .addImm(Pred).addReg(PredReg); // Set up BaseKill and Base correctly to insert the ADDS/SUBS below. Base = NewBase; BaseKill = false; } if (BaseOpc == ARM::tADDrSPi) { assert(Offset % 4 == 0 && "tADDrSPi offset is scaled by 4"); BuildMI(MBB, MBBI, dl, TII->get(BaseOpc), NewBase) .addReg(Base, getKillRegState(BaseKill)).addImm(Offset/4) .addImm(Pred).addReg(PredReg); } else AddDefaultT1CC(BuildMI(MBB, MBBI, dl, TII->get(BaseOpc), NewBase), true) .addReg(Base, getKillRegState(BaseKill)).addImm(Offset) .addImm(Pred).addReg(PredReg); } else { BuildMI(MBB, MBBI, dl, TII->get(BaseOpc), NewBase) .addReg(Base, getKillRegState(BaseKill)).addImm(Offset) .addImm(Pred).addReg(PredReg).addReg(0); } Base = NewBase; BaseKill = true; // New base is always killed straight away. } bool isDef = (isi32Load(Opcode) || Opcode == ARM::VLDRS || Opcode == ARM::VLDRD); // Get LS multiple opcode. Note that for Thumb1 this might be an opcode with // base register writeback. Opcode = getLoadStoreMultipleOpcode(Opcode, Mode); if (!Opcode) return false; // Check if a Thumb1 LDM/STM merge is safe. This is the case if: // - There is no writeback (LDM of base register), // - the base register is killed by the merged instruction, // - or it's safe to overwrite the condition flags, i.e. to insert a SUBS // to reset the base register. // Otherwise, don't merge. // It's safe to return here since the code to materialize a new base register // above is also conditional on SafeToClobberCPSR. if (isThumb1 && !SafeToClobberCPSR && Writeback && !BaseKill) return false; MachineInstrBuilder MIB; if (Writeback) { if (Opcode == ARM::tLDMIA) // Update tLDMIA with writeback if necessary. Opcode = ARM::tLDMIA_UPD; MIB = BuildMI(MBB, MBBI, dl, TII->get(Opcode)); // Thumb1: we might need to set base writeback when building the MI. MIB.addReg(Base, getDefRegState(true)) .addReg(Base, getKillRegState(BaseKill)); // The base isn't dead after a merged instruction with writeback. // Insert a sub instruction after the newly formed instruction to reset. if (!BaseKill) UpdateBaseRegUses(MBB, MBBI, dl, Base, NumRegs, Pred, PredReg); } else { // No writeback, simply build the MachineInstr. MIB = BuildMI(MBB, MBBI, dl, TII->get(Opcode)); MIB.addReg(Base, getKillRegState(BaseKill)); } MIB.addImm(Pred).addReg(PredReg); for (unsigned i = 0; i != NumRegs; ++i) MIB = MIB.addReg(Regs[i].first, getDefRegState(isDef) | getKillRegState(Regs[i].second)); // Add implicit defs for super-registers. for (unsigned i = 0, e = ImpDefs.size(); i != e; ++i) MIB.addReg(ImpDefs[i], RegState::ImplicitDefine); return true; } /// \brief Find all instructions using a given imp-def within a range. /// /// We are trying to combine a range of instructions, one of which (located at /// position RangeBegin) implicitly defines a register. The final LDM/STM will /// be placed at RangeEnd, and so any uses of this definition between RangeStart /// and RangeEnd must be modified to use an undefined value. /// /// The live range continues until we find a second definition or one of the /// uses we find is a kill. Unfortunately MemOps is not sorted by Position, so /// we must consider all uses and decide which are relevant in a second pass. void ARMLoadStoreOpt::findUsesOfImpDef( SmallVectorImpl &UsesOfImpDefs, const MemOpQueue &MemOps, unsigned DefReg, unsigned RangeBegin, unsigned RangeEnd) { std::map Uses; unsigned LastLivePos = RangeEnd; // First we find all uses of this register with Position between RangeBegin // and RangeEnd, any or all of these could be uses of a definition at // RangeBegin. We also record the latest position a definition at RangeBegin // would be considered live. for (unsigned i = 0; i < MemOps.size(); ++i) { MachineInstr &MI = *MemOps[i].MBBI; unsigned MIPosition = MemOps[i].Position; if (MIPosition <= RangeBegin || MIPosition > RangeEnd) continue; // If this instruction defines the register, then any later use will be of // that definition rather than ours. if (MI.definesRegister(DefReg)) LastLivePos = std::min(LastLivePos, MIPosition); MachineOperand *UseOp = MI.findRegisterUseOperand(DefReg); if (!UseOp) continue; // If this instruction kills the register then (assuming liveness is // correct when we start) we don't need to think about anything after here. if (UseOp->isKill()) LastLivePos = std::min(LastLivePos, MIPosition); Uses[MIPosition] = UseOp; } // Now we traverse the list of all uses, and append the ones that actually use // our definition to the requested list. for (std::map::iterator I = Uses.begin(), E = Uses.end(); I != E; ++I) { // List is sorted by position so once we've found one out of range there // will be no more to consider. if (I->first > LastLivePos) break; UsesOfImpDefs.push_back(I->second); } } // MergeOpsUpdate - call MergeOps and update MemOps and merges accordingly on // success. void ARMLoadStoreOpt::MergeOpsUpdate(MachineBasicBlock &MBB, MemOpQueue &memOps, unsigned memOpsBegin, unsigned memOpsEnd, unsigned insertAfter, int Offset, unsigned Base, bool BaseKill, int Opcode, ARMCC::CondCodes Pred, unsigned PredReg, unsigned Scratch, DebugLoc dl, SmallVectorImpl &Merges) { // First calculate which of the registers should be killed by the merged // instruction. const unsigned insertPos = memOps[insertAfter].Position; SmallSet KilledRegs; DenseMap Killer; for (unsigned i = 0, e = memOps.size(); i != e; ++i) { if (i == memOpsBegin) { i = memOpsEnd; if (i == e) break; } if (memOps[i].Position < insertPos && memOps[i].isKill) { unsigned Reg = memOps[i].Reg; KilledRegs.insert(Reg); Killer[Reg] = i; } } SmallVector, 8> Regs; SmallVector ImpDefs; SmallVector UsesOfImpDefs; for (unsigned i = memOpsBegin; i < memOpsEnd; ++i) { unsigned Reg = memOps[i].Reg; // If we are inserting the merged operation after an operation that // uses the same register, make sure to transfer any kill flag. bool isKill = memOps[i].isKill || KilledRegs.count(Reg); Regs.push_back(std::make_pair(Reg, isKill)); // Collect any implicit defs of super-registers. They must be preserved. for (MIOperands MO(memOps[i].MBBI); MO.isValid(); ++MO) { if (!MO->isReg() || !MO->isDef() || !MO->isImplicit() || MO->isDead()) continue; unsigned DefReg = MO->getReg(); if (std::find(ImpDefs.begin(), ImpDefs.end(), DefReg) == ImpDefs.end()) ImpDefs.push_back(DefReg); // There may be other uses of the definition between this instruction and // the eventual LDM/STM position. These should be marked undef if the // merge takes place. findUsesOfImpDef(UsesOfImpDefs, memOps, DefReg, memOps[i].Position, insertPos); } } // Try to do the merge. MachineBasicBlock::iterator Loc = memOps[insertAfter].MBBI; ++Loc; if (!MergeOps(MBB, Loc, Offset, Base, BaseKill, Opcode, Pred, PredReg, Scratch, dl, Regs, ImpDefs)) return; // Merge succeeded, update records. Merges.push_back(std::prev(Loc)); // In gathering loads together, we may have moved the imp-def of a register // past one of its uses. This is OK, since we know better than the rest of // LLVM what's OK with ARM loads and stores; but we still have to adjust the // affected uses. for (SmallVectorImpl::iterator I = UsesOfImpDefs.begin(), E = UsesOfImpDefs.end(); I != E; ++I) (*I)->setIsUndef(); for (unsigned i = memOpsBegin; i < memOpsEnd; ++i) { // Remove kill flags from any memops that come before insertPos. if (Regs[i-memOpsBegin].second) { unsigned Reg = Regs[i-memOpsBegin].first; if (KilledRegs.count(Reg)) { unsigned j = Killer[Reg]; int Idx = memOps[j].MBBI->findRegisterUseOperandIdx(Reg, true); assert(Idx >= 0 && "Cannot find killing operand"); memOps[j].MBBI->getOperand(Idx).setIsKill(false); memOps[j].isKill = false; } memOps[i].isKill = true; } MBB.erase(memOps[i].MBBI); // Update this memop to refer to the merged instruction. // We may need to move kill flags again. memOps[i].Merged = true; memOps[i].MBBI = Merges.back(); memOps[i].Position = insertPos; } // Update memOps offsets, since they may have been modified by MergeOps. for (auto &MemOp : memOps) { MemOp.Offset = getMemoryOpOffset(MemOp.MBBI); } } /// MergeLDR_STR - Merge a number of load / store instructions into one or more /// load / store multiple instructions. void ARMLoadStoreOpt::MergeLDR_STR(MachineBasicBlock &MBB, unsigned SIndex, unsigned Base, int Opcode, unsigned Size, ARMCC::CondCodes Pred, unsigned PredReg, unsigned Scratch, MemOpQueue &MemOps, SmallVectorImpl &Merges) { bool isNotVFP = isi32Load(Opcode) || isi32Store(Opcode); int Offset = MemOps[SIndex].Offset; int SOffset = Offset; unsigned insertAfter = SIndex; MachineBasicBlock::iterator Loc = MemOps[SIndex].MBBI; DebugLoc dl = Loc->getDebugLoc(); const MachineOperand &PMO = Loc->getOperand(0); unsigned PReg = PMO.getReg(); unsigned PRegNum = PMO.isUndef() ? UINT_MAX : TRI->getEncodingValue(PReg); unsigned Count = 1; unsigned Limit = ~0U; bool BaseKill = false; // vldm / vstm limit are 32 for S variants, 16 for D variants. switch (Opcode) { default: break; case ARM::VSTRS: Limit = 32; break; case ARM::VSTRD: Limit = 16; break; case ARM::VLDRD: Limit = 16; break; case ARM::VLDRS: Limit = 32; break; } for (unsigned i = SIndex+1, e = MemOps.size(); i != e; ++i) { int NewOffset = MemOps[i].Offset; const MachineOperand &MO = MemOps[i].MBBI->getOperand(0); unsigned Reg = MO.getReg(); unsigned RegNum = MO.isUndef() ? UINT_MAX : TRI->getEncodingValue(Reg); // Register numbers must be in ascending order. For VFP / NEON load and // store multiples, the registers must also be consecutive and within the // limit on the number of registers per instruction. if (Reg != ARM::SP && NewOffset == Offset + (int)Size && ((isNotVFP && RegNum > PRegNum) || ((Count < Limit) && RegNum == PRegNum+1)) && // On Swift we don't want vldm/vstm to start with a odd register num // because Q register unaligned vldm/vstm need more uops. (!STI->isSwift() || isNotVFP || Count != 1 || !(PRegNum & 0x1))) { Offset += Size; PRegNum = RegNum; ++Count; } else { // Can't merge this in. Try merge the earlier ones first. // We need to compute BaseKill here because the MemOps may have been // reordered. BaseKill = Loc->killsRegister(Base); MergeOpsUpdate(MBB, MemOps, SIndex, i, insertAfter, SOffset, Base, BaseKill, Opcode, Pred, PredReg, Scratch, dl, Merges); MergeLDR_STR(MBB, i, Base, Opcode, Size, Pred, PredReg, Scratch, MemOps, Merges); return; } if (MemOps[i].Position > MemOps[insertAfter].Position) { insertAfter = i; Loc = MemOps[i].MBBI; } } BaseKill = Loc->killsRegister(Base); MergeOpsUpdate(MBB, MemOps, SIndex, MemOps.size(), insertAfter, SOffset, Base, BaseKill, Opcode, Pred, PredReg, Scratch, dl, Merges); } static bool isMatchingDecrement(MachineInstr *MI, unsigned Base, unsigned Bytes, unsigned Limit, ARMCC::CondCodes Pred, unsigned PredReg) { unsigned MyPredReg = 0; if (!MI) return false; bool CheckCPSRDef = false; switch (MI->getOpcode()) { default: return false; case ARM::tSUBi8: case ARM::t2SUBri: case ARM::SUBri: CheckCPSRDef = true; // fallthrough case ARM::tSUBspi: break; } // Make sure the offset fits in 8 bits. if (Bytes == 0 || (Limit && Bytes >= Limit)) return false; unsigned Scale = (MI->getOpcode() == ARM::tSUBspi || MI->getOpcode() == ARM::tSUBi8) ? 4 : 1; // FIXME if (!(MI->getOperand(0).getReg() == Base && MI->getOperand(1).getReg() == Base && (MI->getOperand(2).getImm() * Scale) == Bytes && getInstrPredicate(MI, MyPredReg) == Pred && MyPredReg == PredReg)) return false; return CheckCPSRDef ? !definesCPSR(MI) : true; } static bool isMatchingIncrement(MachineInstr *MI, unsigned Base, unsigned Bytes, unsigned Limit, ARMCC::CondCodes Pred, unsigned PredReg) { unsigned MyPredReg = 0; if (!MI) return false; bool CheckCPSRDef = false; switch (MI->getOpcode()) { default: return false; case ARM::tADDi8: case ARM::t2ADDri: case ARM::ADDri: CheckCPSRDef = true; // fallthrough case ARM::tADDspi: break; } if (Bytes == 0 || (Limit && Bytes >= Limit)) // Make sure the offset fits in 8 bits. return false; unsigned Scale = (MI->getOpcode() == ARM::tADDspi || MI->getOpcode() == ARM::tADDi8) ? 4 : 1; // FIXME if (!(MI->getOperand(0).getReg() == Base && MI->getOperand(1).getReg() == Base && (MI->getOperand(2).getImm() * Scale) == Bytes && getInstrPredicate(MI, MyPredReg) == Pred && MyPredReg == PredReg)) return false; return CheckCPSRDef ? !definesCPSR(MI) : true; } static inline unsigned getLSMultipleTransferSize(MachineInstr *MI) { switch (MI->getOpcode()) { default: return 0; case ARM::LDRi12: case ARM::STRi12: case ARM::tLDRi: case ARM::tSTRi: case ARM::tLDRspi: case ARM::tSTRspi: case ARM::t2LDRi8: case ARM::t2LDRi12: case ARM::t2STRi8: case ARM::t2STRi12: case ARM::VLDRS: case ARM::VSTRS: return 4; case ARM::VLDRD: case ARM::VSTRD: return 8; case ARM::LDMIA: case ARM::LDMDA: case ARM::LDMDB: case ARM::LDMIB: case ARM::STMIA: case ARM::STMDA: case ARM::STMDB: case ARM::STMIB: case ARM::tLDMIA: case ARM::tLDMIA_UPD: case ARM::tSTMIA_UPD: case ARM::t2LDMIA: case ARM::t2LDMDB: case ARM::t2STMIA: case ARM::t2STMDB: case ARM::VLDMSIA: case ARM::VSTMSIA: return (MI->getNumOperands() - MI->getDesc().getNumOperands() + 1) * 4; case ARM::VLDMDIA: case ARM::VSTMDIA: return (MI->getNumOperands() - MI->getDesc().getNumOperands() + 1) * 8; } } static unsigned getUpdatingLSMultipleOpcode(unsigned Opc, ARM_AM::AMSubMode Mode) { switch (Opc) { default: llvm_unreachable("Unhandled opcode!"); case ARM::LDMIA: case ARM::LDMDA: case ARM::LDMDB: case ARM::LDMIB: switch (Mode) { default: llvm_unreachable("Unhandled submode!"); case ARM_AM::ia: return ARM::LDMIA_UPD; case ARM_AM::ib: return ARM::LDMIB_UPD; case ARM_AM::da: return ARM::LDMDA_UPD; case ARM_AM::db: return ARM::LDMDB_UPD; } case ARM::STMIA: case ARM::STMDA: case ARM::STMDB: case ARM::STMIB: switch (Mode) { default: llvm_unreachable("Unhandled submode!"); case ARM_AM::ia: return ARM::STMIA_UPD; case ARM_AM::ib: return ARM::STMIB_UPD; case ARM_AM::da: return ARM::STMDA_UPD; case ARM_AM::db: return ARM::STMDB_UPD; } case ARM::t2LDMIA: case ARM::t2LDMDB: switch (Mode) { default: llvm_unreachable("Unhandled submode!"); case ARM_AM::ia: return ARM::t2LDMIA_UPD; case ARM_AM::db: return ARM::t2LDMDB_UPD; } case ARM::t2STMIA: case ARM::t2STMDB: switch (Mode) { default: llvm_unreachable("Unhandled submode!"); case ARM_AM::ia: return ARM::t2STMIA_UPD; case ARM_AM::db: return ARM::t2STMDB_UPD; } case ARM::VLDMSIA: switch (Mode) { default: llvm_unreachable("Unhandled submode!"); case ARM_AM::ia: return ARM::VLDMSIA_UPD; case ARM_AM::db: return ARM::VLDMSDB_UPD; } case ARM::VLDMDIA: switch (Mode) { default: llvm_unreachable("Unhandled submode!"); case ARM_AM::ia: return ARM::VLDMDIA_UPD; case ARM_AM::db: return ARM::VLDMDDB_UPD; } case ARM::VSTMSIA: switch (Mode) { default: llvm_unreachable("Unhandled submode!"); case ARM_AM::ia: return ARM::VSTMSIA_UPD; case ARM_AM::db: return ARM::VSTMSDB_UPD; } case ARM::VSTMDIA: switch (Mode) { default: llvm_unreachable("Unhandled submode!"); case ARM_AM::ia: return ARM::VSTMDIA_UPD; case ARM_AM::db: return ARM::VSTMDDB_UPD; } } } /// MergeBaseUpdateLSMultiple - Fold proceeding/trailing inc/dec of base /// register into the LDM/STM/VLDM{D|S}/VSTM{D|S} op when possible: /// /// stmia rn, /// rn := rn + 4 * 3; /// => /// stmia rn!, /// /// rn := rn - 4 * 3; /// ldmia rn, /// => /// ldmdb rn!, bool ARMLoadStoreOpt::MergeBaseUpdateLSMultiple(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, bool &Advance, MachineBasicBlock::iterator &I) { // Thumb1 is already using updating loads/stores. if (isThumb1) return false; MachineInstr *MI = MBBI; unsigned Base = MI->getOperand(0).getReg(); bool BaseKill = MI->getOperand(0).isKill(); unsigned Bytes = getLSMultipleTransferSize(MI); unsigned PredReg = 0; ARMCC::CondCodes Pred = getInstrPredicate(MI, PredReg); int Opcode = MI->getOpcode(); DebugLoc dl = MI->getDebugLoc(); // Can't use an updating ld/st if the base register is also a dest // register. e.g. ldmdb r0!, {r0, r1, r2}. The behavior is undefined. for (unsigned i = 2, e = MI->getNumOperands(); i != e; ++i) if (MI->getOperand(i).getReg() == Base) return false; bool DoMerge = false; ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(Opcode); // Try merging with the previous instruction. MachineBasicBlock::iterator BeginMBBI = MBB.begin(); if (MBBI != BeginMBBI) { MachineBasicBlock::iterator PrevMBBI = std::prev(MBBI); while (PrevMBBI != BeginMBBI && PrevMBBI->isDebugValue()) --PrevMBBI; if (Mode == ARM_AM::ia && isMatchingDecrement(PrevMBBI, Base, Bytes, 0, Pred, PredReg)) { Mode = ARM_AM::db; DoMerge = true; } else if (Mode == ARM_AM::ib && isMatchingDecrement(PrevMBBI, Base, Bytes, 0, Pred, PredReg)) { Mode = ARM_AM::da; DoMerge = true; } if (DoMerge) MBB.erase(PrevMBBI); } // Try merging with the next instruction. MachineBasicBlock::iterator EndMBBI = MBB.end(); if (!DoMerge && MBBI != EndMBBI) { MachineBasicBlock::iterator NextMBBI = std::next(MBBI); while (NextMBBI != EndMBBI && NextMBBI->isDebugValue()) ++NextMBBI; if ((Mode == ARM_AM::ia || Mode == ARM_AM::ib) && isMatchingIncrement(NextMBBI, Base, Bytes, 0, Pred, PredReg)) { DoMerge = true; } else if ((Mode == ARM_AM::da || Mode == ARM_AM::db) && isMatchingDecrement(NextMBBI, Base, Bytes, 0, Pred, PredReg)) { DoMerge = true; } if (DoMerge) { if (NextMBBI == I) { Advance = true; ++I; } MBB.erase(NextMBBI); } } if (!DoMerge) return false; unsigned NewOpc = getUpdatingLSMultipleOpcode(Opcode, Mode); MachineInstrBuilder MIB = BuildMI(MBB, MBBI, dl, TII->get(NewOpc)) .addReg(Base, getDefRegState(true)) // WB base register .addReg(Base, getKillRegState(BaseKill)) .addImm(Pred).addReg(PredReg); // Transfer the rest of operands. for (unsigned OpNum = 3, e = MI->getNumOperands(); OpNum != e; ++OpNum) MIB.addOperand(MI->getOperand(OpNum)); // Transfer memoperands. MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); MBB.erase(MBBI); return true; } static unsigned getPreIndexedLoadStoreOpcode(unsigned Opc, ARM_AM::AddrOpc Mode) { switch (Opc) { case ARM::LDRi12: return ARM::LDR_PRE_IMM; case ARM::STRi12: return ARM::STR_PRE_IMM; case ARM::VLDRS: return Mode == ARM_AM::add ? ARM::VLDMSIA_UPD : ARM::VLDMSDB_UPD; case ARM::VLDRD: return Mode == ARM_AM::add ? ARM::VLDMDIA_UPD : ARM::VLDMDDB_UPD; case ARM::VSTRS: return Mode == ARM_AM::add ? ARM::VSTMSIA_UPD : ARM::VSTMSDB_UPD; case ARM::VSTRD: return Mode == ARM_AM::add ? ARM::VSTMDIA_UPD : ARM::VSTMDDB_UPD; case ARM::t2LDRi8: case ARM::t2LDRi12: return ARM::t2LDR_PRE; case ARM::t2STRi8: case ARM::t2STRi12: return ARM::t2STR_PRE; default: llvm_unreachable("Unhandled opcode!"); } } static unsigned getPostIndexedLoadStoreOpcode(unsigned Opc, ARM_AM::AddrOpc Mode) { switch (Opc) { case ARM::LDRi12: return ARM::LDR_POST_IMM; case ARM::STRi12: return ARM::STR_POST_IMM; case ARM::VLDRS: return Mode == ARM_AM::add ? ARM::VLDMSIA_UPD : ARM::VLDMSDB_UPD; case ARM::VLDRD: return Mode == ARM_AM::add ? ARM::VLDMDIA_UPD : ARM::VLDMDDB_UPD; case ARM::VSTRS: return Mode == ARM_AM::add ? ARM::VSTMSIA_UPD : ARM::VSTMSDB_UPD; case ARM::VSTRD: return Mode == ARM_AM::add ? ARM::VSTMDIA_UPD : ARM::VSTMDDB_UPD; case ARM::t2LDRi8: case ARM::t2LDRi12: return ARM::t2LDR_POST; case ARM::t2STRi8: case ARM::t2STRi12: return ARM::t2STR_POST; default: llvm_unreachable("Unhandled opcode!"); } } /// MergeBaseUpdateLoadStore - Fold proceeding/trailing inc/dec of base /// register into the LDR/STR/FLD{D|S}/FST{D|S} op when possible: bool ARMLoadStoreOpt::MergeBaseUpdateLoadStore(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const TargetInstrInfo *TII, bool &Advance, MachineBasicBlock::iterator &I) { // Thumb1 doesn't have updating LDR/STR. // FIXME: Use LDM/STM with single register instead. if (isThumb1) return false; MachineInstr *MI = MBBI; unsigned Base = MI->getOperand(1).getReg(); bool BaseKill = MI->getOperand(1).isKill(); unsigned Bytes = getLSMultipleTransferSize(MI); int Opcode = MI->getOpcode(); DebugLoc dl = MI->getDebugLoc(); bool isAM5 = (Opcode == ARM::VLDRD || Opcode == ARM::VLDRS || Opcode == ARM::VSTRD || Opcode == ARM::VSTRS); bool isAM2 = (Opcode == ARM::LDRi12 || Opcode == ARM::STRi12); if (isi32Load(Opcode) || isi32Store(Opcode)) if (MI->getOperand(2).getImm() != 0) return false; if (isAM5 && ARM_AM::getAM5Offset(MI->getOperand(2).getImm()) != 0) return false; bool isLd = isi32Load(Opcode) || Opcode == ARM::VLDRS || Opcode == ARM::VLDRD; // Can't do the merge if the destination register is the same as the would-be // writeback register. if (MI->getOperand(0).getReg() == Base) return false; unsigned PredReg = 0; ARMCC::CondCodes Pred = getInstrPredicate(MI, PredReg); bool DoMerge = false; ARM_AM::AddrOpc AddSub = ARM_AM::add; unsigned NewOpc = 0; // AM2 - 12 bits, thumb2 - 8 bits. unsigned Limit = isAM5 ? 0 : (isAM2 ? 0x1000 : 0x100); // Try merging with the previous instruction. MachineBasicBlock::iterator BeginMBBI = MBB.begin(); if (MBBI != BeginMBBI) { MachineBasicBlock::iterator PrevMBBI = std::prev(MBBI); while (PrevMBBI != BeginMBBI && PrevMBBI->isDebugValue()) --PrevMBBI; if (isMatchingDecrement(PrevMBBI, Base, Bytes, Limit, Pred, PredReg)) { DoMerge = true; AddSub = ARM_AM::sub; } else if (!isAM5 && isMatchingIncrement(PrevMBBI, Base, Bytes, Limit,Pred,PredReg)) { DoMerge = true; } if (DoMerge) { NewOpc = getPreIndexedLoadStoreOpcode(Opcode, AddSub); MBB.erase(PrevMBBI); } } // Try merging with the next instruction. MachineBasicBlock::iterator EndMBBI = MBB.end(); if (!DoMerge && MBBI != EndMBBI) { MachineBasicBlock::iterator NextMBBI = std::next(MBBI); while (NextMBBI != EndMBBI && NextMBBI->isDebugValue()) ++NextMBBI; if (!isAM5 && isMatchingDecrement(NextMBBI, Base, Bytes, Limit, Pred, PredReg)) { DoMerge = true; AddSub = ARM_AM::sub; } else if (isMatchingIncrement(NextMBBI, Base, Bytes, Limit,Pred,PredReg)) { DoMerge = true; } if (DoMerge) { NewOpc = getPostIndexedLoadStoreOpcode(Opcode, AddSub); if (NextMBBI == I) { Advance = true; ++I; } MBB.erase(NextMBBI); } } if (!DoMerge) return false; if (isAM5) { // VLDM[SD]_UPD, VSTM[SD]_UPD // (There are no base-updating versions of VLDR/VSTR instructions, but the // updating load/store-multiple instructions can be used with only one // register.) MachineOperand &MO = MI->getOperand(0); BuildMI(MBB, MBBI, dl, TII->get(NewOpc)) .addReg(Base, getDefRegState(true)) // WB base register .addReg(Base, getKillRegState(isLd ? BaseKill : false)) .addImm(Pred).addReg(PredReg) .addReg(MO.getReg(), (isLd ? getDefRegState(true) : getKillRegState(MO.isKill()))); } else if (isLd) { if (isAM2) { // LDR_PRE, LDR_POST if (NewOpc == ARM::LDR_PRE_IMM || NewOpc == ARM::LDRB_PRE_IMM) { int Offset = AddSub == ARM_AM::sub ? -Bytes : Bytes; BuildMI(MBB, MBBI, dl, TII->get(NewOpc), MI->getOperand(0).getReg()) .addReg(Base, RegState::Define) .addReg(Base).addImm(Offset).addImm(Pred).addReg(PredReg); } else { int Offset = ARM_AM::getAM2Opc(AddSub, Bytes, ARM_AM::no_shift); BuildMI(MBB, MBBI, dl, TII->get(NewOpc), MI->getOperand(0).getReg()) .addReg(Base, RegState::Define) .addReg(Base).addReg(0).addImm(Offset).addImm(Pred).addReg(PredReg); } } else { int Offset = AddSub == ARM_AM::sub ? -Bytes : Bytes; // t2LDR_PRE, t2LDR_POST BuildMI(MBB, MBBI, dl, TII->get(NewOpc), MI->getOperand(0).getReg()) .addReg(Base, RegState::Define) .addReg(Base).addImm(Offset).addImm(Pred).addReg(PredReg); } } else { MachineOperand &MO = MI->getOperand(0); // FIXME: post-indexed stores use am2offset_imm, which still encodes // the vestigal zero-reg offset register. When that's fixed, this clause // can be removed entirely. if (isAM2 && NewOpc == ARM::STR_POST_IMM) { int Offset = ARM_AM::getAM2Opc(AddSub, Bytes, ARM_AM::no_shift); // STR_PRE, STR_POST BuildMI(MBB, MBBI, dl, TII->get(NewOpc), Base) .addReg(MO.getReg(), getKillRegState(MO.isKill())) .addReg(Base).addReg(0).addImm(Offset).addImm(Pred).addReg(PredReg); } else { int Offset = AddSub == ARM_AM::sub ? -Bytes : Bytes; // t2STR_PRE, t2STR_POST BuildMI(MBB, MBBI, dl, TII->get(NewOpc), Base) .addReg(MO.getReg(), getKillRegState(MO.isKill())) .addReg(Base).addImm(Offset).addImm(Pred).addReg(PredReg); } } MBB.erase(MBBI); return true; } /// isMemoryOp - Returns true if instruction is a memory operation that this /// pass is capable of operating on. static bool isMemoryOp(const MachineInstr *MI) { // When no memory operands are present, conservatively assume unaligned, // volatile, unfoldable. if (!MI->hasOneMemOperand()) return false; const MachineMemOperand *MMO = *MI->memoperands_begin(); // Don't touch volatile memory accesses - we may be changing their order. if (MMO->isVolatile()) return false; // Unaligned ldr/str is emulated by some kernels, but unaligned ldm/stm is // not. if (MMO->getAlignment() < 4) return false; // str could probably be eliminated entirely, but for now we just want // to avoid making a mess of it. // FIXME: Use str as a wildcard to enable better stm folding. if (MI->getNumOperands() > 0 && MI->getOperand(0).isReg() && MI->getOperand(0).isUndef()) return false; // Likewise don't mess with references to undefined addresses. if (MI->getNumOperands() > 1 && MI->getOperand(1).isReg() && MI->getOperand(1).isUndef()) return false; int Opcode = MI->getOpcode(); switch (Opcode) { default: break; case ARM::VLDRS: case ARM::VSTRS: return MI->getOperand(1).isReg(); case ARM::VLDRD: case ARM::VSTRD: return MI->getOperand(1).isReg(); case ARM::LDRi12: case ARM::STRi12: case ARM::tLDRi: case ARM::tSTRi: case ARM::tLDRspi: case ARM::tSTRspi: case ARM::t2LDRi8: case ARM::t2LDRi12: case ARM::t2STRi8: case ARM::t2STRi12: return MI->getOperand(1).isReg(); } return false; } /// AdvanceRS - Advance register scavenger to just before the earliest memory /// op that is being merged. void ARMLoadStoreOpt::AdvanceRS(MachineBasicBlock &MBB, MemOpQueue &MemOps) { MachineBasicBlock::iterator Loc = MemOps[0].MBBI; unsigned Position = MemOps[0].Position; for (unsigned i = 1, e = MemOps.size(); i != e; ++i) { if (MemOps[i].Position < Position) { Position = MemOps[i].Position; Loc = MemOps[i].MBBI; } } if (Loc != MBB.begin()) RS->forward(std::prev(Loc)); } static void InsertLDR_STR(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, int Offset, bool isDef, DebugLoc dl, unsigned NewOpc, unsigned Reg, bool RegDeadKill, bool RegUndef, unsigned BaseReg, bool BaseKill, bool BaseUndef, bool OffKill, bool OffUndef, ARMCC::CondCodes Pred, unsigned PredReg, const TargetInstrInfo *TII, bool isT2) { if (isDef) { MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(NewOpc)) .addReg(Reg, getDefRegState(true) | getDeadRegState(RegDeadKill)) .addReg(BaseReg, getKillRegState(BaseKill)|getUndefRegState(BaseUndef)); MIB.addImm(Offset).addImm(Pred).addReg(PredReg); } else { MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(NewOpc)) .addReg(Reg, getKillRegState(RegDeadKill) | getUndefRegState(RegUndef)) .addReg(BaseReg, getKillRegState(BaseKill)|getUndefRegState(BaseUndef)); MIB.addImm(Offset).addImm(Pred).addReg(PredReg); } } bool ARMLoadStoreOpt::FixInvalidRegPairOp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI) { MachineInstr *MI = &*MBBI; unsigned Opcode = MI->getOpcode(); if (Opcode == ARM::LDRD || Opcode == ARM::STRD || Opcode == ARM::t2LDRDi8 || Opcode == ARM::t2STRDi8) { const MachineOperand &BaseOp = MI->getOperand(2); unsigned BaseReg = BaseOp.getReg(); unsigned EvenReg = MI->getOperand(0).getReg(); unsigned OddReg = MI->getOperand(1).getReg(); unsigned EvenRegNum = TRI->getDwarfRegNum(EvenReg, false); unsigned OddRegNum = TRI->getDwarfRegNum(OddReg, false); // ARM errata 602117: LDRD with base in list may result in incorrect base // register when interrupted or faulted. bool Errata602117 = EvenReg == BaseReg && STI->isCortexM3(); if (!Errata602117 && ((EvenRegNum & 1) == 0 && (EvenRegNum + 1) == OddRegNum)) return false; MachineBasicBlock::iterator NewBBI = MBBI; bool isT2 = Opcode == ARM::t2LDRDi8 || Opcode == ARM::t2STRDi8; bool isLd = Opcode == ARM::LDRD || Opcode == ARM::t2LDRDi8; bool EvenDeadKill = isLd ? MI->getOperand(0).isDead() : MI->getOperand(0).isKill(); bool EvenUndef = MI->getOperand(0).isUndef(); bool OddDeadKill = isLd ? MI->getOperand(1).isDead() : MI->getOperand(1).isKill(); bool OddUndef = MI->getOperand(1).isUndef(); bool BaseKill = BaseOp.isKill(); bool BaseUndef = BaseOp.isUndef(); bool OffKill = isT2 ? false : MI->getOperand(3).isKill(); bool OffUndef = isT2 ? false : MI->getOperand(3).isUndef(); int OffImm = getMemoryOpOffset(MI); unsigned PredReg = 0; ARMCC::CondCodes Pred = getInstrPredicate(MI, PredReg); if (OddRegNum > EvenRegNum && OffImm == 0) { // Ascending register numbers and no offset. It's safe to change it to a // ldm or stm. unsigned NewOpc = (isLd) ? (isT2 ? ARM::t2LDMIA : ARM::LDMIA) : (isT2 ? ARM::t2STMIA : ARM::STMIA); if (isLd) { BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(NewOpc)) .addReg(BaseReg, getKillRegState(BaseKill)) .addImm(Pred).addReg(PredReg) .addReg(EvenReg, getDefRegState(isLd) | getDeadRegState(EvenDeadKill)) .addReg(OddReg, getDefRegState(isLd) | getDeadRegState(OddDeadKill)); ++NumLDRD2LDM; } else { BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(NewOpc)) .addReg(BaseReg, getKillRegState(BaseKill)) .addImm(Pred).addReg(PredReg) .addReg(EvenReg, getKillRegState(EvenDeadKill) | getUndefRegState(EvenUndef)) .addReg(OddReg, getKillRegState(OddDeadKill) | getUndefRegState(OddUndef)); ++NumSTRD2STM; } NewBBI = std::prev(MBBI); } else { // Split into two instructions. unsigned NewOpc = (isLd) ? (isT2 ? (OffImm < 0 ? ARM::t2LDRi8 : ARM::t2LDRi12) : ARM::LDRi12) : (isT2 ? (OffImm < 0 ? ARM::t2STRi8 : ARM::t2STRi12) : ARM::STRi12); // Be extra careful for thumb2. t2LDRi8 can't reference a zero offset, // so adjust and use t2LDRi12 here for that. unsigned NewOpc2 = (isLd) ? (isT2 ? (OffImm+4 < 0 ? ARM::t2LDRi8 : ARM::t2LDRi12) : ARM::LDRi12) : (isT2 ? (OffImm+4 < 0 ? ARM::t2STRi8 : ARM::t2STRi12) : ARM::STRi12); DebugLoc dl = MBBI->getDebugLoc(); // If this is a load and base register is killed, it may have been // re-defed by the load, make sure the first load does not clobber it. if (isLd && (BaseKill || OffKill) && (TRI->regsOverlap(EvenReg, BaseReg))) { assert(!TRI->regsOverlap(OddReg, BaseReg)); InsertLDR_STR(MBB, MBBI, OffImm+4, isLd, dl, NewOpc2, OddReg, OddDeadKill, false, BaseReg, false, BaseUndef, false, OffUndef, Pred, PredReg, TII, isT2); NewBBI = std::prev(MBBI); InsertLDR_STR(MBB, MBBI, OffImm, isLd, dl, NewOpc, EvenReg, EvenDeadKill, false, BaseReg, BaseKill, BaseUndef, OffKill, OffUndef, Pred, PredReg, TII, isT2); } else { if (OddReg == EvenReg && EvenDeadKill) { // If the two source operands are the same, the kill marker is // probably on the first one. e.g. // t2STRDi8 %R5, %R5, %R9, 0, 14, %reg0 EvenDeadKill = false; OddDeadKill = true; } // Never kill the base register in the first instruction. if (EvenReg == BaseReg) EvenDeadKill = false; InsertLDR_STR(MBB, MBBI, OffImm, isLd, dl, NewOpc, EvenReg, EvenDeadKill, EvenUndef, BaseReg, false, BaseUndef, false, OffUndef, Pred, PredReg, TII, isT2); NewBBI = std::prev(MBBI); InsertLDR_STR(MBB, MBBI, OffImm+4, isLd, dl, NewOpc2, OddReg, OddDeadKill, OddUndef, BaseReg, BaseKill, BaseUndef, OffKill, OffUndef, Pred, PredReg, TII, isT2); } if (isLd) ++NumLDRD2LDR; else ++NumSTRD2STR; } MBB.erase(MI); MBBI = NewBBI; return true; } return false; } /// LoadStoreMultipleOpti - An optimization pass to turn multiple LDR / STR /// ops of the same base and incrementing offset into LDM / STM ops. bool ARMLoadStoreOpt::LoadStoreMultipleOpti(MachineBasicBlock &MBB) { unsigned NumMerges = 0; unsigned NumMemOps = 0; MemOpQueue MemOps; unsigned CurrBase = 0; int CurrOpc = -1; unsigned CurrSize = 0; ARMCC::CondCodes CurrPred = ARMCC::AL; unsigned CurrPredReg = 0; unsigned Position = 0; SmallVector Merges; RS->enterBasicBlock(&MBB); MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); while (MBBI != E) { if (FixInvalidRegPairOp(MBB, MBBI)) continue; bool Advance = false; bool TryMerge = false; bool Clobber = false; bool isMemOp = isMemoryOp(MBBI); if (isMemOp) { int Opcode = MBBI->getOpcode(); unsigned Size = getLSMultipleTransferSize(MBBI); const MachineOperand &MO = MBBI->getOperand(0); unsigned Reg = MO.getReg(); bool isKill = MO.isDef() ? false : MO.isKill(); unsigned Base = MBBI->getOperand(1).getReg(); unsigned PredReg = 0; ARMCC::CondCodes Pred = getInstrPredicate(MBBI, PredReg); int Offset = getMemoryOpOffset(MBBI); // Watch out for: // r4 := ldr [r5] // r5 := ldr [r5, #4] // r6 := ldr [r5, #8] // // The second ldr has effectively broken the chain even though it // looks like the later ldr(s) use the same base register. Try to // merge the ldr's so far, including this one. But don't try to // combine the following ldr(s). Clobber = (isi32Load(Opcode) && Base == MBBI->getOperand(0).getReg()); // Watch out for: // r4 := ldr [r0, #8] // r4 := ldr [r0, #4] // // The optimization may reorder the second ldr in front of the first // ldr, which violates write after write(WAW) dependence. The same as // str. Try to merge inst(s) already in MemOps. bool Overlap = false; for (MemOpQueueIter I = MemOps.begin(), E = MemOps.end(); I != E; ++I) { if (TRI->regsOverlap(Reg, I->MBBI->getOperand(0).getReg())) { Overlap = true; break; } } if (CurrBase == 0 && !Clobber) { // Start of a new chain. CurrBase = Base; CurrOpc = Opcode; CurrSize = Size; CurrPred = Pred; CurrPredReg = PredReg; MemOps.push_back(MemOpQueueEntry(Offset, Reg, isKill, Position, MBBI)); ++NumMemOps; Advance = true; } else if (!Overlap) { if (Clobber) { TryMerge = true; Advance = true; } if (CurrOpc == Opcode && CurrBase == Base && CurrPred == Pred) { // No need to match PredReg. // Continue adding to the queue. if (Offset > MemOps.back().Offset) { MemOps.push_back(MemOpQueueEntry(Offset, Reg, isKill, Position, MBBI)); ++NumMemOps; Advance = true; } else { for (MemOpQueueIter I = MemOps.begin(), E = MemOps.end(); I != E; ++I) { if (Offset < I->Offset) { MemOps.insert(I, MemOpQueueEntry(Offset, Reg, isKill, Position, MBBI)); ++NumMemOps; Advance = true; break; } else if (Offset == I->Offset) { // Collision! This can't be merged! break; } } } } } } if (MBBI->isDebugValue()) { ++MBBI; if (MBBI == E) // Reach the end of the block, try merging the memory instructions. TryMerge = true; } else if (Advance) { ++Position; ++MBBI; if (MBBI == E) // Reach the end of the block, try merging the memory instructions. TryMerge = true; } else { TryMerge = true; } if (TryMerge) { if (NumMemOps > 1) { // Try to find a free register to use as a new base in case it's needed. // First advance to the instruction just before the start of the chain. AdvanceRS(MBB, MemOps); // Find a scratch register. unsigned Scratch = RS->FindUnusedReg(isThumb1 ? &ARM::tGPRRegClass : &ARM::GPRRegClass); // Process the load / store instructions. RS->forward(std::prev(MBBI)); // Merge ops. Merges.clear(); MergeLDR_STR(MBB, 0, CurrBase, CurrOpc, CurrSize, CurrPred, CurrPredReg, Scratch, MemOps, Merges); // Try folding preceding/trailing base inc/dec into the generated // LDM/STM ops. for (unsigned i = 0, e = Merges.size(); i < e; ++i) if (MergeBaseUpdateLSMultiple(MBB, Merges[i], Advance, MBBI)) ++NumMerges; NumMerges += Merges.size(); // Try folding preceding/trailing base inc/dec into those load/store // that were not merged to form LDM/STM ops. for (unsigned i = 0; i != NumMemOps; ++i) if (!MemOps[i].Merged) if (MergeBaseUpdateLoadStore(MBB, MemOps[i].MBBI, TII,Advance,MBBI)) ++NumMerges; // RS may be pointing to an instruction that's deleted. RS->skipTo(std::prev(MBBI)); } else if (NumMemOps == 1) { // Try folding preceding/trailing base inc/dec into the single // load/store. if (MergeBaseUpdateLoadStore(MBB, MemOps[0].MBBI, TII, Advance, MBBI)) { ++NumMerges; RS->forward(std::prev(MBBI)); } } CurrBase = 0; CurrOpc = -1; CurrSize = 0; CurrPred = ARMCC::AL; CurrPredReg = 0; if (NumMemOps) { MemOps.clear(); NumMemOps = 0; } // If iterator hasn't been advanced and this is not a memory op, skip it. // It can't start a new chain anyway. if (!Advance && !isMemOp && MBBI != E) { ++Position; ++MBBI; } } } return NumMerges > 0; } /// MergeReturnIntoLDM - If this is a exit BB, try merging the return ops /// ("bx lr" and "mov pc, lr") into the preceding stack restore so it /// directly restore the value of LR into pc. /// ldmfd sp!, {..., lr} /// bx lr /// or /// ldmfd sp!, {..., lr} /// mov pc, lr /// => /// ldmfd sp!, {..., pc} bool ARMLoadStoreOpt::MergeReturnIntoLDM(MachineBasicBlock &MBB) { // Thumb1 LDM doesn't allow high registers. if (isThumb1) return false; if (MBB.empty()) return false; MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); if (MBBI != MBB.begin() && (MBBI->getOpcode() == ARM::BX_RET || MBBI->getOpcode() == ARM::tBX_RET || MBBI->getOpcode() == ARM::MOVPCLR)) { MachineInstr *PrevMI = std::prev(MBBI); unsigned Opcode = PrevMI->getOpcode(); if (Opcode == ARM::LDMIA_UPD || Opcode == ARM::LDMDA_UPD || Opcode == ARM::LDMDB_UPD || Opcode == ARM::LDMIB_UPD || Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { MachineOperand &MO = PrevMI->getOperand(PrevMI->getNumOperands()-1); if (MO.getReg() != ARM::LR) return false; unsigned NewOpc = (isThumb2 ? ARM::t2LDMIA_RET : ARM::LDMIA_RET); assert(((isThumb2 && Opcode == ARM::t2LDMIA_UPD) || Opcode == ARM::LDMIA_UPD) && "Unsupported multiple load-return!"); PrevMI->setDesc(TII->get(NewOpc)); MO.setReg(ARM::PC); PrevMI->copyImplicitOps(*MBB.getParent(), &*MBBI); MBB.erase(MBBI); return true; } } return false; } bool ARMLoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) { STI = &static_cast(Fn.getSubtarget()); TL = STI->getTargetLowering(); AFI = Fn.getInfo(); TII = STI->getInstrInfo(); TRI = STI->getRegisterInfo(); RS = new RegScavenger(); isThumb2 = AFI->isThumb2Function(); isThumb1 = AFI->isThumbFunction() && !isThumb2; bool Modified = false; for (MachineFunction::iterator MFI = Fn.begin(), E = Fn.end(); MFI != E; ++MFI) { MachineBasicBlock &MBB = *MFI; Modified |= LoadStoreMultipleOpti(MBB); if (STI->hasV5TOps()) Modified |= MergeReturnIntoLDM(MBB); } delete RS; return Modified; } /// ARMPreAllocLoadStoreOpt - Pre- register allocation pass that move /// load / stores from consecutive locations close to make it more /// likely they will be combined later. namespace { struct ARMPreAllocLoadStoreOpt : public MachineFunctionPass{ static char ID; ARMPreAllocLoadStoreOpt() : MachineFunctionPass(ID) {} const DataLayout *TD; const TargetInstrInfo *TII; const TargetRegisterInfo *TRI; const ARMSubtarget *STI; MachineRegisterInfo *MRI; MachineFunction *MF; bool runOnMachineFunction(MachineFunction &Fn) override; const char *getPassName() const override { return "ARM pre- register allocation load / store optimization pass"; } private: bool CanFormLdStDWord(MachineInstr *Op0, MachineInstr *Op1, DebugLoc &dl, unsigned &NewOpc, unsigned &EvenReg, unsigned &OddReg, unsigned &BaseReg, int &Offset, unsigned &PredReg, ARMCC::CondCodes &Pred, bool &isT2); bool RescheduleOps(MachineBasicBlock *MBB, SmallVectorImpl &Ops, unsigned Base, bool isLd, DenseMap &MI2LocMap); bool RescheduleLoadStoreInstrs(MachineBasicBlock *MBB); }; char ARMPreAllocLoadStoreOpt::ID = 0; } bool ARMPreAllocLoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) { TD = Fn.getTarget().getDataLayout(); STI = &static_cast(Fn.getSubtarget()); TII = STI->getInstrInfo(); TRI = STI->getRegisterInfo(); MRI = &Fn.getRegInfo(); MF = &Fn; bool Modified = false; for (MachineFunction::iterator MFI = Fn.begin(), E = Fn.end(); MFI != E; ++MFI) Modified |= RescheduleLoadStoreInstrs(MFI); return Modified; } static bool IsSafeAndProfitableToMove(bool isLd, unsigned Base, MachineBasicBlock::iterator I, MachineBasicBlock::iterator E, SmallPtrSetImpl &MemOps, SmallSet &MemRegs, const TargetRegisterInfo *TRI) { // Are there stores / loads / calls between them? // FIXME: This is overly conservative. We should make use of alias information // some day. SmallSet AddedRegPressure; while (++I != E) { if (I->isDebugValue() || MemOps.count(&*I)) continue; if (I->isCall() || I->isTerminator() || I->hasUnmodeledSideEffects()) return false; if (isLd && I->mayStore()) return false; if (!isLd) { if (I->mayLoad()) return false; // It's not safe to move the first 'str' down. // str r1, [r0] // strh r5, [r0] // str r4, [r0, #+4] if (I->mayStore()) return false; } for (unsigned j = 0, NumOps = I->getNumOperands(); j != NumOps; ++j) { MachineOperand &MO = I->getOperand(j); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (MO.isDef() && TRI->regsOverlap(Reg, Base)) return false; if (Reg != Base && !MemRegs.count(Reg)) AddedRegPressure.insert(Reg); } } // Estimate register pressure increase due to the transformation. if (MemRegs.size() <= 4) // Ok if we are moving small number of instructions. return true; return AddedRegPressure.size() <= MemRegs.size() * 2; } /// Copy Op0 and Op1 operands into a new array assigned to MI. static void concatenateMemOperands(MachineInstr *MI, MachineInstr *Op0, MachineInstr *Op1) { assert(MI->memoperands_empty() && "expected a new machineinstr"); size_t numMemRefs = (Op0->memoperands_end() - Op0->memoperands_begin()) + (Op1->memoperands_end() - Op1->memoperands_begin()); MachineFunction *MF = MI->getParent()->getParent(); MachineSDNode::mmo_iterator MemBegin = MF->allocateMemRefsArray(numMemRefs); MachineSDNode::mmo_iterator MemEnd = std::copy(Op0->memoperands_begin(), Op0->memoperands_end(), MemBegin); MemEnd = std::copy(Op1->memoperands_begin(), Op1->memoperands_end(), MemEnd); MI->setMemRefs(MemBegin, MemEnd); } bool ARMPreAllocLoadStoreOpt::CanFormLdStDWord(MachineInstr *Op0, MachineInstr *Op1, DebugLoc &dl, unsigned &NewOpc, unsigned &EvenReg, unsigned &OddReg, unsigned &BaseReg, int &Offset, unsigned &PredReg, ARMCC::CondCodes &Pred, bool &isT2) { // Make sure we're allowed to generate LDRD/STRD. if (!STI->hasV5TEOps()) return false; // FIXME: VLDRS / VSTRS -> VLDRD / VSTRD unsigned Scale = 1; unsigned Opcode = Op0->getOpcode(); if (Opcode == ARM::LDRi12) { NewOpc = ARM::LDRD; } else if (Opcode == ARM::STRi12) { NewOpc = ARM::STRD; } else if (Opcode == ARM::t2LDRi8 || Opcode == ARM::t2LDRi12) { NewOpc = ARM::t2LDRDi8; Scale = 4; isT2 = true; } else if (Opcode == ARM::t2STRi8 || Opcode == ARM::t2STRi12) { NewOpc = ARM::t2STRDi8; Scale = 4; isT2 = true; } else { return false; } // Make sure the base address satisfies i64 ld / st alignment requirement. // At the moment, we ignore the memoryoperand's value. // If we want to use AliasAnalysis, we should check it accordingly. if (!Op0->hasOneMemOperand() || (*Op0->memoperands_begin())->isVolatile()) return false; unsigned Align = (*Op0->memoperands_begin())->getAlignment(); const Function *Func = MF->getFunction(); unsigned ReqAlign = STI->hasV6Ops() ? TD->getABITypeAlignment(Type::getInt64Ty(Func->getContext())) : 8; // Pre-v6 need 8-byte align if (Align < ReqAlign) return false; // Then make sure the immediate offset fits. int OffImm = getMemoryOpOffset(Op0); if (isT2) { int Limit = (1 << 8) * Scale; if (OffImm >= Limit || (OffImm <= -Limit) || (OffImm & (Scale-1))) return false; Offset = OffImm; } else { ARM_AM::AddrOpc AddSub = ARM_AM::add; if (OffImm < 0) { AddSub = ARM_AM::sub; OffImm = - OffImm; } int Limit = (1 << 8) * Scale; if (OffImm >= Limit || (OffImm & (Scale-1))) return false; Offset = ARM_AM::getAM3Opc(AddSub, OffImm); } EvenReg = Op0->getOperand(0).getReg(); OddReg = Op1->getOperand(0).getReg(); if (EvenReg == OddReg) return false; BaseReg = Op0->getOperand(1).getReg(); Pred = getInstrPredicate(Op0, PredReg); dl = Op0->getDebugLoc(); return true; } bool ARMPreAllocLoadStoreOpt::RescheduleOps(MachineBasicBlock *MBB, SmallVectorImpl &Ops, unsigned Base, bool isLd, DenseMap &MI2LocMap) { bool RetVal = false; // Sort by offset (in reverse order). std::sort(Ops.begin(), Ops.end(), [](const MachineInstr *LHS, const MachineInstr *RHS) { int LOffset = getMemoryOpOffset(LHS); int ROffset = getMemoryOpOffset(RHS); assert(LHS == RHS || LOffset != ROffset); return LOffset > ROffset; }); // The loads / stores of the same base are in order. Scan them from first to // last and check for the following: // 1. Any def of base. // 2. Any gaps. while (Ops.size() > 1) { unsigned FirstLoc = ~0U; unsigned LastLoc = 0; MachineInstr *FirstOp = nullptr; MachineInstr *LastOp = nullptr; int LastOffset = 0; unsigned LastOpcode = 0; unsigned LastBytes = 0; unsigned NumMove = 0; for (int i = Ops.size() - 1; i >= 0; --i) { MachineInstr *Op = Ops[i]; unsigned Loc = MI2LocMap[Op]; if (Loc <= FirstLoc) { FirstLoc = Loc; FirstOp = Op; } if (Loc >= LastLoc) { LastLoc = Loc; LastOp = Op; } unsigned LSMOpcode = getLoadStoreMultipleOpcode(Op->getOpcode(), ARM_AM::ia); if (LastOpcode && LSMOpcode != LastOpcode) break; int Offset = getMemoryOpOffset(Op); unsigned Bytes = getLSMultipleTransferSize(Op); if (LastBytes) { if (Bytes != LastBytes || Offset != (LastOffset + (int)Bytes)) break; } LastOffset = Offset; LastBytes = Bytes; LastOpcode = LSMOpcode; if (++NumMove == 8) // FIXME: Tune this limit. break; } if (NumMove <= 1) Ops.pop_back(); else { SmallPtrSet MemOps; SmallSet MemRegs; for (int i = NumMove-1; i >= 0; --i) { MemOps.insert(Ops[i]); MemRegs.insert(Ops[i]->getOperand(0).getReg()); } // Be conservative, if the instructions are too far apart, don't // move them. We want to limit the increase of register pressure. bool DoMove = (LastLoc - FirstLoc) <= NumMove*4; // FIXME: Tune this. if (DoMove) DoMove = IsSafeAndProfitableToMove(isLd, Base, FirstOp, LastOp, MemOps, MemRegs, TRI); if (!DoMove) { for (unsigned i = 0; i != NumMove; ++i) Ops.pop_back(); } else { // This is the new location for the loads / stores. MachineBasicBlock::iterator InsertPos = isLd ? FirstOp : LastOp; while (InsertPos != MBB->end() && (MemOps.count(InsertPos) || InsertPos->isDebugValue())) ++InsertPos; // If we are moving a pair of loads / stores, see if it makes sense // to try to allocate a pair of registers that can form register pairs. MachineInstr *Op0 = Ops.back(); MachineInstr *Op1 = Ops[Ops.size()-2]; unsigned EvenReg = 0, OddReg = 0; unsigned BaseReg = 0, PredReg = 0; ARMCC::CondCodes Pred = ARMCC::AL; bool isT2 = false; unsigned NewOpc = 0; int Offset = 0; DebugLoc dl; if (NumMove == 2 && CanFormLdStDWord(Op0, Op1, dl, NewOpc, EvenReg, OddReg, BaseReg, Offset, PredReg, Pred, isT2)) { Ops.pop_back(); Ops.pop_back(); const MCInstrDesc &MCID = TII->get(NewOpc); const TargetRegisterClass *TRC = TII->getRegClass(MCID, 0, TRI, *MF); MRI->constrainRegClass(EvenReg, TRC); MRI->constrainRegClass(OddReg, TRC); // Form the pair instruction. if (isLd) { MachineInstrBuilder MIB = BuildMI(*MBB, InsertPos, dl, MCID) .addReg(EvenReg, RegState::Define) .addReg(OddReg, RegState::Define) .addReg(BaseReg); // FIXME: We're converting from LDRi12 to an insn that still // uses addrmode2, so we need an explicit offset reg. It should // always by reg0 since we're transforming LDRi12s. if (!isT2) MIB.addReg(0); MIB.addImm(Offset).addImm(Pred).addReg(PredReg); concatenateMemOperands(MIB, Op0, Op1); DEBUG(dbgs() << "Formed " << *MIB << "\n"); ++NumLDRDFormed; } else { MachineInstrBuilder MIB = BuildMI(*MBB, InsertPos, dl, MCID) .addReg(EvenReg) .addReg(OddReg) .addReg(BaseReg); // FIXME: We're converting from LDRi12 to an insn that still // uses addrmode2, so we need an explicit offset reg. It should // always by reg0 since we're transforming STRi12s. if (!isT2) MIB.addReg(0); MIB.addImm(Offset).addImm(Pred).addReg(PredReg); concatenateMemOperands(MIB, Op0, Op1); DEBUG(dbgs() << "Formed " << *MIB << "\n"); ++NumSTRDFormed; } MBB->erase(Op0); MBB->erase(Op1); // Add register allocation hints to form register pairs. MRI->setRegAllocationHint(EvenReg, ARMRI::RegPairEven, OddReg); MRI->setRegAllocationHint(OddReg, ARMRI::RegPairOdd, EvenReg); } else { for (unsigned i = 0; i != NumMove; ++i) { MachineInstr *Op = Ops.back(); Ops.pop_back(); MBB->splice(InsertPos, MBB, Op); } } NumLdStMoved += NumMove; RetVal = true; } } } return RetVal; } bool ARMPreAllocLoadStoreOpt::RescheduleLoadStoreInstrs(MachineBasicBlock *MBB) { bool RetVal = false; DenseMap MI2LocMap; DenseMap > Base2LdsMap; DenseMap > Base2StsMap; SmallVector LdBases; SmallVector StBases; unsigned Loc = 0; MachineBasicBlock::iterator MBBI = MBB->begin(); MachineBasicBlock::iterator E = MBB->end(); while (MBBI != E) { for (; MBBI != E; ++MBBI) { MachineInstr *MI = MBBI; if (MI->isCall() || MI->isTerminator()) { // Stop at barriers. ++MBBI; break; } if (!MI->isDebugValue()) MI2LocMap[MI] = ++Loc; if (!isMemoryOp(MI)) continue; unsigned PredReg = 0; if (getInstrPredicate(MI, PredReg) != ARMCC::AL) continue; int Opc = MI->getOpcode(); bool isLd = isi32Load(Opc) || Opc == ARM::VLDRS || Opc == ARM::VLDRD; unsigned Base = MI->getOperand(1).getReg(); int Offset = getMemoryOpOffset(MI); bool StopHere = false; if (isLd) { DenseMap >::iterator BI = Base2LdsMap.find(Base); if (BI != Base2LdsMap.end()) { for (unsigned i = 0, e = BI->second.size(); i != e; ++i) { if (Offset == getMemoryOpOffset(BI->second[i])) { StopHere = true; break; } } if (!StopHere) BI->second.push_back(MI); } else { Base2LdsMap[Base].push_back(MI); LdBases.push_back(Base); } } else { DenseMap >::iterator BI = Base2StsMap.find(Base); if (BI != Base2StsMap.end()) { for (unsigned i = 0, e = BI->second.size(); i != e; ++i) { if (Offset == getMemoryOpOffset(BI->second[i])) { StopHere = true; break; } } if (!StopHere) BI->second.push_back(MI); } else { Base2StsMap[Base].push_back(MI); StBases.push_back(Base); } } if (StopHere) { // Found a duplicate (a base+offset combination that's seen earlier). // Backtrack. --Loc; break; } } // Re-schedule loads. for (unsigned i = 0, e = LdBases.size(); i != e; ++i) { unsigned Base = LdBases[i]; SmallVectorImpl &Lds = Base2LdsMap[Base]; if (Lds.size() > 1) RetVal |= RescheduleOps(MBB, Lds, Base, true, MI2LocMap); } // Re-schedule stores. for (unsigned i = 0, e = StBases.size(); i != e; ++i) { unsigned Base = StBases[i]; SmallVectorImpl &Sts = Base2StsMap[Base]; if (Sts.size() > 1) RetVal |= RescheduleOps(MBB, Sts, Base, false, MI2LocMap); } if (MBBI != E) { Base2LdsMap.clear(); Base2StsMap.clear(); LdBases.clear(); StBases.clear(); } } return RetVal; } /// createARMLoadStoreOptimizationPass - returns an instance of the load / store /// optimization pass. FunctionPass *llvm::createARMLoadStoreOptimizationPass(bool PreAlloc) { if (PreAlloc) return new ARMPreAllocLoadStoreOpt(); return new ARMLoadStoreOpt(); }