//===- ARMRegisterInfo.td - ARM Register defs -------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Declarations that describe the ARM register file //===----------------------------------------------------------------------===// // Registers are identified with 4-bit ID numbers. class ARMReg num, string n, list subregs = []> : Register { field bits<4> Num; let Namespace = "ARM"; let SubRegs = subregs; } class ARMFReg num, string n> : Register { field bits<6> Num; let Namespace = "ARM"; } // Subregister indices. let Namespace = "ARM" in { // Note: Code depends on these having consecutive numbers. def ssub_0 : SubRegIndex; def ssub_1 : SubRegIndex; def ssub_2 : SubRegIndex; // In a Q reg. def ssub_3 : SubRegIndex; def ssub_4 : SubRegIndex; // In a QQ reg. def ssub_5 : SubRegIndex; def ssub_6 : SubRegIndex; def ssub_7 : SubRegIndex; def ssub_8 : SubRegIndex; // In a QQQQ reg. def ssub_9 : SubRegIndex; def ssub_10 : SubRegIndex; def ssub_11 : SubRegIndex; def ssub_12 : SubRegIndex; def ssub_13 : SubRegIndex; def ssub_14 : SubRegIndex; def ssub_15 : SubRegIndex; def dsub_0 : SubRegIndex; def dsub_1 : SubRegIndex; def dsub_2 : SubRegIndex; def dsub_3 : SubRegIndex; def dsub_4 : SubRegIndex; def dsub_5 : SubRegIndex; def dsub_6 : SubRegIndex; def dsub_7 : SubRegIndex; def qsub_0 : SubRegIndex; def qsub_1 : SubRegIndex; def qsub_2 : SubRegIndex; def qsub_3 : SubRegIndex; def qqsub_0 : SubRegIndex; def qqsub_1 : SubRegIndex; } // Integer registers def R0 : ARMReg< 0, "r0">, DwarfRegNum<[0]>; def R1 : ARMReg< 1, "r1">, DwarfRegNum<[1]>; def R2 : ARMReg< 2, "r2">, DwarfRegNum<[2]>; def R3 : ARMReg< 3, "r3">, DwarfRegNum<[3]>; def R4 : ARMReg< 4, "r4">, DwarfRegNum<[4]>; def R5 : ARMReg< 5, "r5">, DwarfRegNum<[5]>; def R6 : ARMReg< 6, "r6">, DwarfRegNum<[6]>; def R7 : ARMReg< 7, "r7">, DwarfRegNum<[7]>; def R8 : ARMReg< 8, "r8">, DwarfRegNum<[8]>; def R9 : ARMReg< 9, "r9">, DwarfRegNum<[9]>; def R10 : ARMReg<10, "r10">, DwarfRegNum<[10]>; def R11 : ARMReg<11, "r11">, DwarfRegNum<[11]>; def R12 : ARMReg<12, "r12">, DwarfRegNum<[12]>; def SP : ARMReg<13, "sp">, DwarfRegNum<[13]>; def LR : ARMReg<14, "lr">, DwarfRegNum<[14]>; def PC : ARMReg<15, "pc">, DwarfRegNum<[15]>; // Float registers def S0 : ARMFReg< 0, "s0">; def S1 : ARMFReg< 1, "s1">; def S2 : ARMFReg< 2, "s2">; def S3 : ARMFReg< 3, "s3">; def S4 : ARMFReg< 4, "s4">; def S5 : ARMFReg< 5, "s5">; def S6 : ARMFReg< 6, "s6">; def S7 : ARMFReg< 7, "s7">; def S8 : ARMFReg< 8, "s8">; def S9 : ARMFReg< 9, "s9">; def S10 : ARMFReg<10, "s10">; def S11 : ARMFReg<11, "s11">; def S12 : ARMFReg<12, "s12">; def S13 : ARMFReg<13, "s13">; def S14 : ARMFReg<14, "s14">; def S15 : ARMFReg<15, "s15">; def S16 : ARMFReg<16, "s16">; def S17 : ARMFReg<17, "s17">; def S18 : ARMFReg<18, "s18">; def S19 : ARMFReg<19, "s19">; def S20 : ARMFReg<20, "s20">; def S21 : ARMFReg<21, "s21">; def S22 : ARMFReg<22, "s22">; def S23 : ARMFReg<23, "s23">; def S24 : ARMFReg<24, "s24">; def S25 : ARMFReg<25, "s25">; def S26 : ARMFReg<26, "s26">; def S27 : ARMFReg<27, "s27">; def S28 : ARMFReg<28, "s28">; def S29 : ARMFReg<29, "s29">; def S30 : ARMFReg<30, "s30">; def S31 : ARMFReg<31, "s31">; // Aliases of the F* registers used to hold 64-bit fp values (doubles) let SubRegIndices = [ssub_0, ssub_1] in { def D0 : ARMReg< 0, "d0", [S0, S1]>; def D1 : ARMReg< 1, "d1", [S2, S3]>; def D2 : ARMReg< 2, "d2", [S4, S5]>; def D3 : ARMReg< 3, "d3", [S6, S7]>; def D4 : ARMReg< 4, "d4", [S8, S9]>; def D5 : ARMReg< 5, "d5", [S10, S11]>; def D6 : ARMReg< 6, "d6", [S12, S13]>; def D7 : ARMReg< 7, "d7", [S14, S15]>; def D8 : ARMReg< 8, "d8", [S16, S17]>; def D9 : ARMReg< 9, "d9", [S18, S19]>; def D10 : ARMReg<10, "d10", [S20, S21]>; def D11 : ARMReg<11, "d11", [S22, S23]>; def D12 : ARMReg<12, "d12", [S24, S25]>; def D13 : ARMReg<13, "d13", [S26, S27]>; def D14 : ARMReg<14, "d14", [S28, S29]>; def D15 : ARMReg<15, "d15", [S30, S31]>; } // VFP3 defines 16 additional double registers def D16 : ARMFReg<16, "d16">; def D17 : ARMFReg<17, "d17">; def D18 : ARMFReg<18, "d18">; def D19 : ARMFReg<19, "d19">; def D20 : ARMFReg<20, "d20">; def D21 : ARMFReg<21, "d21">; def D22 : ARMFReg<22, "d22">; def D23 : ARMFReg<23, "d23">; def D24 : ARMFReg<24, "d24">; def D25 : ARMFReg<25, "d25">; def D26 : ARMFReg<26, "d26">; def D27 : ARMFReg<27, "d27">; def D28 : ARMFReg<28, "d28">; def D29 : ARMFReg<29, "d29">; def D30 : ARMFReg<30, "d30">; def D31 : ARMFReg<31, "d31">; // Advanced SIMD (NEON) defines 16 quad-word aliases let SubRegIndices = [dsub_0, dsub_1], CompositeIndices = [(ssub_2 dsub_1, ssub_0), (ssub_3 dsub_1, ssub_1)] in { def Q0 : ARMReg< 0, "q0", [D0, D1]>; def Q1 : ARMReg< 1, "q1", [D2, D3]>; def Q2 : ARMReg< 2, "q2", [D4, D5]>; def Q3 : ARMReg< 3, "q3", [D6, D7]>; def Q4 : ARMReg< 4, "q4", [D8, D9]>; def Q5 : ARMReg< 5, "q5", [D10, D11]>; def Q6 : ARMReg< 6, "q6", [D12, D13]>; def Q7 : ARMReg< 7, "q7", [D14, D15]>; } let SubRegIndices = [dsub_0, dsub_1] in { def Q8 : ARMReg< 8, "q8", [D16, D17]>; def Q9 : ARMReg< 9, "q9", [D18, D19]>; def Q10 : ARMReg<10, "q10", [D20, D21]>; def Q11 : ARMReg<11, "q11", [D22, D23]>; def Q12 : ARMReg<12, "q12", [D24, D25]>; def Q13 : ARMReg<13, "q13", [D26, D27]>; def Q14 : ARMReg<14, "q14", [D28, D29]>; def Q15 : ARMReg<15, "q15", [D30, D31]>; } // Pseudo 256-bit registers to represent pairs of Q registers. These should // never be present in the emitted code. // These are used for NEON load / store instructions, e.g., vld4, vst3. // NOTE: It's possible to define more QQ registers since technically the // starting D register number doesn't have to be multiple of 4, e.g., // D1, D2, D3, D4 would be a legal quad, but that would make the subregister // stuff very messy. let SubRegIndices = [qsub_0, qsub_1] in { let CompositeIndices = [(dsub_2 qsub_1, dsub_0), (dsub_3 qsub_1, dsub_1), (ssub_4 qsub_1, ssub_0), (ssub_5 qsub_1, ssub_1), (ssub_6 qsub_1, ssub_2), (ssub_7 qsub_1, ssub_3)] in { def QQ0 : ARMReg<0, "qq0", [Q0, Q1]>; def QQ1 : ARMReg<1, "qq1", [Q2, Q3]>; def QQ2 : ARMReg<2, "qq2", [Q4, Q5]>; def QQ3 : ARMReg<3, "qq3", [Q6, Q7]>; } let CompositeIndices = [(dsub_2 qsub_1, dsub_0), (dsub_3 qsub_1, dsub_1)] in { def QQ4 : ARMReg<4, "qq4", [Q8, Q9]>; def QQ5 : ARMReg<5, "qq5", [Q10, Q11]>; def QQ6 : ARMReg<6, "qq6", [Q12, Q13]>; def QQ7 : ARMReg<7, "qq7", [Q14, Q15]>; } } // Pseudo 512-bit registers to represent four consecutive Q registers. let SubRegIndices = [qqsub_0, qqsub_1] in { let CompositeIndices = [(qsub_2 qqsub_1, qsub_0), (qsub_3 qqsub_1, qsub_1), (dsub_4 qqsub_1, dsub_0), (dsub_5 qqsub_1, dsub_1), (dsub_6 qqsub_1, dsub_2), (dsub_7 qqsub_1, dsub_3), (ssub_8 qqsub_1, ssub_0), (ssub_9 qqsub_1, ssub_1), (ssub_10 qqsub_1, ssub_2), (ssub_11 qqsub_1, ssub_3), (ssub_12 qqsub_1, ssub_4), (ssub_13 qqsub_1, ssub_5), (ssub_14 qqsub_1, ssub_6), (ssub_15 qqsub_1, ssub_7)] in { def QQQQ0 : ARMReg<0, "qqqq0", [QQ0, QQ1]>; def QQQQ1 : ARMReg<1, "qqqq1", [QQ2, QQ3]>; } let CompositeIndices = [(qsub_2 qqsub_1, qsub_0), (qsub_3 qqsub_1, qsub_1), (dsub_4 qqsub_1, dsub_0), (dsub_5 qqsub_1, dsub_1), (dsub_6 qqsub_1, dsub_2), (dsub_7 qqsub_1, dsub_3)] in { def QQQQ2 : ARMReg<2, "qqqq2", [QQ4, QQ5]>; def QQQQ3 : ARMReg<3, "qqqq3", [QQ6, QQ7]>; } } // Current Program Status Register. def CPSR : ARMReg<0, "cpsr">; def FPSCR : ARMReg<1, "fpscr">; def ITSTATE : ARMReg<2, "itstate">; // Register classes. // // pc == Program Counter // lr == Link Register // sp == Stack Pointer // r12 == ip (scratch) // r7 == Frame Pointer (thumb-style backtraces) // r9 == May be reserved as Thread Register // r11 == Frame Pointer (arm-style backtraces) // r10 == Stack Limit // def GPR : RegisterClass<"ARM", [i32], 32, [R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, SP, LR, PC]> { let MethodProtos = [{ iterator allocation_order_begin(const MachineFunction &MF) const; iterator allocation_order_end(const MachineFunction &MF) const; }]; let MethodBodies = [{ // FP is R11, R9 is available. static const unsigned ARM_GPR_AO_1[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3, ARM::R12,ARM::LR, ARM::R4, ARM::R5, ARM::R6, ARM::R7, ARM::R8, ARM::R9, ARM::R10, ARM::R11 }; // FP is R11, R9 is not available. static const unsigned ARM_GPR_AO_2[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3, ARM::R12,ARM::LR, ARM::R4, ARM::R5, ARM::R6, ARM::R7, ARM::R8, ARM::R10, ARM::R11 }; // FP is R7, R9 is available as non-callee-saved register. // This is used by Darwin. static const unsigned ARM_GPR_AO_3[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3, ARM::R9, ARM::R12,ARM::LR, ARM::R4, ARM::R5, ARM::R6, ARM::R8, ARM::R10,ARM::R11,ARM::R7 }; // FP is R7, R9 is not available. static const unsigned ARM_GPR_AO_4[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3, ARM::R12,ARM::LR, ARM::R4, ARM::R5, ARM::R6, ARM::R8, ARM::R10,ARM::R11, ARM::R7 }; // FP is R7, R9 is available as callee-saved register. // This is used by non-Darwin platform in Thumb mode. static const unsigned ARM_GPR_AO_5[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3, ARM::R12,ARM::LR, ARM::R4, ARM::R5, ARM::R6, ARM::R8, ARM::R9, ARM::R10,ARM::R11,ARM::R7 }; // For Thumb1 mode, we don't want to allocate hi regs at all, as we // don't know how to spill them. If we make our prologue/epilogue code // smarter at some point, we can go back to using the above allocation // orders for the Thumb1 instructions that know how to use hi regs. static const unsigned THUMB_GPR_AO[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3, ARM::R4, ARM::R5, ARM::R6, ARM::R7 }; GPRClass::iterator GPRClass::allocation_order_begin(const MachineFunction &MF) const { const TargetMachine &TM = MF.getTarget(); const ARMSubtarget &Subtarget = TM.getSubtarget(); if (Subtarget.isThumb1Only()) return THUMB_GPR_AO; if (Subtarget.isTargetDarwin()) { if (Subtarget.isR9Reserved()) return ARM_GPR_AO_4; else return ARM_GPR_AO_3; } else { if (Subtarget.isR9Reserved()) return ARM_GPR_AO_2; else if (Subtarget.isThumb()) return ARM_GPR_AO_5; else return ARM_GPR_AO_1; } } GPRClass::iterator GPRClass::allocation_order_end(const MachineFunction &MF) const { const TargetMachine &TM = MF.getTarget(); const TargetRegisterInfo *RI = TM.getRegisterInfo(); const ARMSubtarget &Subtarget = TM.getSubtarget(); GPRClass::iterator I; if (Subtarget.isThumb1Only()) { I = THUMB_GPR_AO + (sizeof(THUMB_GPR_AO)/sizeof(unsigned)); return RI->hasFP(MF) ? I-1 : I; } if (Subtarget.isTargetDarwin()) { if (Subtarget.isR9Reserved()) I = ARM_GPR_AO_4 + (sizeof(ARM_GPR_AO_4)/sizeof(unsigned)); else I = ARM_GPR_AO_3 + (sizeof(ARM_GPR_AO_3)/sizeof(unsigned)); } else { if (Subtarget.isR9Reserved()) I = ARM_GPR_AO_2 + (sizeof(ARM_GPR_AO_2)/sizeof(unsigned)); else if (Subtarget.isThumb()) I = ARM_GPR_AO_5 + (sizeof(ARM_GPR_AO_5)/sizeof(unsigned)); else I = ARM_GPR_AO_1 + (sizeof(ARM_GPR_AO_1)/sizeof(unsigned)); } return RI->hasFP(MF) ? I-1 : I; } }]; } // restricted GPR register class. Many Thumb2 instructions allow the full // register range for operands, but have undefined behaviours when PC // or SP (R13 or R15) are used. The ARM ARM refers to these operands // via the BadReg() pseudo-code description. def rGPR : RegisterClass<"ARM", [i32], 32, [R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, LR]> { let MethodProtos = [{ iterator allocation_order_begin(const MachineFunction &MF) const; iterator allocation_order_end(const MachineFunction &MF) const; }]; let MethodBodies = [{ // FP is R11, R9 is available. static const unsigned ARM_rGPRAO_1[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3, ARM::R12,ARM::LR, ARM::R4, ARM::R5, ARM::R6, ARM::R7, ARM::R8, ARM::R9, ARM::R10, ARM::R11 }; // FP is R11, R9 is not available. static const unsigned ARM_rGPRAO_2[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3, ARM::R12,ARM::LR, ARM::R4, ARM::R5, ARM::R6, ARM::R7, ARM::R8, ARM::R10, ARM::R11 }; // FP is R7, R9 is available as non-callee-saved register. // This is used by Darwin. static const unsigned ARM_rGPRAO_3[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3, ARM::R9, ARM::R12,ARM::LR, ARM::R4, ARM::R5, ARM::R6, ARM::R8, ARM::R10,ARM::R11,ARM::R7 }; // FP is R7, R9 is not available. static const unsigned ARM_rGPRAO_4[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3, ARM::R12,ARM::LR, ARM::R4, ARM::R5, ARM::R6, ARM::R8, ARM::R10,ARM::R11, ARM::R7 }; // FP is R7, R9 is available as callee-saved register. // This is used by non-Darwin platform in Thumb mode. static const unsigned ARM_rGPRAO_5[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3, ARM::R12,ARM::LR, ARM::R4, ARM::R5, ARM::R6, ARM::R8, ARM::R9, ARM::R10,ARM::R11,ARM::R7 }; // For Thumb1 mode, we don't want to allocate hi regs at all, as we // don't know how to spill them. If we make our prologue/epilogue code // smarter at some point, we can go back to using the above allocation // orders for the Thumb1 instructions that know how to use hi regs. static const unsigned THUMB_rGPRAO[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3, ARM::R4, ARM::R5, ARM::R6, ARM::R7 }; rGPRClass::iterator rGPRClass::allocation_order_begin(const MachineFunction &MF) const { const TargetMachine &TM = MF.getTarget(); const ARMSubtarget &Subtarget = TM.getSubtarget(); if (Subtarget.isThumb1Only()) return THUMB_rGPRAO; if (Subtarget.isTargetDarwin()) { if (Subtarget.isR9Reserved()) return ARM_rGPRAO_4; else return ARM_rGPRAO_3; } else { if (Subtarget.isR9Reserved()) return ARM_rGPRAO_2; else if (Subtarget.isThumb()) return ARM_rGPRAO_5; else return ARM_rGPRAO_1; } } rGPRClass::iterator rGPRClass::allocation_order_end(const MachineFunction &MF) const { const TargetMachine &TM = MF.getTarget(); const TargetRegisterInfo *RI = TM.getRegisterInfo(); const ARMSubtarget &Subtarget = TM.getSubtarget(); GPRClass::iterator I; if (Subtarget.isThumb1Only()) { I = THUMB_rGPRAO + (sizeof(THUMB_rGPRAO)/sizeof(unsigned)); return RI->hasFP(MF) ? I-1 : I; } if (Subtarget.isTargetDarwin()) { if (Subtarget.isR9Reserved()) I = ARM_rGPRAO_4 + (sizeof(ARM_rGPRAO_4)/sizeof(unsigned)); else I = ARM_rGPRAO_3 + (sizeof(ARM_rGPRAO_3)/sizeof(unsigned)); } else { if (Subtarget.isR9Reserved()) I = ARM_rGPRAO_2 + (sizeof(ARM_rGPRAO_2)/sizeof(unsigned)); else if (Subtarget.isThumb()) I = ARM_rGPRAO_5 + (sizeof(ARM_rGPRAO_5)/sizeof(unsigned)); else I = ARM_rGPRAO_1 + (sizeof(ARM_rGPRAO_1)/sizeof(unsigned)); } return RI->hasFP(MF) ? I-1 : I; } }]; } // Thumb registers are R0-R7 normally. Some instructions can still use // the general GPR register class above (MOV, e.g.) def tGPR : RegisterClass<"ARM", [i32], 32, [R0, R1, R2, R3, R4, R5, R6, R7]> { let MethodProtos = [{ iterator allocation_order_begin(const MachineFunction &MF) const; iterator allocation_order_end(const MachineFunction &MF) const; }]; let MethodBodies = [{ static const unsigned THUMB_tGPR_AO[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3, ARM::R4, ARM::R5, ARM::R6, ARM::R7 }; // FP is R7, only low registers available. tGPRClass::iterator tGPRClass::allocation_order_begin(const MachineFunction &MF) const { return THUMB_tGPR_AO; } tGPRClass::iterator tGPRClass::allocation_order_end(const MachineFunction &MF) const { const TargetMachine &TM = MF.getTarget(); const TargetRegisterInfo *RI = TM.getRegisterInfo(); tGPRClass::iterator I = THUMB_tGPR_AO + (sizeof(THUMB_tGPR_AO)/sizeof(unsigned)); return RI->hasFP(MF) ? I-1 : I; } }]; } // For tail calls, we can't use callee-saved registers, as they are restored // to the saved value before the tail call, which would clobber a call address. // Note, getMinimalPhysRegClass(R0) returns tGPR because of the names of // this class and the preceding one(!) This is what we want. def tcGPR : RegisterClass<"ARM", [i32], 32, [R0, R1, R2, R3, R9, R12]> { let MethodProtos = [{ iterator allocation_order_begin(const MachineFunction &MF) const; iterator allocation_order_end(const MachineFunction &MF) const; }]; let MethodBodies = [{ // R9 is available. static const unsigned ARM_GPR_R9_TC[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3, ARM::R9, ARM::R12 }; // R9 is not available. static const unsigned ARM_GPR_NOR9_TC[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3, ARM::R12 }; // For Thumb1 mode, we don't want to allocate hi regs at all, as we // don't know how to spill them. If we make our prologue/epilogue code // smarter at some point, we can go back to using the above allocation // orders for the Thumb1 instructions that know how to use hi regs. static const unsigned THUMB_GPR_AO_TC[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 }; tcGPRClass::iterator tcGPRClass::allocation_order_begin(const MachineFunction &MF) const { const TargetMachine &TM = MF.getTarget(); const ARMSubtarget &Subtarget = TM.getSubtarget(); if (Subtarget.isThumb1Only()) return THUMB_GPR_AO_TC; if (Subtarget.isTargetDarwin()) { if (Subtarget.isR9Reserved()) return ARM_GPR_NOR9_TC; else return ARM_GPR_R9_TC; } else // R9 is either callee-saved or reserved; can't use it. return ARM_GPR_NOR9_TC; } tcGPRClass::iterator tcGPRClass::allocation_order_end(const MachineFunction &MF) const { const TargetMachine &TM = MF.getTarget(); const ARMSubtarget &Subtarget = TM.getSubtarget(); GPRClass::iterator I; if (Subtarget.isThumb1Only()) { I = THUMB_GPR_AO_TC + (sizeof(THUMB_GPR_AO_TC)/sizeof(unsigned)); return I; } if (Subtarget.isTargetDarwin()) { if (Subtarget.isR9Reserved()) I = ARM_GPR_NOR9_TC + (sizeof(ARM_GPR_NOR9_TC)/sizeof(unsigned)); else I = ARM_GPR_R9_TC + (sizeof(ARM_GPR_R9_TC)/sizeof(unsigned)); } else // R9 is either callee-saved or reserved; can't use it. I = ARM_GPR_NOR9_TC + (sizeof(ARM_GPR_NOR9_TC)/sizeof(unsigned)); return I; } }]; } // Scalar single precision floating point register class.. def SPR : RegisterClass<"ARM", [f32], 32, [S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, S16, S17, S18, S19, S20, S21, S22, S23, S24, S25, S26, S27, S28, S29, S30, S31]>; // Subset of SPR which can be used as a source of NEON scalars for 16-bit // operations def SPR_8 : RegisterClass<"ARM", [f32], 32, [S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15]>; // Scalar double precision floating point / generic 64-bit vector register // class. // ARM requires only word alignment for double. It's more performant if it // is double-word alignment though. def DPR : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32], 64, [D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15, D16, D17, D18, D19, D20, D21, D22, D23, D24, D25, D26, D27, D28, D29, D30, D31]> { let MethodProtos = [{ iterator allocation_order_begin(const MachineFunction &MF) const; iterator allocation_order_end(const MachineFunction &MF) const; }]; let MethodBodies = [{ // VFP2 static const unsigned ARM_DPR_VFP2[] = { ARM::D0, ARM::D1, ARM::D2, ARM::D3, ARM::D4, ARM::D5, ARM::D6, ARM::D7, ARM::D8, ARM::D9, ARM::D10, ARM::D11, ARM::D12, ARM::D13, ARM::D14, ARM::D15 }; // VFP3 static const unsigned ARM_DPR_VFP3[] = { ARM::D0, ARM::D1, ARM::D2, ARM::D3, ARM::D4, ARM::D5, ARM::D6, ARM::D7, ARM::D8, ARM::D9, ARM::D10, ARM::D11, ARM::D12, ARM::D13, ARM::D14, ARM::D15, ARM::D16, ARM::D17, ARM::D18, ARM::D19, ARM::D20, ARM::D21, ARM::D22, ARM::D23, ARM::D24, ARM::D25, ARM::D26, ARM::D27, ARM::D28, ARM::D29, ARM::D30, ARM::D31 }; DPRClass::iterator DPRClass::allocation_order_begin(const MachineFunction &MF) const { const TargetMachine &TM = MF.getTarget(); const ARMSubtarget &Subtarget = TM.getSubtarget(); if (Subtarget.hasVFP3()) return ARM_DPR_VFP3; return ARM_DPR_VFP2; } DPRClass::iterator DPRClass::allocation_order_end(const MachineFunction &MF) const { const TargetMachine &TM = MF.getTarget(); const ARMSubtarget &Subtarget = TM.getSubtarget(); if (Subtarget.hasVFP3()) return ARM_DPR_VFP3 + (sizeof(ARM_DPR_VFP3)/sizeof(unsigned)); else return ARM_DPR_VFP2 + (sizeof(ARM_DPR_VFP2)/sizeof(unsigned)); } }]; } // Subset of DPR that are accessible with VFP2 (and so that also have // 32-bit SPR subregs). def DPR_VFP2 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32], 64, [D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15]> { let SubRegClasses = [(SPR ssub_0, ssub_1)]; } // Subset of DPR which can be used as a source of NEON scalars for 16-bit // operations def DPR_8 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32], 64, [D0, D1, D2, D3, D4, D5, D6, D7]> { let SubRegClasses = [(SPR_8 ssub_0, ssub_1)]; } // Generic 128-bit vector register class. def QPR : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 128, [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15]> { let SubRegClasses = [(DPR dsub_0, dsub_1)]; } // Subset of QPR that have 32-bit SPR subregs. def QPR_VFP2 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 128, [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]> { let SubRegClasses = [(SPR ssub_0, ssub_1, ssub_2, ssub_3), (DPR_VFP2 dsub_0, dsub_1)]; } // Subset of QPR that have DPR_8 and SPR_8 subregs. def QPR_8 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 128, [Q0, Q1, Q2, Q3]> { let SubRegClasses = [(SPR_8 ssub_0, ssub_1, ssub_2, ssub_3), (DPR_8 dsub_0, dsub_1)]; } // Pseudo 256-bit vector register class to model pairs of Q registers // (4 consecutive D registers). def QQPR : RegisterClass<"ARM", [v4i64], 256, [QQ0, QQ1, QQ2, QQ3, QQ4, QQ5, QQ6, QQ7]> { let SubRegClasses = [(DPR dsub_0, dsub_1, dsub_2, dsub_3), (QPR qsub_0, qsub_1)]; } // Subset of QQPR that have 32-bit SPR subregs. def QQPR_VFP2 : RegisterClass<"ARM", [v4i64], 256, [QQ0, QQ1, QQ2, QQ3]> { let SubRegClasses = [(SPR ssub_0, ssub_1, ssub_2, ssub_3), (DPR_VFP2 dsub_0, dsub_1, dsub_2, dsub_3), (QPR_VFP2 qsub_0, qsub_1)]; } // Pseudo 512-bit vector register class to model 4 consecutive Q registers // (8 consecutive D registers). def QQQQPR : RegisterClass<"ARM", [v8i64], 256, [QQQQ0, QQQQ1, QQQQ2, QQQQ3]> { let SubRegClasses = [(DPR dsub_0, dsub_1, dsub_2, dsub_3, dsub_4, dsub_5, dsub_6, dsub_7), (QPR qsub_0, qsub_1, qsub_2, qsub_3)]; } // Condition code registers. def CCR : RegisterClass<"ARM", [i32], 32, [CPSR]>;