//===-- ARMAsmBackend.cpp - ARM Assembler Backend -------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "MCTargetDesc/ARMMCTargetDesc.h" #include "MCTargetDesc/ARMAddressingModes.h" #include "MCTargetDesc/ARMAsmBackend.h" #include "MCTargetDesc/ARMAsmBackendDarwin.h" #include "MCTargetDesc/ARMAsmBackendELF.h" #include "MCTargetDesc/ARMAsmBackendWinCOFF.h" #include "MCTargetDesc/ARMBaseInfo.h" #include "MCTargetDesc/ARMFixupKinds.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/MC/MCAsmBackend.h" #include "llvm/MC/MCAssembler.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCDirectives.h" #include "llvm/MC/MCELFObjectWriter.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCFixupKindInfo.h" #include "llvm/MC/MCMachObjectWriter.h" #include "llvm/MC/MCObjectWriter.h" #include "llvm/MC/MCSectionELF.h" #include "llvm/MC/MCSectionMachO.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/MCValue.h" #include "llvm/Support/ELF.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MachO.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; namespace { class ARMELFObjectWriter : public MCELFObjectTargetWriter { public: ARMELFObjectWriter(uint8_t OSABI) : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI, ELF::EM_ARM, /*HasRelocationAddend*/ false) {} }; const MCFixupKindInfo &ARMAsmBackend::getFixupKindInfo(MCFixupKind Kind) const { const static MCFixupKindInfo InfosLE[ARM::NumTargetFixupKinds] = { // This table *must* be in the order that the fixup_* kinds are defined in // ARMFixupKinds.h. // // Name Offset (bits) Size (bits) Flags {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, {"fixup_t2_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, {"fixup_t2_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, {"fixup_thumb_adr_pcrel_10", 0, 8, MCFixupKindInfo::FKF_IsPCRel | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, {"fixup_t2_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, {"fixup_arm_condbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, {"fixup_arm_uncondbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel}, {"fixup_arm_uncondbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, {"fixup_arm_condbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, {"fixup_arm_blx", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, {"fixup_arm_thumb_blx", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel}, {"fixup_arm_thumb_cp", 0, 8, MCFixupKindInfo::FKF_IsPCRel | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, {"fixup_arm_thumb_bcc", 0, 8, MCFixupKindInfo::FKF_IsPCRel}, // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16 // - 19. {"fixup_arm_movt_hi16", 0, 20, 0}, {"fixup_arm_movw_lo16", 0, 20, 0}, {"fixup_t2_movt_hi16", 0, 20, 0}, {"fixup_t2_movw_lo16", 0, 20, 0}, }; const static MCFixupKindInfo InfosBE[ARM::NumTargetFixupKinds] = { // This table *must* be in the order that the fixup_* kinds are defined in // ARMFixupKinds.h. // // Name Offset (bits) Size (bits) Flags {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, {"fixup_t2_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, {"fixup_t2_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, {"fixup_thumb_adr_pcrel_10", 8, 8, MCFixupKindInfo::FKF_IsPCRel | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, {"fixup_t2_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, {"fixup_arm_condbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, {"fixup_arm_uncondbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel}, {"fixup_arm_uncondbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, {"fixup_arm_condbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, {"fixup_arm_blx", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, {"fixup_arm_thumb_blx", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel}, {"fixup_arm_thumb_cp", 8, 8, MCFixupKindInfo::FKF_IsPCRel | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, {"fixup_arm_thumb_bcc", 8, 8, MCFixupKindInfo::FKF_IsPCRel}, // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16 // - 19. {"fixup_arm_movt_hi16", 12, 20, 0}, {"fixup_arm_movw_lo16", 12, 20, 0}, {"fixup_t2_movt_hi16", 12, 20, 0}, {"fixup_t2_movw_lo16", 12, 20, 0}, }; if (Kind < FirstTargetFixupKind) return MCAsmBackend::getFixupKindInfo(Kind); assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() && "Invalid kind!"); return (IsLittleEndian ? InfosLE : InfosBE)[Kind - FirstTargetFixupKind]; } void ARMAsmBackend::handleAssemblerFlag(MCAssemblerFlag Flag) { switch (Flag) { default: break; case MCAF_Code16: setIsThumb(true); break; case MCAF_Code32: setIsThumb(false); break; } } } // end anonymous namespace static unsigned getRelaxedOpcode(unsigned Op) { switch (Op) { default: return Op; case ARM::tBcc: return ARM::t2Bcc; case ARM::tLDRpci: return ARM::t2LDRpci; case ARM::tADR: return ARM::t2ADR; case ARM::tB: return ARM::t2B; case ARM::tCBZ: return ARM::tHINT; case ARM::tCBNZ: return ARM::tHINT; } } bool ARMAsmBackend::mayNeedRelaxation(const MCInst &Inst) const { if (getRelaxedOpcode(Inst.getOpcode()) != Inst.getOpcode()) return true; return false; } bool ARMAsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value, const MCRelaxableFragment *DF, const MCAsmLayout &Layout) const { switch ((unsigned)Fixup.getKind()) { case ARM::fixup_arm_thumb_br: { // Relaxing tB to t2B. tB has a signed 12-bit displacement with the // low bit being an implied zero. There's an implied +4 offset for the // branch, so we adjust the other way here to determine what's // encodable. // // Relax if the value is too big for a (signed) i8. int64_t Offset = int64_t(Value) - 4; return Offset > 2046 || Offset < -2048; } case ARM::fixup_arm_thumb_bcc: { // Relaxing tBcc to t2Bcc. tBcc has a signed 9-bit displacement with the // low bit being an implied zero. There's an implied +4 offset for the // branch, so we adjust the other way here to determine what's // encodable. // // Relax if the value is too big for a (signed) i8. int64_t Offset = int64_t(Value) - 4; return Offset > 254 || Offset < -256; } case ARM::fixup_thumb_adr_pcrel_10: case ARM::fixup_arm_thumb_cp: { // If the immediate is negative, greater than 1020, or not a multiple // of four, the wide version of the instruction must be used. int64_t Offset = int64_t(Value) - 4; return Offset > 1020 || Offset < 0 || Offset & 3; } case ARM::fixup_arm_thumb_cb: // If we have a Thumb CBZ or CBNZ instruction and its target is the next // instruction it is is actually out of range for the instruction. // It will be changed to a NOP. int64_t Offset = (Value & ~1); return Offset == 2; } llvm_unreachable("Unexpected fixup kind in fixupNeedsRelaxation()!"); } void ARMAsmBackend::relaxInstruction(const MCInst &Inst, MCInst &Res) const { unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode()); // Sanity check w/ diagnostic if we get here w/ a bogus instruction. if (RelaxedOp == Inst.getOpcode()) { SmallString<256> Tmp; raw_svector_ostream OS(Tmp); Inst.dump_pretty(OS); OS << "\n"; report_fatal_error("unexpected instruction to relax: " + OS.str()); } // If we are changing Thumb CBZ or CBNZ instruction to a NOP, aka tHINT, we // have to change the operands too. if ((Inst.getOpcode() == ARM::tCBZ || Inst.getOpcode() == ARM::tCBNZ) && RelaxedOp == ARM::tHINT) { Res.setOpcode(RelaxedOp); Res.addOperand(MCOperand::CreateImm(0)); Res.addOperand(MCOperand::CreateImm(14)); Res.addOperand(MCOperand::CreateReg(0)); return; } // The rest of instructions we're relaxing have the same operands. // We just need to update to the proper opcode. Res = Inst; Res.setOpcode(RelaxedOp); } bool ARMAsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const { const uint16_t Thumb1_16bitNopEncoding = 0x46c0; // using MOV r8,r8 const uint16_t Thumb2_16bitNopEncoding = 0xbf00; // NOP const uint32_t ARMv4_NopEncoding = 0xe1a00000; // using MOV r0,r0 const uint32_t ARMv6T2_NopEncoding = 0xe320f000; // NOP if (isThumb()) { const uint16_t nopEncoding = hasNOP() ? Thumb2_16bitNopEncoding : Thumb1_16bitNopEncoding; uint64_t NumNops = Count / 2; for (uint64_t i = 0; i != NumNops; ++i) OW->Write16(nopEncoding); if (Count & 1) OW->Write8(0); return true; } // ARM mode const uint32_t nopEncoding = hasNOP() ? ARMv6T2_NopEncoding : ARMv4_NopEncoding; uint64_t NumNops = Count / 4; for (uint64_t i = 0; i != NumNops; ++i) OW->Write32(nopEncoding); // FIXME: should this function return false when unable to write exactly // 'Count' bytes with NOP encodings? switch (Count % 4) { default: break; // No leftover bytes to write case 1: OW->Write8(0); break; case 2: OW->Write16(0); break; case 3: OW->Write16(0); OW->Write8(0xa0); break; } return true; } static uint32_t swapHalfWords(uint32_t Value, bool IsLittleEndian) { if (IsLittleEndian) { // Note that the halfwords are stored high first and low second in thumb; // so we need to swap the fixup value here to map properly. uint32_t Swapped = (Value & 0xFFFF0000) >> 16; Swapped |= (Value & 0x0000FFFF) << 16; return Swapped; } else return Value; } static uint32_t joinHalfWords(uint32_t FirstHalf, uint32_t SecondHalf, bool IsLittleEndian) { uint32_t Value; if (IsLittleEndian) { Value = (SecondHalf & 0xFFFF) << 16; Value |= (FirstHalf & 0xFFFF); } else { Value = (SecondHalf & 0xFFFF); Value |= (FirstHalf & 0xFFFF) << 16; } return Value; } static unsigned adjustFixupValue(const MCFixup &Fixup, uint64_t Value, bool IsPCRel, MCContext *Ctx, bool IsLittleEndian) { unsigned Kind = Fixup.getKind(); switch (Kind) { default: llvm_unreachable("Unknown fixup kind!"); case FK_Data_1: case FK_Data_2: case FK_Data_4: return Value; case FK_SecRel_2: return Value; case FK_SecRel_4: return Value; case ARM::fixup_arm_movt_hi16: if (!IsPCRel) Value >>= 16; // Fallthrough case ARM::fixup_arm_movw_lo16: { unsigned Hi4 = (Value & 0xF000) >> 12; unsigned Lo12 = Value & 0x0FFF; // inst{19-16} = Hi4; // inst{11-0} = Lo12; Value = (Hi4 << 16) | (Lo12); return Value; } case ARM::fixup_t2_movt_hi16: if (!IsPCRel) Value >>= 16; // Fallthrough case ARM::fixup_t2_movw_lo16: { unsigned Hi4 = (Value & 0xF000) >> 12; unsigned i = (Value & 0x800) >> 11; unsigned Mid3 = (Value & 0x700) >> 8; unsigned Lo8 = Value & 0x0FF; // inst{19-16} = Hi4; // inst{26} = i; // inst{14-12} = Mid3; // inst{7-0} = Lo8; Value = (Hi4 << 16) | (i << 26) | (Mid3 << 12) | (Lo8); return swapHalfWords(Value, IsLittleEndian); } case ARM::fixup_arm_ldst_pcrel_12: // ARM PC-relative values are offset by 8. Value -= 4; // FALLTHROUGH case ARM::fixup_t2_ldst_pcrel_12: { // Offset by 4, adjusted by two due to the half-word ordering of thumb. Value -= 4; bool isAdd = true; if ((int64_t)Value < 0) { Value = -Value; isAdd = false; } if (Ctx && Value >= 4096) Ctx->FatalError(Fixup.getLoc(), "out of range pc-relative fixup value"); Value |= isAdd << 23; // Same addressing mode as fixup_arm_pcrel_10, // but with 16-bit halfwords swapped. if (Kind == ARM::fixup_t2_ldst_pcrel_12) return swapHalfWords(Value, IsLittleEndian); return Value; } case ARM::fixup_thumb_adr_pcrel_10: return ((Value - 4) >> 2) & 0xff; case ARM::fixup_arm_adr_pcrel_12: { // ARM PC-relative values are offset by 8. Value -= 8; unsigned opc = 4; // bits {24-21}. Default to add: 0b0100 if ((int64_t)Value < 0) { Value = -Value; opc = 2; // 0b0010 } if (Ctx && ARM_AM::getSOImmVal(Value) == -1) Ctx->FatalError(Fixup.getLoc(), "out of range pc-relative fixup value"); // Encode the immediate and shift the opcode into place. return ARM_AM::getSOImmVal(Value) | (opc << 21); } case ARM::fixup_t2_adr_pcrel_12: { Value -= 4; unsigned opc = 0; if ((int64_t)Value < 0) { Value = -Value; opc = 5; } uint32_t out = (opc << 21); out |= (Value & 0x800) << 15; out |= (Value & 0x700) << 4; out |= (Value & 0x0FF); return swapHalfWords(out, IsLittleEndian); } case ARM::fixup_arm_condbranch: case ARM::fixup_arm_uncondbranch: case ARM::fixup_arm_uncondbl: case ARM::fixup_arm_condbl: case ARM::fixup_arm_blx: // These values don't encode the low two bits since they're always zero. // Offset by 8 just as above. if (const MCSymbolRefExpr *SRE = dyn_cast(Fixup.getValue())) if (SRE->getKind() == MCSymbolRefExpr::VK_ARM_TLSCALL) return 0; return 0xffffff & ((Value - 8) >> 2); case ARM::fixup_t2_uncondbranch: { Value = Value - 4; Value >>= 1; // Low bit is not encoded. uint32_t out = 0; bool I = Value & 0x800000; bool J1 = Value & 0x400000; bool J2 = Value & 0x200000; J1 ^= I; J2 ^= I; out |= I << 26; // S bit out |= !J1 << 13; // J1 bit out |= !J2 << 11; // J2 bit out |= (Value & 0x1FF800) << 5; // imm6 field out |= (Value & 0x0007FF); // imm11 field return swapHalfWords(out, IsLittleEndian); } case ARM::fixup_t2_condbranch: { Value = Value - 4; Value >>= 1; // Low bit is not encoded. uint64_t out = 0; out |= (Value & 0x80000) << 7; // S bit out |= (Value & 0x40000) >> 7; // J2 bit out |= (Value & 0x20000) >> 4; // J1 bit out |= (Value & 0x1F800) << 5; // imm6 field out |= (Value & 0x007FF); // imm11 field return swapHalfWords(out, IsLittleEndian); } case ARM::fixup_arm_thumb_bl: { // The value doesn't encode the low bit (always zero) and is offset by // four. The 32-bit immediate value is encoded as // imm32 = SignExtend(S:I1:I2:imm10:imm11:0) // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S). // The value is encoded into disjoint bit positions in the destination // opcode. x = unchanged, I = immediate value bit, S = sign extension bit, // J = either J1 or J2 bit // // BL: xxxxxSIIIIIIIIII xxJxJIIIIIIIIIII // // Note that the halfwords are stored high first, low second; so we need // to transpose the fixup value here to map properly. uint32_t offset = (Value - 4) >> 1; uint32_t signBit = (offset & 0x800000) >> 23; uint32_t I1Bit = (offset & 0x400000) >> 22; uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit; uint32_t I2Bit = (offset & 0x200000) >> 21; uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit; uint32_t imm10Bits = (offset & 0x1FF800) >> 11; uint32_t imm11Bits = (offset & 0x000007FF); uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10Bits); uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) | (uint16_t)imm11Bits); return joinHalfWords(FirstHalf, SecondHalf, IsLittleEndian); } case ARM::fixup_arm_thumb_blx: { // The value doesn't encode the low two bits (always zero) and is offset by // four (see fixup_arm_thumb_cp). The 32-bit immediate value is encoded as // imm32 = SignExtend(S:I1:I2:imm10H:imm10L:00) // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S). // The value is encoded into disjoint bit positions in the destination // opcode. x = unchanged, I = immediate value bit, S = sign extension bit, // J = either J1 or J2 bit, 0 = zero. // // BLX: xxxxxSIIIIIIIIII xxJxJIIIIIIIIII0 // // Note that the halfwords are stored high first, low second; so we need // to transpose the fixup value here to map properly. uint32_t offset = (Value - 2) >> 2; if (const MCSymbolRefExpr *SRE = dyn_cast(Fixup.getValue())) if (SRE->getKind() == MCSymbolRefExpr::VK_ARM_TLSCALL) offset = 0; uint32_t signBit = (offset & 0x400000) >> 22; uint32_t I1Bit = (offset & 0x200000) >> 21; uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit; uint32_t I2Bit = (offset & 0x100000) >> 20; uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit; uint32_t imm10HBits = (offset & 0xFFC00) >> 10; uint32_t imm10LBits = (offset & 0x3FF); uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10HBits); uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) | ((uint16_t)imm10LBits) << 1); return joinHalfWords(FirstHalf, SecondHalf, IsLittleEndian); } case ARM::fixup_arm_thumb_cp: // Offset by 4, and don't encode the low two bits. Two bytes of that // 'off by 4' is implicitly handled by the half-word ordering of the // Thumb encoding, so we only need to adjust by 2 here. return ((Value - 2) >> 2) & 0xff; case ARM::fixup_arm_thumb_cb: { // Offset by 4 and don't encode the lower bit, which is always 0. uint32_t Binary = (Value - 4) >> 1; return ((Binary & 0x20) << 4) | ((Binary & 0x1f) << 3); } case ARM::fixup_arm_thumb_br: // Offset by 4 and don't encode the lower bit, which is always 0. return ((Value - 4) >> 1) & 0x7ff; case ARM::fixup_arm_thumb_bcc: // Offset by 4 and don't encode the lower bit, which is always 0. return ((Value - 4) >> 1) & 0xff; case ARM::fixup_arm_pcrel_10_unscaled: { Value = Value - 8; // ARM fixups offset by an additional word and don't // need to adjust for the half-word ordering. bool isAdd = true; if ((int64_t)Value < 0) { Value = -Value; isAdd = false; } // The value has the low 4 bits encoded in [3:0] and the high 4 in [11:8]. if (Ctx && Value >= 256) Ctx->FatalError(Fixup.getLoc(), "out of range pc-relative fixup value"); Value = (Value & 0xf) | ((Value & 0xf0) << 4); return Value | (isAdd << 23); } case ARM::fixup_arm_pcrel_10: Value = Value - 4; // ARM fixups offset by an additional word and don't // need to adjust for the half-word ordering. // Fall through. case ARM::fixup_t2_pcrel_10: { // Offset by 4, adjusted by two due to the half-word ordering of thumb. Value = Value - 4; bool isAdd = true; if ((int64_t)Value < 0) { Value = -Value; isAdd = false; } // These values don't encode the low two bits since they're always zero. Value >>= 2; if (Ctx && Value >= 256) Ctx->FatalError(Fixup.getLoc(), "out of range pc-relative fixup value"); Value |= isAdd << 23; // Same addressing mode as fixup_arm_pcrel_10, but with 16-bit halfwords // swapped. if (Kind == ARM::fixup_t2_pcrel_10) return swapHalfWords(Value, IsLittleEndian); return Value; } } } void ARMAsmBackend::processFixupValue(const MCAssembler &Asm, const MCAsmLayout &Layout, const MCFixup &Fixup, const MCFragment *DF, const MCValue &Target, uint64_t &Value, bool &IsResolved) { const MCSymbolRefExpr *A = Target.getSymA(); // Some fixups to thumb function symbols need the low bit (thumb bit) // twiddled. if ((unsigned)Fixup.getKind() != ARM::fixup_arm_ldst_pcrel_12 && (unsigned)Fixup.getKind() != ARM::fixup_t2_ldst_pcrel_12 && (unsigned)Fixup.getKind() != ARM::fixup_arm_adr_pcrel_12 && (unsigned)Fixup.getKind() != ARM::fixup_thumb_adr_pcrel_10 && (unsigned)Fixup.getKind() != ARM::fixup_t2_adr_pcrel_12 && (unsigned)Fixup.getKind() != ARM::fixup_arm_thumb_cp) { if (A) { const MCSymbol &Sym = A->getSymbol().AliasedSymbol(); if (Asm.isThumbFunc(&Sym)) Value |= 1; } } // For Thumb1 BL instruction, it is possible to be a long jump between // the basic blocks of the same function. Thus, we would like to resolve // the offset when the destination has the same MCFragment. if (A && (unsigned)Fixup.getKind() == ARM::fixup_arm_thumb_bl) { const MCSymbol &Sym = A->getSymbol().AliasedSymbol(); const MCSymbolData &SymData = Asm.getSymbolData(Sym); IsResolved = (SymData.getFragment() == DF); } // We must always generate a relocation for BL/BLX instructions if we have // a symbol to reference, as the linker relies on knowing the destination // symbol's thumb-ness to get interworking right. if (A && ((unsigned)Fixup.getKind() == ARM::fixup_arm_thumb_blx || (unsigned)Fixup.getKind() == ARM::fixup_arm_blx || (unsigned)Fixup.getKind() == ARM::fixup_arm_uncondbl || (unsigned)Fixup.getKind() == ARM::fixup_arm_condbl)) IsResolved = false; // Try to get the encoded value for the fixup as-if we're mapping it into // the instruction. This allows adjustFixupValue() to issue a diagnostic // if the value aren't invalid. (void)adjustFixupValue(Fixup, Value, false, &Asm.getContext(), IsLittleEndian); } /// getFixupKindNumBytes - The number of bytes the fixup may change. static unsigned getFixupKindNumBytes(unsigned Kind) { switch (Kind) { default: llvm_unreachable("Unknown fixup kind!"); case FK_Data_1: case ARM::fixup_arm_thumb_bcc: case ARM::fixup_arm_thumb_cp: case ARM::fixup_thumb_adr_pcrel_10: return 1; case FK_Data_2: case ARM::fixup_arm_thumb_br: case ARM::fixup_arm_thumb_cb: return 2; case ARM::fixup_arm_pcrel_10_unscaled: case ARM::fixup_arm_ldst_pcrel_12: case ARM::fixup_arm_pcrel_10: case ARM::fixup_arm_adr_pcrel_12: case ARM::fixup_arm_uncondbl: case ARM::fixup_arm_condbl: case ARM::fixup_arm_blx: case ARM::fixup_arm_condbranch: case ARM::fixup_arm_uncondbranch: return 3; case FK_Data_4: case ARM::fixup_t2_ldst_pcrel_12: case ARM::fixup_t2_condbranch: case ARM::fixup_t2_uncondbranch: case ARM::fixup_t2_pcrel_10: case ARM::fixup_t2_adr_pcrel_12: case ARM::fixup_arm_thumb_bl: case ARM::fixup_arm_thumb_blx: case ARM::fixup_arm_movt_hi16: case ARM::fixup_arm_movw_lo16: case ARM::fixup_t2_movt_hi16: case ARM::fixup_t2_movw_lo16: return 4; case FK_SecRel_2: return 2; case FK_SecRel_4: return 4; } } /// getFixupKindContainerSizeBytes - The number of bytes of the /// container involved in big endian. static unsigned getFixupKindContainerSizeBytes(unsigned Kind) { switch (Kind) { default: llvm_unreachable("Unknown fixup kind!"); case FK_Data_1: return 1; case FK_Data_2: return 2; case FK_Data_4: return 4; case ARM::fixup_arm_thumb_bcc: case ARM::fixup_arm_thumb_cp: case ARM::fixup_thumb_adr_pcrel_10: case ARM::fixup_arm_thumb_br: case ARM::fixup_arm_thumb_cb: // Instruction size is 2 bytes. return 2; case ARM::fixup_arm_pcrel_10_unscaled: case ARM::fixup_arm_ldst_pcrel_12: case ARM::fixup_arm_pcrel_10: case ARM::fixup_arm_adr_pcrel_12: case ARM::fixup_arm_uncondbl: case ARM::fixup_arm_condbl: case ARM::fixup_arm_blx: case ARM::fixup_arm_condbranch: case ARM::fixup_arm_uncondbranch: case ARM::fixup_t2_ldst_pcrel_12: case ARM::fixup_t2_condbranch: case ARM::fixup_t2_uncondbranch: case ARM::fixup_t2_pcrel_10: case ARM::fixup_t2_adr_pcrel_12: case ARM::fixup_arm_thumb_bl: case ARM::fixup_arm_thumb_blx: case ARM::fixup_arm_movt_hi16: case ARM::fixup_arm_movw_lo16: case ARM::fixup_t2_movt_hi16: case ARM::fixup_t2_movw_lo16: // Instruction size is 4 bytes. return 4; } } void ARMAsmBackend::applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize, uint64_t Value, bool IsPCRel) const { unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind()); Value = adjustFixupValue(Fixup, Value, IsPCRel, nullptr, IsLittleEndian); if (!Value) return; // Doesn't change encoding. unsigned Offset = Fixup.getOffset(); assert(Offset + NumBytes <= DataSize && "Invalid fixup offset!"); // Used to point to big endian bytes. unsigned FullSizeBytes; if (!IsLittleEndian) { FullSizeBytes = getFixupKindContainerSizeBytes(Fixup.getKind()); assert((Offset + FullSizeBytes) <= DataSize && "Invalid fixup size!"); assert(NumBytes <= FullSizeBytes && "Invalid fixup size!"); } // For each byte of the fragment that the fixup touches, mask in the bits from // the fixup value. The Value has been "split up" into the appropriate // bitfields above. for (unsigned i = 0; i != NumBytes; ++i) { unsigned Idx = IsLittleEndian ? i : (FullSizeBytes - 1 - i); Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff); } } MCAsmBackend *llvm::createARMAsmBackend(const Target &T, const MCRegisterInfo &MRI, StringRef TT, StringRef CPU, bool isLittle) { Triple TheTriple(TT); switch (TheTriple.getObjectFormat()) { default: llvm_unreachable("unsupported object format"); case Triple::MachO: { MachO::CPUSubTypeARM CS = StringSwitch(TheTriple.getArchName()) .Cases("armv4t", "thumbv4t", MachO::CPU_SUBTYPE_ARM_V4T) .Cases("armv5e", "thumbv5e", MachO::CPU_SUBTYPE_ARM_V5TEJ) .Cases("armv6", "thumbv6", MachO::CPU_SUBTYPE_ARM_V6) .Cases("armv6m", "thumbv6m", MachO::CPU_SUBTYPE_ARM_V6M) .Cases("armv7em", "thumbv7em", MachO::CPU_SUBTYPE_ARM_V7EM) .Cases("armv7k", "thumbv7k", MachO::CPU_SUBTYPE_ARM_V7K) .Cases("armv7m", "thumbv7m", MachO::CPU_SUBTYPE_ARM_V7M) .Cases("armv7s", "thumbv7s", MachO::CPU_SUBTYPE_ARM_V7S) .Default(MachO::CPU_SUBTYPE_ARM_V7); return new ARMAsmBackendDarwin(T, TT, CS); } case Triple::COFF: assert(TheTriple.isOSWindows() && "non-Windows ARM COFF is not supported"); return new ARMAsmBackendWinCOFF(T, TT); case Triple::ELF: assert(TheTriple.isOSBinFormatELF() && "using ELF for non-ELF target"); uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(Triple(TT).getOS()); return new ARMAsmBackendELF(T, TT, OSABI, isLittle); } } MCAsmBackend *llvm::createARMLEAsmBackend(const Target &T, const MCRegisterInfo &MRI, StringRef TT, StringRef CPU) { return createARMAsmBackend(T, MRI, TT, CPU, true); } MCAsmBackend *llvm::createARMBEAsmBackend(const Target &T, const MCRegisterInfo &MRI, StringRef TT, StringRef CPU) { return createARMAsmBackend(T, MRI, TT, CPU, false); } MCAsmBackend *llvm::createThumbLEAsmBackend(const Target &T, const MCRegisterInfo &MRI, StringRef TT, StringRef CPU) { return createARMAsmBackend(T, MRI, TT, CPU, true); } MCAsmBackend *llvm::createThumbBEAsmBackend(const Target &T, const MCRegisterInfo &MRI, StringRef TT, StringRef CPU) { return createARMAsmBackend(T, MRI, TT, CPU, false); }