//=- HexagonInstrInfoV3.td - Target Desc. for Hexagon Target -*- tablegen -*-=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the Hexagon V3 instructions in TableGen format. // //===----------------------------------------------------------------------===// def callv3 : SDNode<"HexagonISD::CALLv3", SDT_SPCall, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; def callv3nr : SDNode<"HexagonISD::CALLv3nr", SDT_SPCall, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; //===----------------------------------------------------------------------===// // J + //===----------------------------------------------------------------------===// // Call subroutine. let isCall = 1, hasSideEffects = 1, Defs = VolatileV3.Regs, isPredicable = 1, isExtended = 0, isExtendable = 1, opExtendable = 0, isExtentSigned = 1, opExtentBits = 24, opExtentAlign = 2 in class T_Call : JInst<(outs), (ins calltarget:$dst), "call " # ExtStr # "$dst", [], "", J_tc_2early_SLOT23> { let BaseOpcode = "call"; bits<24> dst; let IClass = 0b0101; let Inst{27-25} = 0b101; let Inst{24-16,13-1} = dst{23-2}; let Inst{0} = 0b0; } let isCall = 1, hasSideEffects = 1, Defs = VolatileV3.Regs, isPredicated = 1, isExtended = 0, isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 17, opExtentAlign = 2 in class T_CallPred : JInst<(outs), (ins PredRegs:$Pu, calltarget:$dst), CondStr<"$Pu", IfTrue, 0>.S # "call " # ExtStr # "$dst", [], "", J_tc_2early_SLOT23> { let BaseOpcode = "call"; let isPredicatedFalse = !if(IfTrue,0,1); bits<2> Pu; bits<17> dst; let IClass = 0b0101; let Inst{27-24} = 0b1101; let Inst{23-22,20-16,13,7-1} = dst{16-2}; let Inst{21} = !if(IfTrue,0,1); let Inst{11} = 0b0; let Inst{9-8} = Pu; } multiclass T_Calls { def NAME : T_Call; def t : T_CallPred<1, ExtStr>; def f : T_CallPred<0, ExtStr>; } defm J2_call: T_Calls<"">, PredRel; let isCodeGenOnly = 1, isCall = 1, hasSideEffects = 1, Defs = VolatileV3.Regs in def CALLv3nr : T_Call<"">, PredRel; //===----------------------------------------------------------------------===// // J - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // JR + //===----------------------------------------------------------------------===// // Call subroutine from register. let isCodeGenOnly = 1, Defs = VolatileV3.Regs in { def CALLRv3nr : JUMPR_MISC_CALLR<0, 1>; // Call, no return. } //===----------------------------------------------------------------------===// // JR - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // ALU64/ALU + //===----------------------------------------------------------------------===// let Defs = [USR_OVF], Itinerary = ALU64_tc_2_SLOT23 in def A2_addpsat : T_ALU64_arith<"add", 0b011, 0b101, 1, 0, 1>; class T_ALU64_addsp_hl MinOp> : T_ALU64_rr<"add", suffix, 0b0011, 0b011, MinOp, 0, 0, "">; def A2_addspl : T_ALU64_addsp_hl<":raw:lo", 0b110>; def A2_addsph : T_ALU64_addsp_hl<":raw:hi", 0b111>; let hasSideEffects = 0, isAsmParserOnly = 1 in def A2_addsp : ALU64_rr<(outs DoubleRegs:$Rd), (ins IntRegs:$Rs, DoubleRegs:$Rt), "$Rd = add($Rs, $Rt)", [(set (i64 DoubleRegs:$Rd), (i64 (add (i64 (sext (i32 IntRegs:$Rs))), (i64 DoubleRegs:$Rt))))], "", ALU64_tc_1_SLOT23>; let hasSideEffects = 0 in class T_XTYPE_MIN_MAX_P : ALU64Inst<(outs DoubleRegs:$Rd), (ins DoubleRegs:$Rt, DoubleRegs:$Rs), "$Rd = "#!if(isMax,"max","min")#!if(isUnsigned,"u","") #"($Rt, $Rs)", [], "", ALU64_tc_2_SLOT23> { bits<5> Rd; bits<5> Rs; bits<5> Rt; let IClass = 0b1101; let Inst{27-23} = 0b00111; let Inst{22-21} = !if(isMax, 0b10, 0b01); let Inst{20-16} = !if(isMax, Rt, Rs); let Inst{12-8} = !if(isMax, Rs, Rt); let Inst{7} = 0b1; let Inst{6} = !if(isMax, 0b0, 0b1); let Inst{5} = isUnsigned; let Inst{4-0} = Rd; } def A2_minp : T_XTYPE_MIN_MAX_P<0, 0>; def A2_minup : T_XTYPE_MIN_MAX_P<0, 1>; def A2_maxp : T_XTYPE_MIN_MAX_P<1, 0>; def A2_maxup : T_XTYPE_MIN_MAX_P<1, 1>; multiclass MinMax_pats_p { defm: T_MinMax_pats; } let AddedComplexity = 200 in { defm: MinMax_pats_p; defm: MinMax_pats_p; defm: MinMax_pats_p; defm: MinMax_pats_p; defm: MinMax_pats_p; defm: MinMax_pats_p; defm: MinMax_pats_p; defm: MinMax_pats_p; } //===----------------------------------------------------------------------===// // ALU64/ALU - //===----------------------------------------------------------------------===// //def : Pat <(brcond (i1 (seteq (i32 IntRegs:$src1), 0)), bb:$offset), // (JMP_RegEzt (i32 IntRegs:$src1), bb:$offset)>; //def : Pat <(brcond (i1 (setne (i32 IntRegs:$src1), 0)), bb:$offset), // (JMP_RegNzt (i32 IntRegs:$src1), bb:$offset)>; //def : Pat <(brcond (i1 (setle (i32 IntRegs:$src1), 0)), bb:$offset), // (JMP_RegLezt (i32 IntRegs:$src1), bb:$offset)>; //def : Pat <(brcond (i1 (setge (i32 IntRegs:$src1), 0)), bb:$offset), // (JMP_RegGezt (i32 IntRegs:$src1), bb:$offset)>; //def : Pat <(brcond (i1 (setgt (i32 IntRegs:$src1), -1)), bb:$offset), // (JMP_RegGezt (i32 IntRegs:$src1), bb:$offset)>; // Map call instruction def : Pat<(callv3 (i32 IntRegs:$dst)), (J2_callr (i32 IntRegs:$dst))>; def : Pat<(callv3 tglobaladdr:$dst), (J2_call tglobaladdr:$dst)>; def : Pat<(callv3 texternalsym:$dst), (J2_call texternalsym:$dst)>; def : Pat<(callv3 tglobaltlsaddr:$dst), (J2_call tglobaltlsaddr:$dst)>; def : Pat<(callv3nr (i32 IntRegs:$dst)), (CALLRv3nr (i32 IntRegs:$dst))>; def : Pat<(callv3nr tglobaladdr:$dst), (CALLv3nr tglobaladdr:$dst)>; def : Pat<(callv3nr texternalsym:$dst), (CALLv3nr texternalsym:$dst)>; //===----------------------------------------------------------------------===// // :raw form of vrcmpys:hi/lo insns //===----------------------------------------------------------------------===// // Vector reduce complex multiply by scalar. let Defs = [USR_OVF], hasSideEffects = 0 in class T_vrcmpRawMajOp>: MInst<(outs DoubleRegs:$Rdd), (ins DoubleRegs:$Rss, DoubleRegs:$Rtt), "$Rdd = vrcmpys($Rss, $Rtt):<<1:sat:raw:"#HiLo, []> { bits<5> Rdd; bits<5> Rss; bits<5> Rtt; let IClass = 0b1110; let Inst{27-24} = 0b1000; let Inst{23-21} = MajOp; let Inst{20-16} = Rss; let Inst{12-8} = Rtt; let Inst{7-5} = 0b100; let Inst{4-0} = Rdd; } def M2_vrcmpys_s1_h: T_vrcmpRaw<"hi", 0b101>; def M2_vrcmpys_s1_l: T_vrcmpRaw<"lo", 0b111>; // Assembler mapped to M2_vrcmpys_s1_h or M2_vrcmpys_s1_l let hasSideEffects = 0, isAsmParserOnly = 1 in def M2_vrcmpys_s1 : MInst<(outs DoubleRegs:$Rdd), (ins DoubleRegs:$Rss, IntRegs:$Rt), "$Rdd=vrcmpys($Rss,$Rt):<<1:sat">; // Vector reduce complex multiply by scalar with accumulation. let Defs = [USR_OVF], hasSideEffects = 0 in class T_vrcmpys_accMajOp>: MInst <(outs DoubleRegs:$Rxx), (ins DoubleRegs:$_src_, DoubleRegs:$Rss, DoubleRegs:$Rtt), "$Rxx += vrcmpys($Rss, $Rtt):<<1:sat:raw:"#HiLo, [], "$Rxx = $_src_"> { bits<5> Rxx; bits<5> Rss; bits<5> Rtt; let IClass = 0b1110; let Inst{27-24} = 0b1010; let Inst{23-21} = MajOp; let Inst{20-16} = Rss; let Inst{12-8} = Rtt; let Inst{7-5} = 0b100; let Inst{4-0} = Rxx; } def M2_vrcmpys_acc_s1_h: T_vrcmpys_acc<"hi", 0b101>; def M2_vrcmpys_acc_s1_l: T_vrcmpys_acc<"lo", 0b111>; // Assembler mapped to M2_vrcmpys_acc_s1_h or M2_vrcmpys_acc_s1_l let isAsmParserOnly = 1 in def M2_vrcmpys_acc_s1 : MInst <(outs DoubleRegs:$dst), (ins DoubleRegs:$dst2, DoubleRegs:$src1, IntRegs:$src2), "$dst += vrcmpys($src1, $src2):<<1:sat", [], "$dst2 = $dst">; def M2_vrcmpys_s1rp_h : T_MType_vrcmpy <"vrcmpys", 0b101, 0b110, 1>; def M2_vrcmpys_s1rp_l : T_MType_vrcmpy <"vrcmpys", 0b101, 0b111, 0>; // Assembler mapped to M2_vrcmpys_s1rp_h or M2_vrcmpys_s1rp_l let isAsmParserOnly = 1 in def M2_vrcmpys_s1rp : MInst <(outs IntRegs:$Rd), (ins DoubleRegs:$Rss, IntRegs:$Rt), "$Rd=vrcmpys($Rss,$Rt):<<1:rnd:sat">; // S2_cabacdecbin: Cabac decode bin. let Defs = [P0], isPredicateLate = 1, Itinerary = S_3op_tc_1_SLOT23 in def S2_cabacdecbin : T_S3op_64 < "decbin", 0b11, 0b110, 0>;