//===----- HexagonPacketizer.cpp - vliw packetizer ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements a simple VLIW packetizer using DFA. The packetizer works on // machine basic blocks. For each instruction I in BB, the packetizer consults // the DFA to see if machine resources are available to execute I. If so, the // packetizer checks if I depends on any instruction J in the current packet. // If no dependency is found, I is added to current packet and machine resource // is marked as taken. If any dependency is found, a target API call is made to // prune the dependence. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/DFAPacketizer.h" #include "Hexagon.h" #include "HexagonMachineFunctionInfo.h" #include "HexagonRegisterInfo.h" #include "HexagonSubtarget.h" #include "HexagonTargetMachine.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/LatencyPriorityQueue.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunctionAnalysis.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/ScheduleDAG.h" #include "llvm/CodeGen/ScheduleDAGInstrs.h" #include "llvm/CodeGen/ScheduleHazardRecognizer.h" #include "llvm/CodeGen/SchedulerRegistry.h" #include "llvm/MC/MCInstrItineraries.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" #include #include using namespace llvm; #define DEBUG_TYPE "packets" static cl::opt PacketizeVolatiles("hexagon-packetize-volatiles", cl::ZeroOrMore, cl::Hidden, cl::init(true), cl::desc("Allow non-solo packetization of volatile memory references")); namespace llvm { void initializeHexagonPacketizerPass(PassRegistry&); } namespace { class HexagonPacketizer : public MachineFunctionPass { public: static char ID; HexagonPacketizer() : MachineFunctionPass(ID) { initializeHexagonPacketizerPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); MachineFunctionPass::getAnalysisUsage(AU); } const char *getPassName() const override { return "Hexagon Packetizer"; } bool runOnMachineFunction(MachineFunction &Fn) override; }; char HexagonPacketizer::ID = 0; class HexagonPacketizerList : public VLIWPacketizerList { private: // Has the instruction been promoted to a dot-new instruction. bool PromotedToDotNew; // Has the instruction been glued to allocframe. bool GlueAllocframeStore; // Has the feeder instruction been glued to new value jump. bool GlueToNewValueJump; // Check if there is a dependence between some instruction already in this // packet and this instruction. bool Dependence; // Only check for dependence if there are resources available to // schedule this instruction. bool FoundSequentialDependence; /// \brief A handle to the branch probability pass. const MachineBranchProbabilityInfo *MBPI; // Track MIs with ignored dependece. std::vector IgnoreDepMIs; public: // Ctor. HexagonPacketizerList(MachineFunction &MF, MachineLoopInfo &MLI, const MachineBranchProbabilityInfo *MBPI); // initPacketizerState - initialize some internal flags. void initPacketizerState() override; // ignorePseudoInstruction - Ignore bundling of pseudo instructions. bool ignorePseudoInstruction(MachineInstr *MI, MachineBasicBlock *MBB) override; // isSoloInstruction - return true if instruction MI can not be packetized // with any other instruction, which means that MI itself is a packet. bool isSoloInstruction(MachineInstr *MI) override; // isLegalToPacketizeTogether - Is it legal to packetize SUI and SUJ // together. bool isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) override; // isLegalToPruneDependencies - Is it legal to prune dependece between SUI // and SUJ. bool isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) override; MachineBasicBlock::iterator addToPacket(MachineInstr *MI) override; private: bool IsCallDependent(MachineInstr* MI, SDep::Kind DepType, unsigned DepReg); bool PromoteToDotNew(MachineInstr* MI, SDep::Kind DepType, MachineBasicBlock::iterator &MII, const TargetRegisterClass* RC); bool CanPromoteToDotNew(MachineInstr *MI, SUnit *PacketSU, unsigned DepReg, const std::map &MIToSUnit, MachineBasicBlock::iterator &MII, const TargetRegisterClass *RC); bool CanPromoteToNewValue(MachineInstr *MI, SUnit *PacketSU, unsigned DepReg, const std::map &MIToSUnit, MachineBasicBlock::iterator &MII); bool CanPromoteToNewValueStore( MachineInstr *MI, MachineInstr *PacketMI, unsigned DepReg, const std::map &MIToSUnit); bool DemoteToDotOld(MachineInstr *MI); bool ArePredicatesComplements( MachineInstr *MI1, MachineInstr *MI2, const std::map &MIToSUnit); bool RestrictingDepExistInPacket(MachineInstr *, unsigned, const std::map &); bool isNewifiable(MachineInstr* MI); bool isCondInst(MachineInstr* MI); bool tryAllocateResourcesForConstExt(MachineInstr* MI); bool canReserveResourcesForConstExt(MachineInstr *MI); void reserveResourcesForConstExt(MachineInstr* MI); bool isNewValueInst(MachineInstr* MI); }; } INITIALIZE_PASS_BEGIN(HexagonPacketizer, "packets", "Hexagon Packetizer", false, false) INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) INITIALIZE_AG_DEPENDENCY(AliasAnalysis) INITIALIZE_PASS_END(HexagonPacketizer, "packets", "Hexagon Packetizer", false, false) // HexagonPacketizerList Ctor. HexagonPacketizerList::HexagonPacketizerList( MachineFunction &MF, MachineLoopInfo &MLI, const MachineBranchProbabilityInfo *MBPI) : VLIWPacketizerList(MF, MLI, true) { this->MBPI = MBPI; } bool HexagonPacketizer::runOnMachineFunction(MachineFunction &Fn) { const TargetInstrInfo *TII = Fn.getSubtarget().getInstrInfo(); MachineLoopInfo &MLI = getAnalysis(); const MachineBranchProbabilityInfo *MBPI = &getAnalysis(); // Instantiate the packetizer. HexagonPacketizerList Packetizer(Fn, MLI, MBPI); // DFA state table should not be empty. assert(Packetizer.getResourceTracker() && "Empty DFA table!"); // // Loop over all basic blocks and remove KILL pseudo-instructions // These instructions confuse the dependence analysis. Consider: // D0 = ... (Insn 0) // R0 = KILL R0, D0 (Insn 1) // R0 = ... (Insn 2) // Here, Insn 1 will result in the dependence graph not emitting an output // dependence between Insn 0 and Insn 2. This can lead to incorrect // packetization // for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); MBB != MBBe; ++MBB) { MachineBasicBlock::iterator End = MBB->end(); MachineBasicBlock::iterator MI = MBB->begin(); while (MI != End) { if (MI->isKill()) { MachineBasicBlock::iterator DeleteMI = MI; ++MI; MBB->erase(DeleteMI); End = MBB->end(); continue; } ++MI; } } // Loop over all of the basic blocks. for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); MBB != MBBe; ++MBB) { // Find scheduling regions and schedule / packetize each region. unsigned RemainingCount = MBB->size(); for(MachineBasicBlock::iterator RegionEnd = MBB->end(); RegionEnd != MBB->begin();) { // The next region starts above the previous region. Look backward in the // instruction stream until we find the nearest boundary. MachineBasicBlock::iterator I = RegionEnd; for(;I != MBB->begin(); --I, --RemainingCount) { if (TII->isSchedulingBoundary(std::prev(I), MBB, Fn)) break; } I = MBB->begin(); // Skip empty scheduling regions. if (I == RegionEnd) { RegionEnd = std::prev(RegionEnd); --RemainingCount; continue; } // Skip regions with one instruction. if (I == std::prev(RegionEnd)) { RegionEnd = std::prev(RegionEnd); continue; } Packetizer.PacketizeMIs(MBB, I, RegionEnd); RegionEnd = I; } } return true; } static bool IsIndirectCall(MachineInstr* MI) { return ((MI->getOpcode() == Hexagon::CALLR) || (MI->getOpcode() == Hexagon::CALLRv3)); } // Reserve resources for constant extender. Trigure an assertion if // reservation fail. void HexagonPacketizerList::reserveResourcesForConstExt(MachineInstr* MI) { const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII; MachineFunction *MF = MI->getParent()->getParent(); MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::IMMEXT_i), MI->getDebugLoc()); if (ResourceTracker->canReserveResources(PseudoMI)) { ResourceTracker->reserveResources(PseudoMI); MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI); } else { MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI); llvm_unreachable("can not reserve resources for constant extender."); } return; } bool HexagonPacketizerList::canReserveResourcesForConstExt(MachineInstr *MI) { const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII; assert((QII->isExtended(MI) || QII->isConstExtended(MI)) && "Should only be called for constant extended instructions"); MachineFunction *MF = MI->getParent()->getParent(); MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::IMMEXT_i), MI->getDebugLoc()); bool CanReserve = ResourceTracker->canReserveResources(PseudoMI); MF->DeleteMachineInstr(PseudoMI); return CanReserve; } // Allocate resources (i.e. 4 bytes) for constant extender. If succeed, return // true, otherwise, return false. bool HexagonPacketizerList::tryAllocateResourcesForConstExt(MachineInstr* MI) { const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII; MachineFunction *MF = MI->getParent()->getParent(); MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::IMMEXT_i), MI->getDebugLoc()); if (ResourceTracker->canReserveResources(PseudoMI)) { ResourceTracker->reserveResources(PseudoMI); MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI); return true; } else { MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI); return false; } } bool HexagonPacketizerList::IsCallDependent(MachineInstr* MI, SDep::Kind DepType, unsigned DepReg) { const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII; const HexagonRegisterInfo *QRI = (const HexagonRegisterInfo *)MF.getSubtarget().getRegisterInfo(); // Check for lr dependence if (DepReg == QRI->getRARegister()) { return true; } if (QII->isDeallocRet(MI)) { if (DepReg == QRI->getFrameRegister() || DepReg == QRI->getStackRegister()) return true; } // Check if this is a predicate dependence const TargetRegisterClass* RC = QRI->getMinimalPhysRegClass(DepReg); if (RC == &Hexagon::PredRegsRegClass) { return true; } // // Lastly check for an operand used in an indirect call // If we had an attribute for checking if an instruction is an indirect call, // then we could have avoided this relatively brittle implementation of // IsIndirectCall() // // Assumes that the first operand of the CALLr is the function address // if (IsIndirectCall(MI) && (DepType == SDep::Data)) { MachineOperand MO = MI->getOperand(0); if (MO.isReg() && MO.isUse() && (MO.getReg() == DepReg)) { return true; } } return false; } static bool IsRegDependence(const SDep::Kind DepType) { return (DepType == SDep::Data || DepType == SDep::Anti || DepType == SDep::Output); } static bool IsDirectJump(MachineInstr* MI) { return (MI->getOpcode() == Hexagon::JMP); } static bool IsSchedBarrier(MachineInstr* MI) { switch (MI->getOpcode()) { case Hexagon::BARRIER: return true; } return false; } static bool IsControlFlow(MachineInstr* MI) { return (MI->getDesc().isTerminator() || MI->getDesc().isCall()); } static bool IsLoopN(MachineInstr *MI) { return (MI->getOpcode() == Hexagon::LOOP0_i || MI->getOpcode() == Hexagon::LOOP0_r); } /// DoesModifyCalleeSavedReg - Returns true if the instruction modifies a /// callee-saved register. static bool DoesModifyCalleeSavedReg(MachineInstr *MI, const TargetRegisterInfo *TRI) { for (const MCPhysReg *CSR = TRI->getCalleeSavedRegs(); *CSR; ++CSR) { unsigned CalleeSavedReg = *CSR; if (MI->modifiesRegister(CalleeSavedReg, TRI)) return true; } return false; } // Returns true if an instruction can be promoted to .new predicate // or new-value store. bool HexagonPacketizerList::isNewifiable(MachineInstr* MI) { const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII; if ( isCondInst(MI) || QII->mayBeNewStore(MI)) return true; else return false; } bool HexagonPacketizerList::isCondInst (MachineInstr* MI) { const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII; const MCInstrDesc& TID = MI->getDesc(); // bug 5670: until that is fixed, // this portion is disabled. if ( TID.isConditionalBranch() // && !IsRegisterJump(MI)) || || QII->isConditionalTransfer(MI) || QII->isConditionalALU32(MI) || QII->isConditionalLoad(MI) || QII->isConditionalStore(MI)) { return true; } return false; } // Promote an instructiont to its .new form. // At this time, we have already made a call to CanPromoteToDotNew // and made sure that it can *indeed* be promoted. bool HexagonPacketizerList::PromoteToDotNew(MachineInstr* MI, SDep::Kind DepType, MachineBasicBlock::iterator &MII, const TargetRegisterClass* RC) { assert (DepType == SDep::Data); const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII; int NewOpcode; if (RC == &Hexagon::PredRegsRegClass) NewOpcode = QII->GetDotNewPredOp(MI, MBPI); else NewOpcode = QII->GetDotNewOp(MI); MI->setDesc(QII->get(NewOpcode)); return true; } bool HexagonPacketizerList::DemoteToDotOld(MachineInstr* MI) { const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII; int NewOpcode = QII->GetDotOldOp(MI->getOpcode()); MI->setDesc(QII->get(NewOpcode)); return true; } enum PredicateKind { PK_False, PK_True, PK_Unknown }; /// Returns true if an instruction is predicated on p0 and false if it's /// predicated on !p0. static PredicateKind getPredicateSense(MachineInstr* MI, const HexagonInstrInfo *QII) { if (!QII->isPredicated(MI)) return PK_Unknown; if (QII->isPredicatedTrue(MI)) return PK_True; return PK_False; } static MachineOperand& GetPostIncrementOperand(MachineInstr *MI, const HexagonInstrInfo *QII) { assert(QII->isPostIncrement(MI) && "Not a post increment operation."); #ifndef NDEBUG // Post Increment means duplicates. Use dense map to find duplicates in the // list. Caution: Densemap initializes with the minimum of 64 buckets, // whereas there are at most 5 operands in the post increment. DenseMap DefRegsSet; for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++) if (MI->getOperand(opNum).isReg() && MI->getOperand(opNum).isDef()) { DefRegsSet[MI->getOperand(opNum).getReg()] = 1; } for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++) if (MI->getOperand(opNum).isReg() && MI->getOperand(opNum).isUse()) { if (DefRegsSet[MI->getOperand(opNum).getReg()]) { return MI->getOperand(opNum); } } #else if (MI->getDesc().mayLoad()) { // The 2nd operand is always the post increment operand in load. assert(MI->getOperand(1).isReg() && "Post increment operand has be to a register."); return (MI->getOperand(1)); } if (MI->getDesc().mayStore()) { // The 1st operand is always the post increment operand in store. assert(MI->getOperand(0).isReg() && "Post increment operand has be to a register."); return (MI->getOperand(0)); } #endif // we should never come here. llvm_unreachable("mayLoad or mayStore not set for Post Increment operation"); } // get the value being stored static MachineOperand& GetStoreValueOperand(MachineInstr *MI) { // value being stored is always the last operand. return (MI->getOperand(MI->getNumOperands()-1)); } // can be new value store? // Following restrictions are to be respected in convert a store into // a new value store. // 1. If an instruction uses auto-increment, its address register cannot // be a new-value register. Arch Spec 5.4.2.1 // 2. If an instruction uses absolute-set addressing mode, // its address register cannot be a new-value register. // Arch Spec 5.4.2.1.TODO: This is not enabled as // as absolute-set address mode patters are not implemented. // 3. If an instruction produces a 64-bit result, its registers cannot be used // as new-value registers. Arch Spec 5.4.2.2. // 4. If the instruction that sets a new-value register is conditional, then // the instruction that uses the new-value register must also be conditional, // and both must always have their predicates evaluate identically. // Arch Spec 5.4.2.3. // 5. There is an implied restriction of a packet can not have another store, // if there is a new value store in the packet. Corollary, if there is // already a store in a packet, there can not be a new value store. // Arch Spec: 3.4.4.2 bool HexagonPacketizerList::CanPromoteToNewValueStore( MachineInstr *MI, MachineInstr *PacketMI, unsigned DepReg, const std::map &MIToSUnit) { const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII; // Make sure we are looking at the store, that can be promoted. if (!QII->mayBeNewStore(MI)) return false; // Make sure there is dependency and can be new value'ed if (GetStoreValueOperand(MI).isReg() && GetStoreValueOperand(MI).getReg() != DepReg) return false; const HexagonRegisterInfo *QRI = (const HexagonRegisterInfo *)MF.getSubtarget().getRegisterInfo(); const MCInstrDesc& MCID = PacketMI->getDesc(); // first operand is always the result const TargetRegisterClass* PacketRC = QII->getRegClass(MCID, 0, QRI, MF); // if there is already an store in the packet, no can do new value store // Arch Spec 3.4.4.2. for (std::vector::iterator VI = CurrentPacketMIs.begin(), VE = CurrentPacketMIs.end(); (VI != VE); ++VI) { SUnit *PacketSU = MIToSUnit.find(*VI)->second; if (PacketSU->getInstr()->getDesc().mayStore() || // if we have mayStore = 1 set on ALLOCFRAME and DEALLOCFRAME, // then we don't need this PacketSU->getInstr()->getOpcode() == Hexagon::ALLOCFRAME || PacketSU->getInstr()->getOpcode() == Hexagon::DEALLOCFRAME) return false; } if (PacketRC == &Hexagon::DoubleRegsRegClass) { // new value store constraint: double regs can not feed into new value store // arch spec section: 5.4.2.2 return false; } // Make sure it's NOT the post increment register that we are going to // new value. if (QII->isPostIncrement(MI) && MI->getDesc().mayStore() && GetPostIncrementOperand(MI, QII).getReg() == DepReg) { return false; } if (QII->isPostIncrement(PacketMI) && PacketMI->getDesc().mayLoad() && GetPostIncrementOperand(PacketMI, QII).getReg() == DepReg) { // if source is post_inc, or absolute-set addressing, // it can not feed into new value store // r3 = memw(r2++#4) // memw(r30 + #-1404) = r2.new -> can not be new value store // arch spec section: 5.4.2.1 return false; } // If the source that feeds the store is predicated, new value store must // also be predicated. if (QII->isPredicated(PacketMI)) { if (!QII->isPredicated(MI)) return false; // Check to make sure that they both will have their predicates // evaluate identically unsigned predRegNumSrc = 0; unsigned predRegNumDst = 0; const TargetRegisterClass* predRegClass = nullptr; // Get predicate register used in the source instruction for(unsigned opNum = 0; opNum < PacketMI->getNumOperands(); opNum++) { if ( PacketMI->getOperand(opNum).isReg()) predRegNumSrc = PacketMI->getOperand(opNum).getReg(); predRegClass = QRI->getMinimalPhysRegClass(predRegNumSrc); if (predRegClass == &Hexagon::PredRegsRegClass) { break; } } assert ((predRegClass == &Hexagon::PredRegsRegClass ) && ("predicate register not found in a predicated PacketMI instruction")); // Get predicate register used in new-value store instruction for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++) { if ( MI->getOperand(opNum).isReg()) predRegNumDst = MI->getOperand(opNum).getReg(); predRegClass = QRI->getMinimalPhysRegClass(predRegNumDst); if (predRegClass == &Hexagon::PredRegsRegClass) { break; } } assert ((predRegClass == &Hexagon::PredRegsRegClass ) && ("predicate register not found in a predicated MI instruction")); // New-value register producer and user (store) need to satisfy these // constraints: // 1) Both instructions should be predicated on the same register. // 2) If producer of the new-value register is .new predicated then store // should also be .new predicated and if producer is not .new predicated // then store should not be .new predicated. // 3) Both new-value register producer and user should have same predicate // sense, i.e, either both should be negated or both should be none negated. if (( predRegNumDst != predRegNumSrc) || QII->isDotNewInst(PacketMI) != QII->isDotNewInst(MI) || getPredicateSense(MI, QII) != getPredicateSense(PacketMI, QII)) { return false; } } // Make sure that other than the new-value register no other store instruction // register has been modified in the same packet. Predicate registers can be // modified by they should not be modified between the producer and the store // instruction as it will make them both conditional on different values. // We already know this to be true for all the instructions before and // including PacketMI. Howerver, we need to perform the check for the // remaining instructions in the packet. std::vector::iterator VI; std::vector::iterator VE; unsigned StartCheck = 0; for (VI=CurrentPacketMIs.begin(), VE = CurrentPacketMIs.end(); (VI != VE); ++VI) { SUnit *TempSU = MIToSUnit.find(*VI)->second; MachineInstr* TempMI = TempSU->getInstr(); // Following condition is true for all the instructions until PacketMI is // reached (StartCheck is set to 0 before the for loop). // StartCheck flag is 1 for all the instructions after PacketMI. if (TempMI != PacketMI && !StartCheck) // start processing only after continue; // encountering PacketMI StartCheck = 1; if (TempMI == PacketMI) // We don't want to check PacketMI for dependence continue; for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++) { if (MI->getOperand(opNum).isReg() && TempSU->getInstr()->modifiesRegister(MI->getOperand(opNum).getReg(), QRI)) return false; } } // Make sure that for non-POST_INC stores: // 1. The only use of reg is DepReg and no other registers. // This handles V4 base+index registers. // The following store can not be dot new. // Eg. r0 = add(r0, #3)a // memw(r1+r0<<#2) = r0 if (!QII->isPostIncrement(MI) && GetStoreValueOperand(MI).isReg() && GetStoreValueOperand(MI).getReg() == DepReg) { for(unsigned opNum = 0; opNum < MI->getNumOperands()-1; opNum++) { if (MI->getOperand(opNum).isReg() && MI->getOperand(opNum).getReg() == DepReg) { return false; } } // 2. If data definition is because of implicit definition of the register, // do not newify the store. Eg. // %R9 = ZXTH %R12, %D6, %R12 // STrih_indexed %R8, 2, %R12; mem:ST2[%scevgep343] for(unsigned opNum = 0; opNum < PacketMI->getNumOperands(); opNum++) { if (PacketMI->getOperand(opNum).isReg() && PacketMI->getOperand(opNum).getReg() == DepReg && PacketMI->getOperand(opNum).isDef() && PacketMI->getOperand(opNum).isImplicit()) { return false; } } } // Can be dot new store. return true; } // can this MI to promoted to either // new value store or new value jump bool HexagonPacketizerList::CanPromoteToNewValue( MachineInstr *MI, SUnit *PacketSU, unsigned DepReg, const std::map &MIToSUnit, MachineBasicBlock::iterator &MII) { const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII; const HexagonRegisterInfo *QRI = (const HexagonRegisterInfo *)MF.getSubtarget().getRegisterInfo(); if (!QRI->Subtarget.hasV4TOps() || !QII->mayBeNewStore(MI)) return false; MachineInstr *PacketMI = PacketSU->getInstr(); // Check to see the store can be new value'ed. if (CanPromoteToNewValueStore(MI, PacketMI, DepReg, MIToSUnit)) return true; // Check to see the compare/jump can be new value'ed. // This is done as a pass on its own. Don't need to check it here. return false; } // Check to see if an instruction can be dot new // There are three kinds. // 1. dot new on predicate - V2/V3/V4 // 2. dot new on stores NV/ST - V4 // 3. dot new on jump NV/J - V4 -- This is generated in a pass. bool HexagonPacketizerList::CanPromoteToDotNew( MachineInstr *MI, SUnit *PacketSU, unsigned DepReg, const std::map &MIToSUnit, MachineBasicBlock::iterator &MII, const TargetRegisterClass *RC) { const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII; // Already a dot new instruction. if (QII->isDotNewInst(MI) && !QII->mayBeNewStore(MI)) return false; if (!isNewifiable(MI)) return false; // predicate .new if (RC == &Hexagon::PredRegsRegClass && isCondInst(MI)) return true; else if (RC != &Hexagon::PredRegsRegClass && !QII->mayBeNewStore(MI)) // MI is not a new-value store return false; else { // Create a dot new machine instruction to see if resources can be // allocated. If not, bail out now. int NewOpcode = QII->GetDotNewOp(MI); const MCInstrDesc &desc = QII->get(NewOpcode); DebugLoc dl; MachineInstr *NewMI = MI->getParent()->getParent()->CreateMachineInstr(desc, dl); bool ResourcesAvailable = ResourceTracker->canReserveResources(NewMI); MI->getParent()->getParent()->DeleteMachineInstr(NewMI); if (!ResourcesAvailable) return false; // new value store only // new new value jump generated as a passes if (!CanPromoteToNewValue(MI, PacketSU, DepReg, MIToSUnit, MII)) { return false; } } return true; } // Go through the packet instructions and search for anti dependency // between them and DepReg from MI // Consider this case: // Trying to add // a) %R1 = TFRI_cdNotPt %P3, 2 // to this packet: // { // b) %P0 = OR_pp %P3, %P0 // c) %P3 = TFR_PdRs %R23 // d) %R1 = TFRI_cdnPt %P3, 4 // } // The P3 from a) and d) will be complements after // a)'s P3 is converted to .new form // Anti Dep between c) and b) is irrelevant for this case bool HexagonPacketizerList::RestrictingDepExistInPacket( MachineInstr *MI, unsigned DepReg, const std::map &MIToSUnit) { const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII; SUnit *PacketSUDep = MIToSUnit.find(MI)->second; for (std::vector::iterator VIN = CurrentPacketMIs.begin(), VEN = CurrentPacketMIs.end(); (VIN != VEN); ++VIN) { // We only care for dependencies to predicated instructions if(!QII->isPredicated(*VIN)) continue; // Scheduling Unit for current insn in the packet SUnit *PacketSU = MIToSUnit.find(*VIN)->second; // Look at dependencies between current members of the packet // and predicate defining instruction MI. // Make sure that dependency is on the exact register // we care about. if (PacketSU->isSucc(PacketSUDep)) { for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) { if ((PacketSU->Succs[i].getSUnit() == PacketSUDep) && (PacketSU->Succs[i].getKind() == SDep::Anti) && (PacketSU->Succs[i].getReg() == DepReg)) { return true; } } } } return false; } /// Gets the predicate register of a predicated instruction. static unsigned getPredicatedRegister(MachineInstr *MI, const HexagonInstrInfo *QII) { /// We use the following rule: The first predicate register that is a use is /// the predicate register of a predicated instruction. assert(QII->isPredicated(MI) && "Must be predicated instruction"); for (MachineInstr::mop_iterator OI = MI->operands_begin(), OE = MI->operands_end(); OI != OE; ++OI) { MachineOperand &Op = *OI; if (Op.isReg() && Op.getReg() && Op.isUse() && Hexagon::PredRegsRegClass.contains(Op.getReg())) return Op.getReg(); } llvm_unreachable("Unknown instruction operand layout"); return 0; } // Given two predicated instructions, this function detects whether // the predicates are complements bool HexagonPacketizerList::ArePredicatesComplements( MachineInstr *MI1, MachineInstr *MI2, const std::map &MIToSUnit) { const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII; // If we don't know the predicate sense of the instructions bail out early, we // need it later. if (getPredicateSense(MI1, QII) == PK_Unknown || getPredicateSense(MI2, QII) == PK_Unknown) return false; // Scheduling unit for candidate SUnit *SU = MIToSUnit.find(MI1)->second; // One corner case deals with the following scenario: // Trying to add // a) %R24 = TFR_cPt %P0, %R25 // to this packet: // // { // b) %R25 = TFR_cNotPt %P0, %R24 // c) %P0 = CMPEQri %R26, 1 // } // // On general check a) and b) are complements, but // presence of c) will convert a) to .new form, and // then it is not a complement // We attempt to detect it by analyzing existing // dependencies in the packet // Analyze relationships between all existing members of the packet. // Look for Anti dependecy on the same predicate reg // as used in the candidate for (std::vector::iterator VIN = CurrentPacketMIs.begin(), VEN = CurrentPacketMIs.end(); (VIN != VEN); ++VIN) { // Scheduling Unit for current insn in the packet SUnit *PacketSU = MIToSUnit.find(*VIN)->second; // If this instruction in the packet is succeeded by the candidate... if (PacketSU->isSucc(SU)) { for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) { // The corner case exist when there is true data // dependency between candidate and one of current // packet members, this dep is on predicate reg, and // there already exist anti dep on the same pred in // the packet. if (PacketSU->Succs[i].getSUnit() == SU && PacketSU->Succs[i].getKind() == SDep::Data && Hexagon::PredRegsRegClass.contains( PacketSU->Succs[i].getReg()) && // Here I know that *VIN is predicate setting instruction // with true data dep to candidate on the register // we care about - c) in the above example. // Now I need to see if there is an anti dependency // from c) to any other instruction in the // same packet on the pred reg of interest RestrictingDepExistInPacket(*VIN,PacketSU->Succs[i].getReg(), MIToSUnit)) { return false; } } } } // If the above case does not apply, check regular // complement condition. // Check that the predicate register is the same and // that the predicate sense is different // We also need to differentiate .old vs. .new: // !p0 is not complimentary to p0.new unsigned PReg1 = getPredicatedRegister(MI1, QII); unsigned PReg2 = getPredicatedRegister(MI2, QII); return ((PReg1 == PReg2) && Hexagon::PredRegsRegClass.contains(PReg1) && Hexagon::PredRegsRegClass.contains(PReg2) && (getPredicateSense(MI1, QII) != getPredicateSense(MI2, QII)) && (QII->isDotNewInst(MI1) == QII->isDotNewInst(MI2))); } // initPacketizerState - Initialize packetizer flags void HexagonPacketizerList::initPacketizerState() { Dependence = false; PromotedToDotNew = false; GlueToNewValueJump = false; GlueAllocframeStore = false; FoundSequentialDependence = false; return; } // ignorePseudoInstruction - Ignore bundling of pseudo instructions. bool HexagonPacketizerList::ignorePseudoInstruction(MachineInstr *MI, MachineBasicBlock *MBB) { if (MI->isDebugValue()) return true; // We must print out inline assembly if (MI->isInlineAsm()) return false; // We check if MI has any functional units mapped to it. // If it doesn't, we ignore the instruction. const MCInstrDesc& TID = MI->getDesc(); unsigned SchedClass = TID.getSchedClass(); const InstrStage* IS = ResourceTracker->getInstrItins()->beginStage(SchedClass); unsigned FuncUnits = IS->getUnits(); return !FuncUnits; } // isSoloInstruction: - Returns true for instructions that must be // scheduled in their own packet. bool HexagonPacketizerList::isSoloInstruction(MachineInstr *MI) { if (MI->isInlineAsm()) return true; if (MI->isEHLabel()) return true; // From Hexagon V4 Programmer's Reference Manual 3.4.4 Grouping constraints: // trap, pause, barrier, icinva, isync, and syncht are solo instructions. // They must not be grouped with other instructions in a packet. if (IsSchedBarrier(MI)) return true; return false; } // isLegalToPacketizeTogether: // SUI is the current instruction that is out side of the current packet. // SUJ is the current instruction inside the current packet against which that // SUI will be packetized. bool HexagonPacketizerList::isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) { MachineInstr *I = SUI->getInstr(); MachineInstr *J = SUJ->getInstr(); assert(I && J && "Unable to packetize null instruction!"); const MCInstrDesc &MCIDI = I->getDesc(); const MCInstrDesc &MCIDJ = J->getDesc(); MachineBasicBlock::iterator II = I; const unsigned FrameSize = MF.getFrameInfo()->getStackSize(); const HexagonRegisterInfo *QRI = (const HexagonRegisterInfo *)MF.getSubtarget().getRegisterInfo(); const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII; // Inline asm cannot go in the packet. if (I->getOpcode() == Hexagon::INLINEASM) llvm_unreachable("Should not meet inline asm here!"); if (isSoloInstruction(I)) llvm_unreachable("Should not meet solo instr here!"); // A save callee-save register function call can only be in a packet // with instructions that don't write to the callee-save registers. if ((QII->isSaveCalleeSavedRegsCall(I) && DoesModifyCalleeSavedReg(J, QRI)) || (QII->isSaveCalleeSavedRegsCall(J) && DoesModifyCalleeSavedReg(I, QRI))) { Dependence = true; return false; } // Two control flow instructions cannot go in the same packet. if (IsControlFlow(I) && IsControlFlow(J)) { Dependence = true; return false; } // A LoopN instruction cannot appear in the same packet as a jump or call. if (IsLoopN(I) && (IsDirectJump(J) || MCIDJ.isCall() || QII->isDeallocRet(J))) { Dependence = true; return false; } if (IsLoopN(J) && (IsDirectJump(I) || MCIDI.isCall() || QII->isDeallocRet(I))) { Dependence = true; return false; } // dealloc_return cannot appear in the same packet as a conditional or // unconditional jump. if (QII->isDeallocRet(I) && (MCIDJ.isBranch() || MCIDJ.isCall() || MCIDJ.isBarrier())) { Dependence = true; return false; } // V4 allows dual store. But does not allow second store, if the // first store is not in SLOT0. New value store, new value jump, // dealloc_return and memop always take SLOT0. // Arch spec 3.4.4.2 if (QRI->Subtarget.hasV4TOps()) { if (MCIDI.mayStore() && MCIDJ.mayStore() && (QII->isNewValueInst(J) || QII->isMemOp(J) || QII->isMemOp(I))) { Dependence = true; return false; } if ((QII->isMemOp(J) && MCIDI.mayStore()) || (MCIDJ.mayStore() && QII->isMemOp(I)) || (QII->isMemOp(J) && QII->isMemOp(I))) { Dependence = true; return false; } //if dealloc_return if (MCIDJ.mayStore() && QII->isDeallocRet(I)) { Dependence = true; return false; } // If an instruction feeds new value jump, glue it. MachineBasicBlock::iterator NextMII = I; ++NextMII; if (NextMII != I->getParent()->end() && QII->isNewValueJump(NextMII)) { MachineInstr *NextMI = NextMII; bool secondRegMatch = false; bool maintainNewValueJump = false; if (NextMI->getOperand(1).isReg() && I->getOperand(0).getReg() == NextMI->getOperand(1).getReg()) { secondRegMatch = true; maintainNewValueJump = true; } if (!secondRegMatch && I->getOperand(0).getReg() == NextMI->getOperand(0).getReg()) { maintainNewValueJump = true; } for (std::vector::iterator VI = CurrentPacketMIs.begin(), VE = CurrentPacketMIs.end(); (VI != VE && maintainNewValueJump); ++VI) { SUnit *PacketSU = MIToSUnit.find(*VI)->second; // NVJ can not be part of the dual jump - Arch Spec: section 7.8 if (PacketSU->getInstr()->getDesc().isCall()) { Dependence = true; break; } // Validate // 1. Packet does not have a store in it. // 2. If the first operand of the nvj is newified, and the second // operand is also a reg, it (second reg) is not defined in // the same packet. // 3. If the second operand of the nvj is newified, (which means // first operand is also a reg), first reg is not defined in // the same packet. if (PacketSU->getInstr()->getDesc().mayStore() || PacketSU->getInstr()->getOpcode() == Hexagon::ALLOCFRAME || // Check #2. (!secondRegMatch && NextMI->getOperand(1).isReg() && PacketSU->getInstr()->modifiesRegister( NextMI->getOperand(1).getReg(), QRI)) || // Check #3. (secondRegMatch && PacketSU->getInstr()->modifiesRegister( NextMI->getOperand(0).getReg(), QRI))) { Dependence = true; break; } } if (!Dependence) GlueToNewValueJump = true; else return false; } } if (SUJ->isSucc(SUI)) { for (unsigned i = 0; (i < SUJ->Succs.size()) && !FoundSequentialDependence; ++i) { if (SUJ->Succs[i].getSUnit() != SUI) { continue; } SDep::Kind DepType = SUJ->Succs[i].getKind(); // For direct calls: // Ignore register dependences for call instructions for // packetization purposes except for those due to r31 and // predicate registers. // // For indirect calls: // Same as direct calls + check for true dependences to the register // used in the indirect call. // // We completely ignore Order dependences for call instructions // // For returns: // Ignore register dependences for return instructions like jumpr, // dealloc return unless we have dependencies on the explicit uses // of the registers used by jumpr (like r31) or dealloc return // (like r29 or r30). // // TODO: Currently, jumpr is handling only return of r31. So, the // following logic (specificaly IsCallDependent) is working fine. // We need to enable jumpr for register other than r31 and then, // we need to rework the last part, where it handles indirect call // of that (IsCallDependent) function. Bug 6216 is opened for this. // unsigned DepReg = 0; const TargetRegisterClass* RC = nullptr; if (DepType == SDep::Data) { DepReg = SUJ->Succs[i].getReg(); RC = QRI->getMinimalPhysRegClass(DepReg); } if ((MCIDI.isCall() || MCIDI.isReturn()) && (!IsRegDependence(DepType) || !IsCallDependent(I, DepType, SUJ->Succs[i].getReg()))) { /* do nothing */ } // For instructions that can be promoted to dot-new, try to promote. else if ((DepType == SDep::Data) && CanPromoteToDotNew(I, SUJ, DepReg, MIToSUnit, II, RC) && PromoteToDotNew(I, DepType, II, RC)) { PromotedToDotNew = true; /* do nothing */ } else if ((DepType == SDep::Data) && (QII->isNewValueJump(I))) { /* do nothing */ } // For predicated instructions, if the predicates are complements // then there can be no dependence. else if (QII->isPredicated(I) && QII->isPredicated(J) && ArePredicatesComplements(I, J, MIToSUnit)) { /* do nothing */ } else if (IsDirectJump(I) && !MCIDJ.isBranch() && !MCIDJ.isCall() && (DepType == SDep::Order)) { // Ignore Order dependences between unconditional direct branches // and non-control-flow instructions /* do nothing */ } else if (MCIDI.isConditionalBranch() && (DepType != SDep::Data) && (DepType != SDep::Output)) { // Ignore all dependences for jumps except for true and output // dependences /* do nothing */ } // Ignore output dependences due to superregs. We can // write to two different subregisters of R1:0 for instance // in the same cycle // // // Let the // If neither I nor J defines DepReg, then this is a // superfluous output dependence. The dependence must be of the // form: // R0 = ... // R1 = ... // and there is an output dependence between the two instructions // with // DepReg = D0 // We want to ignore these dependences. // Ideally, the dependence constructor should annotate such // dependences. We can then avoid this relatively expensive check. // else if (DepType == SDep::Output) { // DepReg is the register that's responsible for the dependence. unsigned DepReg = SUJ->Succs[i].getReg(); // Check if I and J really defines DepReg. if (I->definesRegister(DepReg) || J->definesRegister(DepReg)) { FoundSequentialDependence = true; break; } } // We ignore Order dependences for // 1. Two loads unless they are volatile. // 2. Two stores in V4 unless they are volatile. else if ((DepType == SDep::Order) && !I->hasOrderedMemoryRef() && !J->hasOrderedMemoryRef()) { if (QRI->Subtarget.hasV4TOps() && // hexagonv4 allows dual store. MCIDI.mayStore() && MCIDJ.mayStore()) { /* do nothing */ } // store followed by store-- not OK on V2 // store followed by load -- not OK on all (OK if addresses // are not aliased) // load followed by store -- OK on all // load followed by load -- OK on all else if ( !MCIDJ.mayStore()) { /* do nothing */ } else { FoundSequentialDependence = true; break; } } // For V4, special case ALLOCFRAME. Even though there is dependency // between ALLOCFRAME and subsequent store, allow it to be // packetized in a same packet. This implies that the store is using // caller's SP. Hence, offset needs to be updated accordingly. else if (DepType == SDep::Data && QRI->Subtarget.hasV4TOps() && J->getOpcode() == Hexagon::ALLOCFRAME && (I->getOpcode() == Hexagon::STrid || I->getOpcode() == Hexagon::STriw || I->getOpcode() == Hexagon::STrib) && I->getOperand(0).getReg() == QRI->getStackRegister() && QII->isValidOffset(I->getOpcode(), I->getOperand(1).getImm() - (FrameSize + HEXAGON_LRFP_SIZE))) { GlueAllocframeStore = true; // Since this store is to be glued with allocframe in the same // packet, it will use SP of the previous stack frame, i.e // caller's SP. Therefore, we need to recalculate offset according // to this change. I->getOperand(1).setImm(I->getOperand(1).getImm() - (FrameSize + HEXAGON_LRFP_SIZE)); } // // Skip over anti-dependences. Two instructions that are // anti-dependent can share a packet // else if (DepType != SDep::Anti) { FoundSequentialDependence = true; break; } } if (FoundSequentialDependence) { Dependence = true; return false; } } return true; } // isLegalToPruneDependencies bool HexagonPacketizerList::isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) { MachineInstr *I = SUI->getInstr(); assert(I && SUJ->getInstr() && "Unable to packetize null instruction!"); const unsigned FrameSize = MF.getFrameInfo()->getStackSize(); if (Dependence) { // Check if the instruction was promoted to a dot-new. If so, demote it // back into a dot-old. if (PromotedToDotNew) { DemoteToDotOld(I); } // Check if the instruction (must be a store) was glued with an Allocframe // instruction. If so, restore its offset to its original value, i.e. use // curent SP instead of caller's SP. if (GlueAllocframeStore) { I->getOperand(1).setImm(I->getOperand(1).getImm() + FrameSize + HEXAGON_LRFP_SIZE); } return false; } return true; } MachineBasicBlock::iterator HexagonPacketizerList::addToPacket(MachineInstr *MI) { MachineBasicBlock::iterator MII = MI; MachineBasicBlock *MBB = MI->getParent(); const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII; if (GlueToNewValueJump) { ++MII; MachineInstr *nvjMI = MII; assert(ResourceTracker->canReserveResources(MI)); ResourceTracker->reserveResources(MI); if ((QII->isExtended(MI) || QII->isConstExtended(MI)) && !tryAllocateResourcesForConstExt(MI)) { endPacket(MBB, MI); ResourceTracker->reserveResources(MI); assert(canReserveResourcesForConstExt(MI) && "Ensure that there is a slot"); reserveResourcesForConstExt(MI); // Reserve resources for new value jump constant extender. assert(canReserveResourcesForConstExt(MI) && "Ensure that there is a slot"); reserveResourcesForConstExt(nvjMI); assert(ResourceTracker->canReserveResources(nvjMI) && "Ensure that there is a slot"); } else if ( // Extended instruction takes two slots in the packet. // Try reserve and allocate 4-byte in the current packet first. (QII->isExtended(nvjMI) && (!tryAllocateResourcesForConstExt(nvjMI) || !ResourceTracker->canReserveResources(nvjMI))) || // For non-extended instruction, no need to allocate extra 4 bytes. (!QII->isExtended(nvjMI) && !ResourceTracker->canReserveResources(nvjMI))) { endPacket(MBB, MI); // A new and empty packet starts. // We are sure that the resources requirements can be satisfied. // Therefore, do not need to call "canReserveResources" anymore. ResourceTracker->reserveResources(MI); if (QII->isExtended(nvjMI)) reserveResourcesForConstExt(nvjMI); } // Here, we are sure that "reserveResources" would succeed. ResourceTracker->reserveResources(nvjMI); CurrentPacketMIs.push_back(MI); CurrentPacketMIs.push_back(nvjMI); } else { if ( (QII->isExtended(MI) || QII->isConstExtended(MI)) && ( !tryAllocateResourcesForConstExt(MI) || !ResourceTracker->canReserveResources(MI))) { endPacket(MBB, MI); // Check if the instruction was promoted to a dot-new. If so, demote it // back into a dot-old if (PromotedToDotNew) { DemoteToDotOld(MI); } reserveResourcesForConstExt(MI); } // In case that "MI" is not an extended insn, // the resource availability has already been checked. ResourceTracker->reserveResources(MI); CurrentPacketMIs.push_back(MI); } return MII; } //===----------------------------------------------------------------------===// // Public Constructor Functions //===----------------------------------------------------------------------===// FunctionPass *llvm::createHexagonPacketizer() { return new HexagonPacketizer(); }