//===- HexagonMCInstrInfo.cpp - Hexagon sub-class of MCInst ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This class extends MCInstrInfo to allow Hexagon specific MCInstr queries // //===----------------------------------------------------------------------===// #include "HexagonMCInstrInfo.h" #include "HexagonBaseInfo.h" namespace llvm { void HexagonMCInstrInfo::AppendImplicitOperands(MCInst &MCI) { MCI.addOperand(MCOperand::CreateImm(0)); MCI.addOperand(MCOperand::CreateInst(nullptr)); } unsigned HexagonMCInstrInfo::getBitCount(MCInstrInfo const &MCII, MCInst const &MCI) { uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; return ((F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask); } // Return constant extended operand number. unsigned short HexagonMCInstrInfo::getCExtOpNum(MCInstrInfo const &MCII, MCInst const &MCI) { const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask); } MCInstrDesc const &HexagonMCInstrInfo::getDesc(MCInstrInfo const &MCII, MCInst const &MCI) { return (MCII.get(MCI.getOpcode())); } std::bitset<16> HexagonMCInstrInfo::GetImplicitBits(MCInst const &MCI) { SanityCheckImplicitOperands(MCI); std::bitset<16> Bits(MCI.getOperand(MCI.getNumOperands() - 2).getImm()); return Bits; } // Return the max value that a constant extendable operand can have // without being extended. int HexagonMCInstrInfo::getMaxValue(MCInstrInfo const &MCII, MCInst const &MCI) { uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; unsigned isSigned = (F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask; unsigned bits = (F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask; if (isSigned) // if value is signed return ~(-1U << (bits - 1)); else return ~(-1U << bits); } // Return the min value that a constant extendable operand can have // without being extended. int HexagonMCInstrInfo::getMinValue(MCInstrInfo const &MCII, MCInst const &MCI) { uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; unsigned isSigned = (F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask; unsigned bits = (F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask; if (isSigned) // if value is signed return -1U << (bits - 1); else return 0; } // Return the operand that consumes or produces a new value. MCOperand const &HexagonMCInstrInfo::getNewValue(MCInstrInfo const &MCII, MCInst const &MCI) { uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; unsigned const O = (F >> HexagonII::NewValueOpPos) & HexagonII::NewValueOpMask; MCOperand const &MCO = MCI.getOperand(O); assert((HexagonMCInstrInfo::isNewValue(MCII, MCI) || HexagonMCInstrInfo::hasNewValue(MCII, MCI)) && MCO.isReg()); return (MCO); } // Return the Hexagon ISA class for the insn. unsigned HexagonMCInstrInfo::getType(MCInstrInfo const &MCII, MCInst const &MCI) { const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; return ((F >> HexagonII::TypePos) & HexagonII::TypeMask); } // Return whether the instruction is a legal new-value producer. bool HexagonMCInstrInfo::hasNewValue(MCInstrInfo const &MCII, MCInst const &MCI) { const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; return ((F >> HexagonII::hasNewValuePos) & HexagonII::hasNewValueMask); } // Return whether the insn is an actual insn. bool HexagonMCInstrInfo::isCanon(MCInstrInfo const &MCII, MCInst const &MCI) { return (!HexagonMCInstrInfo::getDesc(MCII, MCI).isPseudo() && !HexagonMCInstrInfo::isPrefix(MCII, MCI) && HexagonMCInstrInfo::getType(MCII, MCI) != HexagonII::TypeENDLOOP); } // Return whether the instruction needs to be constant extended. // 1) Always return true if the instruction has 'isExtended' flag set. // // isExtendable: // 2) For immediate extended operands, return true only if the value is // out-of-range. // 3) For global address, always return true. bool HexagonMCInstrInfo::isConstExtended(MCInstrInfo const &MCII, MCInst const &MCI) { if (HexagonMCInstrInfo::isExtended(MCII, MCI)) return true; if (!HexagonMCInstrInfo::isExtendable(MCII, MCI)) return false; short ExtOpNum = HexagonMCInstrInfo::getCExtOpNum(MCII, MCI); int MinValue = HexagonMCInstrInfo::getMinValue(MCII, MCI); int MaxValue = HexagonMCInstrInfo::getMaxValue(MCII, MCI); MCOperand const &MO = MCI.getOperand(ExtOpNum); // We could be using an instruction with an extendable immediate and shoehorn // a global address into it. If it is a global address it will be constant // extended. We do this for COMBINE. // We currently only handle isGlobal() because it is the only kind of // object we are going to end up with here for now. // In the future we probably should add isSymbol(), etc. if (MO.isExpr()) return true; // If the extendable operand is not 'Immediate' type, the instruction should // have 'isExtended' flag set. assert(MO.isImm() && "Extendable operand must be Immediate type"); int ImmValue = MO.getImm(); return (ImmValue < MinValue || ImmValue > MaxValue); } // Return true if the instruction may be extended based on the operand value. bool HexagonMCInstrInfo::isExtendable(MCInstrInfo const &MCII, MCInst const &MCI) { uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; return (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask; } // Return whether the instruction must be always extended. bool HexagonMCInstrInfo::isExtended(MCInstrInfo const &MCII, MCInst const &MCI) { uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; return (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask; } // Return whether the insn is a new-value consumer. bool HexagonMCInstrInfo::isNewValue(MCInstrInfo const &MCII, MCInst const &MCI) { const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask); } // Return whether the operand can be constant extended. bool HexagonMCInstrInfo::isOperandExtended(MCInstrInfo const &MCII, MCInst const &MCI, unsigned short OperandNum) { uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask) == OperandNum; } bool HexagonMCInstrInfo::isPacketBegin(MCInst const &MCI) { std::bitset<16> Bits(GetImplicitBits(MCI)); return Bits.test(packetBeginIndex); } bool HexagonMCInstrInfo::isPacketEnd(MCInst const &MCI) { std::bitset<16> Bits(GetImplicitBits(MCI)); return Bits.test(packetEndIndex); } // Return whether the insn is a prefix. bool HexagonMCInstrInfo::isPrefix(MCInstrInfo const &MCII, MCInst const &MCI) { return (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypePREFIX); } // Return whether the insn is solo, i.e., cannot be in a packet. bool HexagonMCInstrInfo::isSolo(MCInstrInfo const &MCII, MCInst const &MCI) { const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; return ((F >> HexagonII::SoloPos) & HexagonII::SoloMask); } void HexagonMCInstrInfo::resetPacket(MCInst &MCI) { setPacketBegin(MCI, false); setPacketEnd(MCI, false); } void HexagonMCInstrInfo::SetImplicitBits(MCInst &MCI, std::bitset<16> Bits) { SanityCheckImplicitOperands(MCI); MCI.getOperand(MCI.getNumOperands() - 2).setImm(Bits.to_ulong()); } void HexagonMCInstrInfo::setPacketBegin(MCInst &MCI, bool f) { std::bitset<16> Bits(GetImplicitBits(MCI)); Bits.set(packetBeginIndex, f); SetImplicitBits(MCI, Bits); } void HexagonMCInstrInfo::setPacketEnd(MCInst &MCI, bool f) { std::bitset<16> Bits(GetImplicitBits(MCI)); Bits.set(packetEndIndex, f); SetImplicitBits(MCI, Bits); } }