//===-- MipsAsmPrinter.cpp - Mips LLVM assembly writer --------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a printer that converts from our internal representation // of machine-dependent LLVM code to GAS-format MIPS assembly language. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "mips-asm-printer" #include "Mips.h" #include "MipsInstrInfo.h" #include "MipsTargetMachine.h" #include "MipsMachineFunction.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/Target/TargetAsmInfo.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Support/Mangler.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/Debug.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/MathExtras.h" #include using namespace llvm; STATISTIC(EmittedInsts, "Number of machine instrs printed"); namespace { struct VISIBILITY_HIDDEN MipsAsmPrinter : public AsmPrinter { MipsAsmPrinter(std::ostream &O, MipsTargetMachine &TM, const TargetAsmInfo *T): AsmPrinter(O, TM, T) {} virtual const char *getPassName() const { return "Mips Assembly Printer"; } enum SetDirectiveFlags { REORDER, // enables instruction reordering. NOREORDER, // disables instruction reordering. MACRO, // enables GAS macros. NOMACRO // disables GAS macros. }; void printOperand(const MachineInstr *MI, int opNum); void printMemOperand(const MachineInstr *MI, int opNum, const char *Modifier = 0); unsigned int getSavedRegsBitmask(bool isFloat, MachineFunction &MF); void printHex32(unsigned int Value); void emitFunctionStart(MachineFunction &MF); void emitFunctionEnd(MachineFunction &MF); void emitFrameDirective(MachineFunction &MF); void emitMaskDirective(MachineFunction &MF); void emitFMaskDirective(MachineFunction &MF); void emitSetDirective(SetDirectiveFlags Flag); bool printInstruction(const MachineInstr *MI); // autogenerated. bool runOnMachineFunction(MachineFunction &F); bool doInitialization(Module &M); bool doFinalization(Module &M); }; } // end of anonymous namespace #include "MipsGenAsmWriter.inc" /// createMipsCodePrinterPass - Returns a pass that prints the MIPS /// assembly code for a MachineFunction to the given output stream, /// using the given target machine description. This should work /// regardless of whether the function is in SSA form. FunctionPass *llvm::createMipsCodePrinterPass(std::ostream &o, MipsTargetMachine &tm) { return new MipsAsmPrinter(o, tm, tm.getTargetAsmInfo()); } //===----------------------------------------------------------------------===// // // Mips Asm Directives // // -- Frame directive "frame Stackpointer, Stacksize, RARegister" // Describe the stack frame. // // -- Mask directives "(f)mask bitmask, offset" // Tells the assembler which registers are saved and where. // bitmask - contain a little endian bitset indicating which registers are // saved on function prologue (e.g. with a 0x80000000 mask, the // assembler knows the register 31 (RA) is saved at prologue. // offset - the position before stack pointer subtraction indicating where // the first saved register on prologue is located. (e.g. with a // // Consider the following function prologue: // // .frame $fp,48,$ra // .mask 0xc0000000,-8 // addiu $sp, $sp, -48 // sw $ra, 40($sp) // sw $fp, 36($sp) // // With a 0xc0000000 mask, the assembler knows the register 31 (RA) and // 30 (FP) are saved at prologue. As the save order on prologue is from // left to right, RA is saved first. A -8 offset means that after the // stack pointer subtration, the first register in the mask (RA) will be // saved at address 48-8=40. // //===----------------------------------------------------------------------===// /// Mask directive for GPR void MipsAsmPrinter:: emitMaskDirective(MachineFunction &MF) { MipsFunctionInfo *MipsFI = MF.getInfo(); int StackSize = MF.getFrameInfo()->getStackSize(); int Offset = (!MipsFI->getTopSavedRegOffset()) ? 0 : (-(StackSize-MipsFI->getTopSavedRegOffset())); #ifndef NDEBUG DOUT << "--> emitMaskDirective" << "\n"; DOUT << "StackSize : " << StackSize << "\n"; DOUT << "getTopSavedReg : " << MipsFI->getTopSavedRegOffset() << "\n"; DOUT << "Offset : " << Offset << "\n\n"; #endif unsigned int Bitmask = getSavedRegsBitmask(false, MF); O << "\t.mask \t"; printHex32(Bitmask); O << "," << Offset << "\n"; } /// TODO: Mask Directive for Float Point void MipsAsmPrinter:: emitFMaskDirective(MachineFunction &MF) { unsigned int Bitmask = getSavedRegsBitmask(true, MF); O << "\t.fmask\t"; printHex32(Bitmask); O << ",0" << "\n"; } /// Frame Directive void MipsAsmPrinter:: emitFrameDirective(MachineFunction &MF) { const MRegisterInfo &RI = *TM.getRegisterInfo(); unsigned stackReg = RI.getFrameRegister(MF); unsigned returnReg = RI.getRARegister(); unsigned stackSize = MF.getFrameInfo()->getStackSize(); O << "\t.frame\t" << "$" << LowercaseString(RI.get(stackReg).Name) << "," << stackSize << "," << "$" << LowercaseString(RI.get(returnReg).Name) << "\n"; } /// Emit Set directives. void MipsAsmPrinter:: emitSetDirective(SetDirectiveFlags Flag) { O << "\t.set\t"; switch(Flag) { case REORDER: O << "reorder" << "\n"; break; case NOREORDER: O << "noreorder" << "\n"; break; case MACRO: O << "macro" << "\n"; break; case NOMACRO: O << "nomacro" << "\n"; break; default: break; } } // Create a bitmask with all callee saved registers for CPU // or Float Point registers. For CPU registers consider RA, // GP and FP for saving if necessary. unsigned int MipsAsmPrinter:: getSavedRegsBitmask(bool isFloat, MachineFunction &MF) { const MRegisterInfo &RI = *TM.getRegisterInfo(); // Float Point Registers, TODO if (isFloat) return 0; // CPU Registers unsigned int Bitmask = 0; MachineFrameInfo *MFI = MF.getFrameInfo(); const std::vector &CSI = MFI->getCalleeSavedInfo(); for (unsigned i = 0, e = CSI.size(); i != e; ++i) Bitmask |= (1 << MipsRegisterInfo::getRegisterNumbering(CSI[i].getReg())); if (RI.hasFP(MF)) Bitmask |= (1 << MipsRegisterInfo:: getRegisterNumbering(RI.getFrameRegister(MF))); if (MF.getFrameInfo()->hasCalls()) Bitmask |= (1 << MipsRegisterInfo:: getRegisterNumbering(RI.getRARegister())); return Bitmask; } // Print a 32 bit hex number with all numbers. void MipsAsmPrinter:: printHex32(unsigned int Value) { O << "0x" << std::hex; for (int i = 7; i >= 0; i--) O << std::hex << ( (Value & (0xF << (i*4))) >> (i*4) ); O << std::dec; } /// Emit the directives used by GAS on the start of functions void MipsAsmPrinter:: emitFunctionStart(MachineFunction &MF) { // Print out the label for the function. const Function *F = MF.getFunction(); SwitchToTextSection(getSectionForFunction(*F).c_str(), F); // 2 bits aligned EmitAlignment(2, F); O << "\t.globl\t" << CurrentFnName << "\n"; O << "\t.ent\t" << CurrentFnName << "\n"; O << "\t.type\t" << CurrentFnName << ", @function\n"; O << CurrentFnName << ":\n"; emitFrameDirective(MF); emitMaskDirective(MF); emitFMaskDirective(MF); if (TM.getRelocationModel() == Reloc::Static) { emitSetDirective(NOREORDER); emitSetDirective(NOMACRO); } O << "\n"; } /// Emit the directives used by GAS on the end of functions void MipsAsmPrinter:: emitFunctionEnd(MachineFunction &MF) { if (TM.getRelocationModel() == Reloc::Static) { emitSetDirective(MACRO); emitSetDirective(REORDER); } O << "\t.end\t" << CurrentFnName << "\n"; } /// runOnMachineFunction - This uses the printMachineInstruction() /// method to print assembly for each instruction. bool MipsAsmPrinter:: runOnMachineFunction(MachineFunction &MF) { SetupMachineFunction(MF); // Print out constants referenced by the function EmitConstantPool(MF.getConstantPool()); // Print out jump tables referenced by the function EmitJumpTableInfo(MF.getJumpTableInfo(), MF); O << "\n\n"; // What's my mangled name? CurrentFnName = Mang->getValueName(MF.getFunction()); // Emit the function start directives emitFunctionStart(MF); // Print out code for the function. for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); I != E; ++I) { // Print a label for the basic block. if (I != MF.begin()) { printBasicBlockLabel(I, true); O << '\n'; } for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end(); II != E; ++II) { // Print the assembly for the instruction. O << "\t"; printInstruction(II); ++EmittedInsts; } // Each Basic Block is separated by a newline O << '\n'; } // Emit function end directives emitFunctionEnd(MF); // We didn't modify anything. return false; } void MipsAsmPrinter:: printOperand(const MachineInstr *MI, int opNum) { const MachineOperand &MO = MI->getOperand(opNum); const MRegisterInfo &RI = *TM.getRegisterInfo(); bool closeP = false; bool isPIC = (TM.getRelocationModel() == Reloc::PIC_); bool isCodeLarge = (TM.getCodeModel() == CodeModel::Large); // %hi and %lo used on mips gas to load global addresses on // static code. %got is used to load global addresses when // using PIC_. %call16 is used to load direct call targets // on PIC_ and small code size. %call_lo and %call_hi load // direct call targets on PIC_ and large code size. if (MI->getOpcode() == Mips::LUi && !MO.isRegister() && !MO.isImmediate()) { if ((isPIC) && (isCodeLarge)) O << "%call_hi("; else O << "%hi("; closeP = true; } else if ((MI->getOpcode() == Mips::ADDiu) && !MO.isRegister() && !MO.isImmediate()) { O << "%lo("; closeP = true; } else if ((isPIC) && (MI->getOpcode() == Mips::LW) && (!MO.isRegister()) && (!MO.isImmediate())) { const MachineOperand &firstMO = MI->getOperand(opNum-1); const MachineOperand &lastMO = MI->getOperand(opNum+1); if ((firstMO.isRegister()) && (lastMO.isRegister())) { if ((firstMO.getReg() == Mips::T9) && (lastMO.getReg() == Mips::GP) && (!isCodeLarge)) O << "%call16("; else if ((firstMO.getReg() != Mips::T9) && (lastMO.getReg() == Mips::GP)) O << "%got("; else if ((firstMO.getReg() == Mips::T9) && (lastMO.getReg() != Mips::GP) && (isCodeLarge)) O << "%call_lo("; closeP = true; } } switch (MO.getType()) { case MachineOperand::MO_Register: if (MRegisterInfo::isPhysicalRegister(MO.getReg())) O << "$" << LowercaseString (RI.get(MO.getReg()).Name); else O << "$" << MO.getReg(); break; case MachineOperand::MO_Immediate: if ((MI->getOpcode() == Mips::SLTiu) || (MI->getOpcode() == Mips::ORi) || (MI->getOpcode() == Mips::LUi) || (MI->getOpcode() == Mips::ANDi)) O << (unsigned short int)MO.getImm(); else O << (short int)MO.getImm(); break; case MachineOperand::MO_MachineBasicBlock: printBasicBlockLabel(MO.getMBB()); return; case MachineOperand::MO_GlobalAddress: O << Mang->getValueName(MO.getGlobal()); break; case MachineOperand::MO_ExternalSymbol: O << MO.getSymbolName(); break; case MachineOperand::MO_JumpTableIndex: O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() << '_' << MO.getIndex(); break; // FIXME: Verify correct case MachineOperand::MO_ConstantPoolIndex: O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << "_" << MO.getIndex(); break; default: O << ""; abort (); break; } if (closeP) O << ")"; } void MipsAsmPrinter:: printMemOperand(const MachineInstr *MI, int opNum, const char *Modifier) { // when using stack locations for not load/store instructions // print the same way as all normal 3 operand instructions. if (Modifier && !strcmp(Modifier, "stackloc")) { printOperand(MI, opNum+1); O << ", "; printOperand(MI, opNum); return; } // Load/Store memory operands -- imm($reg) // If PIC target the target is loaded as the // pattern lw $25,%call16($28) printOperand(MI, opNum); O << "("; printOperand(MI, opNum+1); O << ")"; } bool MipsAsmPrinter:: doInitialization(Module &M) { Mang = new Mangler(M); return false; // success } bool MipsAsmPrinter:: doFinalization(Module &M) { const TargetData *TD = TM.getTargetData(); // Print out module-level global variables here. for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) // External global require no code if (I->hasInitializer()) { // Check to see if this is a special global // used by LLVM, if so, emit it. if (EmitSpecialLLVMGlobal(I)) continue; O << "\n\n"; std::string name = Mang->getValueName(I); Constant *C = I->getInitializer(); unsigned Size = TD->getABITypeSize(C->getType()); unsigned Align = TD->getPreferredAlignmentLog(I); // Is this correct ? if (C->isNullValue() && (I->hasLinkOnceLinkage() || I->hasInternalLinkage() || I->hasWeakLinkage())) { if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. if (!NoZerosInBSS && TAI->getBSSSection()) SwitchToDataSection(TAI->getBSSSection(), I); else SwitchToDataSection(TAI->getDataSection(), I); if (I->hasInternalLinkage()) { if (TAI->getLCOMMDirective()) O << TAI->getLCOMMDirective() << name << "," << Size; else O << "\t.local\t" << name << "\n"; } else { O << TAI->getCOMMDirective() << name << "," << Size; // The .comm alignment in bytes. if (TAI->getCOMMDirectiveTakesAlignment()) O << "," << (1 << Align); } } else { switch (I->getLinkage()) { case GlobalValue::LinkOnceLinkage: case GlobalValue::WeakLinkage: // FIXME: Verify correct for weak. // Nonnull linkonce -> weak O << "\t.weak " << name << "\n"; SwitchToDataSection("", I); O << "\t.section\t\".llvm.linkonce.d." << name << "\",\"aw\",@progbits\n"; break; case GlobalValue::AppendingLinkage: // FIXME: appending linkage variables // should go into a section of their name or // something. For now, just emit them as external. case GlobalValue::ExternalLinkage: // If external or appending, declare as a global symbol O << TAI->getGlobalDirective() << name << "\n"; // Fall Through case GlobalValue::InternalLinkage: // FIXME: special handling for ".ctors" & ".dtors" sections if (I->hasSection() && (I->getSection() == ".ctors" || I->getSection() == ".dtors")) { std::string SectionName = ".section " + I->getSection(); SectionName += ",\"aw\",%progbits"; SwitchToDataSection(SectionName.c_str()); } else { if (C->isNullValue() && !NoZerosInBSS && TAI->getBSSSection()) SwitchToDataSection(TAI->getBSSSection(), I); else if (!I->isConstant()) SwitchToDataSection(TAI->getDataSection(), I); else { // Read-only data. if (TAI->getReadOnlySection()) SwitchToDataSection(TAI->getReadOnlySection(), I); else SwitchToDataSection(TAI->getDataSection(), I); } } break; case GlobalValue::GhostLinkage: cerr << "Should not have any unmaterialized functions!\n"; abort(); case GlobalValue::DLLImportLinkage: cerr << "DLLImport linkage is not supported by this target!\n"; abort(); case GlobalValue::DLLExportLinkage: cerr << "DLLExport linkage is not supported by this target!\n"; abort(); default: assert(0 && "Unknown linkage type!"); } O << "\t.align " << Align << "\n"; O << "\t.type " << name << ",@object\n"; O << "\t.size " << name << "," << Size << "\n"; O << name << ":\n"; EmitGlobalConstant(C); } } return AsmPrinter::doFinalization(M); }