//===-- Mips/MipsCodeEmitter.cpp - Convert Mips Code to Machine Code ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===---------------------------------------------------------------------===// // // This file contains the pass that transforms the Mips machine instructions // into relocatable machine code. // //===---------------------------------------------------------------------===// #include "Mips.h" #include "MCTargetDesc/MipsBaseInfo.h" #include "MipsInstrInfo.h" #include "MipsRelocations.h" #include "MipsSubtarget.h" #include "MipsTargetMachine.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/JITCodeEmitter.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/Passes.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/PassManager.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #ifndef NDEBUG #include #endif using namespace llvm; #define DEBUG_TYPE "jit" STATISTIC(NumEmitted, "Number of machine instructions emitted"); namespace { class MipsCodeEmitter : public MachineFunctionPass { MipsJITInfo *JTI; const MipsInstrInfo *II; const DataLayout *TD; const MipsSubtarget *Subtarget; TargetMachine &TM; JITCodeEmitter &MCE; const std::vector *MCPEs; const std::vector *MJTEs; bool IsPIC; void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired (); MachineFunctionPass::getAnalysisUsage(AU); } static char ID; public: MipsCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce) : MachineFunctionPass(ID), JTI(nullptr), II(nullptr), TD(nullptr), TM(tm), MCE(mce), MCPEs(nullptr), MJTEs(nullptr), IsPIC(TM.getRelocationModel() == Reloc::PIC_) {} bool runOnMachineFunction(MachineFunction &MF) override; const char *getPassName() const override { return "Mips Machine Code Emitter"; } /// getBinaryCodeForInstr - This function, generated by the /// CodeEmitterGenerator using TableGen, produces the binary encoding for /// machine instructions. uint64_t getBinaryCodeForInstr(const MachineInstr &MI) const; void emitInstruction(MachineBasicBlock::instr_iterator MI, MachineBasicBlock &MBB); private: void emitWord(unsigned Word); /// Routines that handle operands which add machine relocations which are /// fixed up by the relocation stage. void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc, bool MayNeedFarStub) const; void emitExternalSymbolAddress(const char *ES, unsigned Reloc) const; void emitConstPoolAddress(unsigned CPI, unsigned Reloc) const; void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const; void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc) const; /// getMachineOpValue - Return binary encoding of operand. If the machine /// operand requires relocation, record the relocation and return zero. unsigned getMachineOpValue(const MachineInstr &MI, const MachineOperand &MO) const; unsigned getRelocation(const MachineInstr &MI, const MachineOperand &MO) const; unsigned getJumpTargetOpValue(const MachineInstr &MI, unsigned OpNo) const; unsigned getJumpTargetOpValueMM(const MachineInstr &MI, unsigned OpNo) const; unsigned getBranchTargetOpValueMM(const MachineInstr &MI, unsigned OpNo) const; unsigned getBranchTarget21OpValue(const MachineInstr &MI, unsigned OpNo) const; unsigned getBranchTarget26OpValue(const MachineInstr &MI, unsigned OpNo) const; unsigned getJumpOffset16OpValue(const MachineInstr &MI, unsigned OpNo) const; unsigned getBranchTargetOpValue(const MachineInstr &MI, unsigned OpNo) const; unsigned getMemEncoding(const MachineInstr &MI, unsigned OpNo) const; unsigned getMemEncodingMMImm12(const MachineInstr &MI, unsigned OpNo) const; unsigned getMSAMemEncoding(const MachineInstr &MI, unsigned OpNo) const; unsigned getSizeExtEncoding(const MachineInstr &MI, unsigned OpNo) const; unsigned getSizeInsEncoding(const MachineInstr &MI, unsigned OpNo) const; unsigned getLSAImmEncoding(const MachineInstr &MI, unsigned OpNo) const; unsigned getSimm19Lsl2Encoding(const MachineInstr &MI, unsigned OpNo) const; /// Expand pseudo instructions with accumulator register operands. void expandACCInstr(MachineBasicBlock::instr_iterator MI, MachineBasicBlock &MBB, unsigned Opc) const; /// \brief Expand pseudo instruction. Return true if MI was expanded. bool expandPseudos(MachineBasicBlock::instr_iterator &MI, MachineBasicBlock &MBB) const; }; } char MipsCodeEmitter::ID = 0; bool MipsCodeEmitter::runOnMachineFunction(MachineFunction &MF) { MipsTargetMachine &Target = static_cast( const_cast(MF.getTarget())); JTI = Target.getJITInfo(); II = Target.getInstrInfo(); TD = Target.getDataLayout(); Subtarget = &TM.getSubtarget (); MCPEs = &MF.getConstantPool()->getConstants(); MJTEs = nullptr; if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables(); JTI->Initialize(MF, IsPIC, Subtarget->isLittle()); MCE.setModuleInfo(&getAnalysis ()); do { DEBUG(errs() << "JITTing function '" << MF.getName() << "'\n"); MCE.startFunction(MF); for (MachineFunction::iterator MBB = MF.begin(), E = MF.end(); MBB != E; ++MBB){ MCE.StartMachineBasicBlock(MBB); for (MachineBasicBlock::instr_iterator I = MBB->instr_begin(), E = MBB->instr_end(); I != E;) emitInstruction(*I++, *MBB); } } while (MCE.finishFunction(MF)); return false; } unsigned MipsCodeEmitter::getRelocation(const MachineInstr &MI, const MachineOperand &MO) const { // NOTE: This relocations are for static. uint64_t TSFlags = MI.getDesc().TSFlags; uint64_t Form = TSFlags & MipsII::FormMask; if (Form == MipsII::FrmJ) return Mips::reloc_mips_26; if ((Form == MipsII::FrmI || Form == MipsII::FrmFI) && MI.isBranch()) return Mips::reloc_mips_pc16; if (Form == MipsII::FrmI && MI.getOpcode() == Mips::LUi) return Mips::reloc_mips_hi; return Mips::reloc_mips_lo; } unsigned MipsCodeEmitter::getJumpTargetOpValue(const MachineInstr &MI, unsigned OpNo) const { MachineOperand MO = MI.getOperand(OpNo); if (MO.isGlobal()) emitGlobalAddress(MO.getGlobal(), getRelocation(MI, MO), true); else if (MO.isSymbol()) emitExternalSymbolAddress(MO.getSymbolName(), getRelocation(MI, MO)); else if (MO.isMBB()) emitMachineBasicBlock(MO.getMBB(), getRelocation(MI, MO)); else llvm_unreachable("Unexpected jump target operand kind."); return 0; } unsigned MipsCodeEmitter::getJumpTargetOpValueMM(const MachineInstr &MI, unsigned OpNo) const { llvm_unreachable("Unimplemented function."); return 0; } unsigned MipsCodeEmitter::getBranchTargetOpValueMM(const MachineInstr &MI, unsigned OpNo) const { llvm_unreachable("Unimplemented function."); return 0; } unsigned MipsCodeEmitter::getBranchTarget21OpValue(const MachineInstr &MI, unsigned OpNo) const { llvm_unreachable("Unimplemented function."); return 0; } unsigned MipsCodeEmitter::getBranchTarget26OpValue(const MachineInstr &MI, unsigned OpNo) const { llvm_unreachable("Unimplemented function."); return 0; } unsigned MipsCodeEmitter::getJumpOffset16OpValue(const MachineInstr &MI, unsigned OpNo) const { llvm_unreachable("Unimplemented function."); return 0; } unsigned MipsCodeEmitter::getBranchTargetOpValue(const MachineInstr &MI, unsigned OpNo) const { MachineOperand MO = MI.getOperand(OpNo); emitMachineBasicBlock(MO.getMBB(), getRelocation(MI, MO)); return 0; } unsigned MipsCodeEmitter::getMemEncoding(const MachineInstr &MI, unsigned OpNo) const { // Base register is encoded in bits 20-16, offset is encoded in bits 15-0. assert(MI.getOperand(OpNo).isReg()); unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo)) << 16; return (getMachineOpValue(MI, MI.getOperand(OpNo+1)) & 0xFFFF) | RegBits; } unsigned MipsCodeEmitter::getMemEncodingMMImm12(const MachineInstr &MI, unsigned OpNo) const { llvm_unreachable("Unimplemented function."); return 0; } unsigned MipsCodeEmitter::getMSAMemEncoding(const MachineInstr &MI, unsigned OpNo) const { llvm_unreachable("Unimplemented function."); return 0; } unsigned MipsCodeEmitter::getSizeExtEncoding(const MachineInstr &MI, unsigned OpNo) const { // size is encoded as size-1. return getMachineOpValue(MI, MI.getOperand(OpNo)) - 1; } unsigned MipsCodeEmitter::getSizeInsEncoding(const MachineInstr &MI, unsigned OpNo) const { // size is encoded as pos+size-1. return getMachineOpValue(MI, MI.getOperand(OpNo-1)) + getMachineOpValue(MI, MI.getOperand(OpNo)) - 1; } unsigned MipsCodeEmitter::getLSAImmEncoding(const MachineInstr &MI, unsigned OpNo) const { llvm_unreachable("Unimplemented function."); return 0; } unsigned MipsCodeEmitter::getSimm19Lsl2Encoding(const MachineInstr &MI, unsigned OpNo) const { llvm_unreachable("Unimplemented function."); return 0; } /// getMachineOpValue - Return binary encoding of operand. If the machine /// operand requires relocation, record the relocation and return zero. unsigned MipsCodeEmitter::getMachineOpValue(const MachineInstr &MI, const MachineOperand &MO) const { if (MO.isReg()) return TM.getRegisterInfo()->getEncodingValue(MO.getReg()); else if (MO.isImm()) return static_cast(MO.getImm()); else if (MO.isGlobal()) emitGlobalAddress(MO.getGlobal(), getRelocation(MI, MO), true); else if (MO.isSymbol()) emitExternalSymbolAddress(MO.getSymbolName(), getRelocation(MI, MO)); else if (MO.isCPI()) emitConstPoolAddress(MO.getIndex(), getRelocation(MI, MO)); else if (MO.isJTI()) emitJumpTableAddress(MO.getIndex(), getRelocation(MI, MO)); else if (MO.isMBB()) emitMachineBasicBlock(MO.getMBB(), getRelocation(MI, MO)); else llvm_unreachable("Unable to encode MachineOperand!"); return 0; } void MipsCodeEmitter::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc, bool MayNeedFarStub) const { MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc, const_cast(GV), 0, MayNeedFarStub)); } void MipsCodeEmitter:: emitExternalSymbolAddress(const char *ES, unsigned Reloc) const { MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(), Reloc, ES, 0, 0)); } void MipsCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) const { MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(), Reloc, CPI, 0, false)); } void MipsCodeEmitter:: emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const { MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(), Reloc, JTIndex, 0, false)); } void MipsCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc) const { MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(), Reloc, BB)); } void MipsCodeEmitter::emitInstruction(MachineBasicBlock::instr_iterator MI, MachineBasicBlock &MBB) { DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << *MI); // Expand pseudo instruction. Skip if MI was not expanded. if (((MI->getDesc().TSFlags & MipsII::FormMask) == MipsII::Pseudo) && !expandPseudos(MI, MBB)) return; MCE.processDebugLoc(MI->getDebugLoc(), true); emitWord(getBinaryCodeForInstr(*MI)); ++NumEmitted; // Keep track of the # of mi's emitted MCE.processDebugLoc(MI->getDebugLoc(), false); } void MipsCodeEmitter::emitWord(unsigned Word) { DEBUG(errs() << " 0x"; errs().write_hex(Word) << "\n"); if (Subtarget->isLittle()) MCE.emitWordLE(Word); else MCE.emitWordBE(Word); } void MipsCodeEmitter::expandACCInstr(MachineBasicBlock::instr_iterator MI, MachineBasicBlock &MBB, unsigned Opc) const { // Expand "pseudomult $ac0, $t0, $t1" to "mult $t0, $t1". BuildMI(MBB, &*MI, MI->getDebugLoc(), II->get(Opc)) .addReg(MI->getOperand(1).getReg()).addReg(MI->getOperand(2).getReg()); } bool MipsCodeEmitter::expandPseudos(MachineBasicBlock::instr_iterator &MI, MachineBasicBlock &MBB) const { switch (MI->getOpcode()) { case Mips::NOP: BuildMI(MBB, &*MI, MI->getDebugLoc(), II->get(Mips::SLL), Mips::ZERO) .addReg(Mips::ZERO).addImm(0); break; case Mips::B: BuildMI(MBB, &*MI, MI->getDebugLoc(), II->get(Mips::BEQ)).addReg(Mips::ZERO) .addReg(Mips::ZERO).addOperand(MI->getOperand(0)); break; case Mips::TRAP: BuildMI(MBB, &*MI, MI->getDebugLoc(), II->get(Mips::BREAK)).addImm(0) .addImm(0); break; case Mips::JALRPseudo: BuildMI(MBB, &*MI, MI->getDebugLoc(), II->get(Mips::JALR), Mips::RA) .addReg(MI->getOperand(0).getReg()); break; case Mips::PseudoMULT: expandACCInstr(MI, MBB, Mips::MULT); break; case Mips::PseudoMULTu: expandACCInstr(MI, MBB, Mips::MULTu); break; case Mips::PseudoSDIV: expandACCInstr(MI, MBB, Mips::SDIV); break; case Mips::PseudoUDIV: expandACCInstr(MI, MBB, Mips::UDIV); break; case Mips::PseudoMADD: expandACCInstr(MI, MBB, Mips::MADD); break; case Mips::PseudoMADDU: expandACCInstr(MI, MBB, Mips::MADDU); break; case Mips::PseudoMSUB: expandACCInstr(MI, MBB, Mips::MSUB); break; case Mips::PseudoMSUBU: expandACCInstr(MI, MBB, Mips::MSUBU); break; default: return false; } (MI--)->eraseFromBundle(); return true; } /// createMipsJITCodeEmitterPass - Return a pass that emits the collected Mips /// code to the specified MCE object. FunctionPass *llvm::createMipsJITCodeEmitterPass(MipsTargetMachine &TM, JITCodeEmitter &JCE) { return new MipsCodeEmitter(TM, JCE); } #include "MipsGenCodeEmitter.inc"