//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the interfaces that Mips uses to lower LLVM code into a // selection DAG. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "mips-lower" #include "MipsISelLowering.h" #include "MipsMachineFunction.h" #include "MipsTargetMachine.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/Intrinsics.h" #include "llvm/CallingConv.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/Support/Debug.h" #include #include using namespace llvm; const char *MipsTargetLowering:: getTargetNodeName(unsigned Opcode) const { switch (Opcode) { case MipsISD::JmpLink : return "MipsISD::JmpLink"; case MipsISD::Hi : return "MipsISD::Hi"; case MipsISD::Lo : return "MipsISD::Lo"; case MipsISD::Ret : return "MipsISD::Ret"; case MipsISD::SelectCC : return "MipsISD::SelectCC"; default : return NULL; } } MipsTargetLowering:: MipsTargetLowering(MipsTargetMachine &TM): TargetLowering(TM) { // Mips does not have i1 type, so use i32 for // setcc operations results (slt, sgt, ...). setSetCCResultContents(ZeroOrOneSetCCResult); // JumpTable targets must use GOT when using PIC_ setUsesGlobalOffsetTable(true); // Set up the register classes addRegisterClass(MVT::i32, Mips::CPURegsRegisterClass); // Custom setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); setOperationAction(ISD::RET, MVT::Other, Custom); setOperationAction(ISD::JumpTable, MVT::i32, Custom); setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); // Load extented operations for i1 types must be promoted setLoadXAction(ISD::EXTLOAD, MVT::i1, Promote); setLoadXAction(ISD::ZEXTLOAD, MVT::i1, Promote); setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote); // Mips does not have these NodeTypes below. setOperationAction(ISD::BR_JT, MVT::Other, Expand); setOperationAction(ISD::BR_CC, MVT::Other, Expand); setOperationAction(ISD::SELECT_CC, MVT::Other, Expand); setOperationAction(ISD::SELECT, MVT::i32, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); // Mips not supported intrinsics. setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand); setOperationAction(ISD::CTPOP, MVT::i32, Expand); setOperationAction(ISD::CTTZ , MVT::i32, Expand); setOperationAction(ISD::CTLZ , MVT::i32, Expand); setOperationAction(ISD::ROTL , MVT::i32, Expand); setOperationAction(ISD::ROTR , MVT::i32, Expand); setOperationAction(ISD::BSWAP, MVT::i32, Expand); setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); // We don't have line number support yet. setOperationAction(ISD::LOCATION, MVT::Other, Expand); setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand); setOperationAction(ISD::LABEL, MVT::Other, Expand); // Use the default for now setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); setStackPointerRegisterToSaveRestore(Mips::SP); computeRegisterProperties(); } MVT::ValueType MipsTargetLowering::getSetCCResultType(const SDOperand &) const { return MVT::i32; } SDOperand MipsTargetLowering:: LowerOperation(SDOperand Op, SelectionDAG &DAG) { switch (Op.getOpcode()) { case ISD::CALL: return LowerCALL(Op, DAG); case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG); case ISD::RET: return LowerRET(Op, DAG); case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); case ISD::JumpTable: return LowerJumpTable(Op, DAG); case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); } return SDOperand(); } MachineBasicBlock * MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *BB) { const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); switch (MI->getOpcode()) { default: assert(false && "Unexpected instr type to insert"); case Mips::Select_CC: { // To "insert" a SELECT_CC instruction, we actually have to insert the // diamond control-flow pattern. The incoming instruction knows the // destination vreg to set, the condition code register to branch on, the // true/false values to select between, and a branch opcode to use. const BasicBlock *LLVM_BB = BB->getBasicBlock(); ilist::iterator It = BB; ++It; // thisMBB: // ... // TrueVal = ... // setcc r1, r2, r3 // bNE r1, r0, copy1MBB // fallthrough --> copy0MBB MachineBasicBlock *thisMBB = BB; MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); BuildMI(BB, TII->get(Mips::BNE)).addReg(MI->getOperand(1).getReg()) .addReg(Mips::ZERO).addMBB(sinkMBB); MachineFunction *F = BB->getParent(); F->getBasicBlockList().insert(It, copy0MBB); F->getBasicBlockList().insert(It, sinkMBB); // Update machine-CFG edges by first adding all successors of the current // block to the new block which will contain the Phi node for the select. for(MachineBasicBlock::succ_iterator i = BB->succ_begin(), e = BB->succ_end(); i != e; ++i) sinkMBB->addSuccessor(*i); // Next, remove all successors of the current block, and add the true // and fallthrough blocks as its successors. while(!BB->succ_empty()) BB->removeSuccessor(BB->succ_begin()); BB->addSuccessor(copy0MBB); BB->addSuccessor(sinkMBB); // copy0MBB: // %FalseValue = ... // # fallthrough to sinkMBB BB = copy0MBB; // Update machine-CFG edges BB->addSuccessor(sinkMBB); // sinkMBB: // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] // ... BB = sinkMBB; BuildMI(BB, TII->get(Mips::PHI), MI->getOperand(0).getReg()) .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB) .addReg(MI->getOperand(3).getReg()).addMBB(thisMBB); delete MI; // The pseudo instruction is gone now. return BB; } } } //===----------------------------------------------------------------------===// // Lower helper functions //===----------------------------------------------------------------------===// // AddLiveIn - This helper function adds the specified physical register to the // MachineFunction as a live in value. It also creates a corresponding // virtual register for it. static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg, TargetRegisterClass *RC) { assert(RC->contains(PReg) && "Not the correct regclass!"); unsigned VReg = MF.getRegInfo().createVirtualRegister(RC); MF.getRegInfo().addLiveIn(PReg, VReg); return VReg; } //===----------------------------------------------------------------------===// // Misc Lower Operation implementation //===----------------------------------------------------------------------===// SDOperand MipsTargetLowering:: LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) { SDOperand ResNode; GlobalValue *GV = cast(Op)->getGlobal(); SDOperand GA = DAG.getTargetGlobalAddress(GV, MVT::i32); bool isPIC = (getTargetMachine().getRelocationModel() == Reloc::PIC_); SDOperand HiPart; if (!isPIC) { const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::i32); SDOperand Ops[] = { GA }; HiPart = DAG.getNode(MipsISD::Hi, VTs, 1, Ops, 1); } else // Emit Load from Global Pointer HiPart = DAG.getLoad(MVT::i32, DAG.getEntryNode(), GA, NULL, 0); // On functions and global targets not internal linked only // a load from got/GP is necessary for PIC to work. if ((isPIC) && ((!GV->hasInternalLinkage()) || (isa(GV)))) return HiPart; SDOperand Lo = DAG.getNode(MipsISD::Lo, MVT::i32, GA); ResNode = DAG.getNode(ISD::ADD, MVT::i32, HiPart, Lo); return ResNode; } SDOperand MipsTargetLowering:: LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) { assert(0 && "TLS not implemented for MIPS."); return SDOperand(); // Not reached } SDOperand MipsTargetLowering:: LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) { SDOperand LHS = Op.getOperand(0); SDOperand RHS = Op.getOperand(1); SDOperand True = Op.getOperand(2); SDOperand False = Op.getOperand(3); SDOperand CC = Op.getOperand(4); const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::i32); SDOperand Ops[] = { LHS, RHS, CC }; SDOperand SetCCRes = DAG.getNode(ISD::SETCC, VTs, 1, Ops, 3); return DAG.getNode(MipsISD::SelectCC, True.getValueType(), SetCCRes, True, False); } SDOperand MipsTargetLowering:: LowerJumpTable(SDOperand Op, SelectionDAG &DAG) { SDOperand ResNode; SDOperand HiPart; MVT::ValueType PtrVT = Op.getValueType(); JumpTableSDNode *JT = cast(Op); SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); if (getTargetMachine().getRelocationModel() != Reloc::PIC_) { const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::i32); SDOperand Ops[] = { JTI }; HiPart = DAG.getNode(MipsISD::Hi, VTs, 1, Ops, 1); } else // Emit Load from Global Pointer HiPart = DAG.getLoad(MVT::i32, DAG.getEntryNode(), JTI, NULL, 0); SDOperand Lo = DAG.getNode(MipsISD::Lo, MVT::i32, JTI); ResNode = DAG.getNode(ISD::ADD, MVT::i32, HiPart, Lo); return ResNode; } //===----------------------------------------------------------------------===// // Calling Convention Implementation // // The lower operations present on calling convention works on this order: // LowerCALL (virt regs --> phys regs, virt regs --> stack) // LowerFORMAL_ARGUMENTS (phys --> virt regs, stack --> virt regs) // LowerRET (virt regs --> phys regs) // LowerCALL (phys regs --> virt regs) // //===----------------------------------------------------------------------===// #include "MipsGenCallingConv.inc" //===----------------------------------------------------------------------===// // CALL Calling Convention Implementation //===----------------------------------------------------------------------===// /// Mips custom CALL implementation SDOperand MipsTargetLowering:: LowerCALL(SDOperand Op, SelectionDAG &DAG) { unsigned CallingConv = cast(Op.getOperand(1))->getValue(); // By now, only CallingConv::C implemented switch (CallingConv) { default: assert(0 && "Unsupported calling convention"); case CallingConv::Fast: case CallingConv::C: return LowerCCCCallTo(Op, DAG, CallingConv); } } /// LowerCCCCallTo - functions arguments are copied from virtual /// regs to (physical regs)/(stack frame), CALLSEQ_START and /// CALLSEQ_END are emitted. /// TODO: isVarArg, isTailCall, sret. SDOperand MipsTargetLowering:: LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG, unsigned CC) { MachineFunction &MF = DAG.getMachineFunction(); SDOperand Chain = Op.getOperand(0); SDOperand Callee = Op.getOperand(4); bool isVarArg = cast(Op.getOperand(2))->getValue() != 0; MachineFrameInfo *MFI = MF.getFrameInfo(); // Analyze operands of the call, assigning locations to each operand. SmallVector ArgLocs; CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs); // To meet ABI, Mips must always allocate 16 bytes on // the stack (even if less than 4 are used as arguments) int VTsize = MVT::getSizeInBits(MVT::i32)/8; MFI->CreateFixedObject(VTsize, (VTsize*3)); CCInfo.AnalyzeCallOperands(Op.Val, CC_Mips); // Get a count of how many bytes are to be pushed on the stack. unsigned NumBytes = CCInfo.getNextStackOffset(); Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy())); SmallVector, 8> RegsToPass; SmallVector MemOpChains; int LastStackLoc = 0; // Walk the register/memloc assignments, inserting copies/loads. for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; // Arguments start after the 5 first operands of ISD::CALL SDOperand Arg = Op.getOperand(5+2*VA.getValNo()); // Promote the value if needed. switch (VA.getLocInfo()) { default: assert(0 && "Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::SExt: Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg); break; case CCValAssign::ZExt: Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg); break; case CCValAssign::AExt: Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg); break; } // Arguments that can be passed on register must be kept at // RegsToPass vector if (VA.isRegLoc()) { RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); continue; } assert(VA.isMemLoc()); // Create the frame index object for this incoming parameter // This guarantees that when allocating Local Area the firsts // 16 bytes which are alwayes reserved won't be overwritten. LastStackLoc = (16 + VA.getLocMemOffset()); int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8, LastStackLoc); SDOperand PtrOff = DAG.getFrameIndex(FI,getPointerTy()); // emit ISD::STORE whichs stores the // parameter value to a stack Location MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0)); } // Transform all store nodes into one single node because // all store nodes are independent of each other. if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOpChains[0], MemOpChains.size()); // Build a sequence of copy-to-reg nodes chained together with token // chain and flag operands which copy the outgoing args into registers. // The InFlag in necessary since all emited instructions must be // stuck together. SDOperand InFlag; for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second, InFlag); InFlag = Chain.getValue(1); } // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol // node so that legalize doesn't hack it. if (GlobalAddressSDNode *G = dyn_cast(Callee)) Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy()); else if (ExternalSymbolSDNode *S = dyn_cast(Callee)) Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy()); // MipsJmpLink = #chain, #target_address, #opt_in_flags... // = Chain, Callee, Reg#1, Reg#2, ... // // Returns a chain & a flag for retval copy to use. SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); SmallVector Ops; Ops.push_back(Chain); Ops.push_back(Callee); // Add argument registers to the end of the list so that they are // known live into the call. for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) Ops.push_back(DAG.getRegister(RegsToPass[i].first, RegsToPass[i].second.getValueType())); if (InFlag.Val) Ops.push_back(InFlag); Chain = DAG.getNode(MipsISD::JmpLink, NodeTys, &Ops[0], Ops.size()); InFlag = Chain.getValue(1); // Create the CALLSEQ_END node. Chain = DAG.getCALLSEQ_END(Chain, DAG.getConstant(NumBytes, getPointerTy()), DAG.getConstant(0, getPointerTy()), InFlag); InFlag = Chain.getValue(1); // Create a stack location to hold GP when PIC is used. This stack // location is used on function prologue to save GP and also after all // emited CALL's to restore GP. if (getTargetMachine().getRelocationModel() == Reloc::PIC_) { // Function can have an arbitrary number of calls, so // hold the LastStackLoc with the biggest offset. int FI; MipsFunctionInfo *MipsFI = MF.getInfo(); if (LastStackLoc >= MipsFI->getGPStackOffset()) { LastStackLoc = (!LastStackLoc) ? (16) : (LastStackLoc+4); // Create the frame index only once. SPOffset here can be anything // (this will be fixed on processFunctionBeforeFrameFinalized) if (MipsFI->getGPStackOffset() == -1) { FI = MFI->CreateFixedObject(4, 0); MipsFI->setGPFI(FI); } MipsFI->setGPStackOffset(LastStackLoc); } // Reload GP value. FI = MipsFI->getGPFI(); SDOperand FIN = DAG.getFrameIndex(FI,getPointerTy()); SDOperand GPLoad = DAG.getLoad(MVT::i32, Chain, FIN, NULL, 0); Chain = GPLoad.getValue(1); Chain = DAG.getCopyToReg(Chain, DAG.getRegister(Mips::GP, MVT::i32), GPLoad, SDOperand(0,0)); InFlag = Chain.getValue(1); } // Handle result values, copying them out of physregs into vregs that we // return. return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo); } /// LowerCallResult - Lower the result values of an ISD::CALL into the /// appropriate copies out of appropriate physical registers. This assumes that /// Chain/InFlag are the input chain/flag to use, and that TheCall is the call /// being lowered. Returns a SDNode with the same number of values as the /// ISD::CALL. SDNode *MipsTargetLowering:: LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall, unsigned CallingConv, SelectionDAG &DAG) { bool isVarArg = cast(TheCall->getOperand(2))->getValue() != 0; // Assign locations to each value returned by this call. SmallVector RVLocs; CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs); CCInfo.AnalyzeCallResult(TheCall, RetCC_Mips); SmallVector ResultVals; // Copy all of the result registers out of their specified physreg. for (unsigned i = 0; i != RVLocs.size(); ++i) { Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(), RVLocs[i].getValVT(), InFlag).getValue(1); InFlag = Chain.getValue(2); ResultVals.push_back(Chain.getValue(0)); } ResultVals.push_back(Chain); // Merge everything together with a MERGE_VALUES node. return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(), &ResultVals[0], ResultVals.size()).Val; } //===----------------------------------------------------------------------===// // FORMAL_ARGUMENTS Calling Convention Implementation //===----------------------------------------------------------------------===// /// Mips custom FORMAL_ARGUMENTS implementation SDOperand MipsTargetLowering:: LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) { unsigned CC = cast(Op.getOperand(1))->getValue(); switch(CC) { default: assert(0 && "Unsupported calling convention"); case CallingConv::C: return LowerCCCArguments(Op, DAG); } } /// LowerCCCArguments - transform physical registers into /// virtual registers and generate load operations for /// arguments places on the stack. /// TODO: isVarArg, sret SDOperand MipsTargetLowering:: LowerCCCArguments(SDOperand Op, SelectionDAG &DAG) { SDOperand Root = Op.getOperand(0); MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); MipsFunctionInfo *MipsFI = MF.getInfo(); bool isVarArg = cast(Op.getOperand(2))->getValue() != 0; unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv(); unsigned StackReg = MF.getTarget().getRegisterInfo()->getFrameRegister(MF); // GP holds the GOT address on PIC calls. if (getTargetMachine().getRelocationModel() == Reloc::PIC_) AddLiveIn(MF, Mips::GP, Mips::CPURegsRegisterClass); // Assign locations to all of the incoming arguments. SmallVector ArgLocs; CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs); CCInfo.AnalyzeFormalArguments(Op.Val, CC_Mips); SmallVector ArgValues; SDOperand StackPtr; for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; // Arguments stored on registers if (VA.isRegLoc()) { MVT::ValueType RegVT = VA.getLocVT(); TargetRegisterClass *RC; if (RegVT == MVT::i32) RC = Mips::CPURegsRegisterClass; else assert(0 && "support only Mips::CPURegsRegisterClass"); // Transform the arguments stored on // physical registers into virtual ones unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC); SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT); // If this is an 8 or 16-bit value, it is really passed promoted // to 32 bits. Insert an assert[sz]ext to capture this, then // truncate to the right size. if (VA.getLocInfo() == CCValAssign::SExt) ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue, DAG.getValueType(VA.getValVT())); else if (VA.getLocInfo() == CCValAssign::ZExt) ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue, DAG.getValueType(VA.getValVT())); if (VA.getLocInfo() != CCValAssign::Full) ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue); ArgValues.push_back(ArgValue); // To meet ABI, when VARARGS are passed on registers, the registers // must have their values written to the caller stack frame. if (isVarArg) { if (StackPtr.Val == 0) StackPtr = DAG.getRegister(StackReg, getPointerTy()); // The stack pointer offset is relative to the caller stack frame. // Since the real stack size is unknown here, a negative SPOffset // is used so there's a way to adjust these offsets when the stack // size get known (on EliminateFrameIndex). A dummy SPOffset is // used instead of a direct negative address (which is recorded to // be used on emitPrologue) to avoid mis-calc of the first stack // offset on PEI::calculateFrameObjectOffsets. // Arguments are always 32-bit. int FI = MFI->CreateFixedObject(4, 0); MipsFI->recordStoreVarArgsFI(FI, -(4+(i*4))); SDOperand PtrOff = DAG.getFrameIndex(FI, getPointerTy()); // emit ISD::STORE whichs stores the // parameter value to a stack Location ArgValues.push_back(DAG.getStore(Root, ArgValue, PtrOff, NULL, 0)); } } else { // sanity check assert(VA.isMemLoc()); // The stack pointer offset is relative to the caller stack frame. // Since the real stack size is unknown here, a negative SPOffset // is used so there's a way to adjust these offsets when the stack // size get known (on EliminateFrameIndex). A dummy SPOffset is // used instead of a direct negative address (which is recorded to // be used on emitPrologue) to avoid mis-calc of the first stack // offset on PEI::calculateFrameObjectOffsets. // Arguments are always 32-bit. int FI = MFI->CreateFixedObject(4, 0); MipsFI->recordLoadArgsFI(FI, -(4+(16+VA.getLocMemOffset()))); // Create load nodes to retrieve arguments from the stack SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy()); ArgValues.push_back(DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0)); } } ArgValues.push_back(Root); // Return the new list of results. return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), &ArgValues[0], ArgValues.size()).getValue(Op.ResNo); } //===----------------------------------------------------------------------===// // Return Value Calling Convention Implementation //===----------------------------------------------------------------------===// SDOperand MipsTargetLowering:: LowerRET(SDOperand Op, SelectionDAG &DAG) { // CCValAssign - represent the assignment of // the return value to a location SmallVector RVLocs; unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv(); bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); // CCState - Info about the registers and stack slot. CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs); // Analize return values of ISD::RET CCInfo.AnalyzeReturn(Op.Val, RetCC_Mips); // If this is the first return lowered for this function, add // the regs to the liveout set for the function. if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { for (unsigned i = 0; i != RVLocs.size(); ++i) if (RVLocs[i].isRegLoc()) DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); } // The chain is always operand #0 SDOperand Chain = Op.getOperand(0); SDOperand Flag; // Copy the result values into the output registers. for (unsigned i = 0; i != RVLocs.size(); ++i) { CCValAssign &VA = RVLocs[i]; assert(VA.isRegLoc() && "Can only return in registers!"); // ISD::RET => ret chain, (regnum1,val1), ... // So i*2+1 index only the regnums Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag); // guarantee that all emitted copies are // stuck together, avoiding something bad Flag = Chain.getValue(1); } // Return on Mips is always a "jr $ra" if (Flag.Val) return DAG.getNode(MipsISD::Ret, MVT::Other, Chain, DAG.getRegister(Mips::RA, MVT::i32), Flag); else // Return Void return DAG.getNode(MipsISD::Ret, MVT::Other, Chain, DAG.getRegister(Mips::RA, MVT::i32)); } //===----------------------------------------------------------------------===// // Mips Inline Assembly Support //===----------------------------------------------------------------------===// /// getConstraintType - Given a constraint letter, return the type of /// constraint it is for this target. MipsTargetLowering::ConstraintType MipsTargetLowering:: getConstraintType(const std::string &Constraint) const { if (Constraint.size() == 1) { // Mips specific constrainy // GCC config/mips/constraints.md // // 'd' : An address register. Equivalent to r // unless generating MIPS16 code. // 'y' : Equivalent to r; retained for // backwards compatibility. // switch (Constraint[0]) { default : break; case 'd': case 'y': return C_RegisterClass; break; } } return TargetLowering::getConstraintType(Constraint); } std::pair MipsTargetLowering:: getRegForInlineAsmConstraint(const std::string &Constraint, MVT::ValueType VT) const { if (Constraint.size() == 1) { switch (Constraint[0]) { case 'r': return std::make_pair(0U, Mips::CPURegsRegisterClass); break; } } return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); } std::vector MipsTargetLowering:: getRegClassForInlineAsmConstraint(const std::string &Constraint, MVT::ValueType VT) const { if (Constraint.size() != 1) return std::vector(); switch (Constraint[0]) { default : break; case 'r': // GCC Mips Constraint Letters case 'd': case 'y': return make_vector(Mips::V0, Mips::V1, Mips::A0, Mips::A1, Mips::A2, Mips::A3, Mips::T0, Mips::T1, Mips::T2, Mips::T3, Mips::T4, Mips::T5, Mips::T6, Mips::T7, Mips::S0, Mips::S1, Mips::S2, Mips::S3, Mips::S4, Mips::S5, Mips::S6, Mips::S7, Mips::T8, Mips::T9, 0); break; } return std::vector(); }